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Abstract: In this study, we collected data on human falls, occurring in four directions while walking or
standing, and developed a fall recognition system based on the center of mass (COM). Fall data were
collected from a lower-body motion data acquisition device comprising five inertial measurement
unit sensors driven at 100 Hz and labeled based on the COM-norm. The data were learned to classify
which stage of the fall a particular instance belongs to. It was confirmed that both the representative
convolutional neural network learning model and the long short-term memory learning model were
performed within a time of 10 ms on the embedded platform (Jetson TX2) and the recognition rate
exceeded 94%. Accordingly, it is possible to verify the progress of the fall during the unbalanced
and falling steps, which are classified by subdividing the critical step in which the real-time fall
proceeds with the output of the fall recognition model every 10 ms. In addition, it was confirmed
that a real-time fall can be judged by specifying the point of no return (PONR) near the point of entry
of the falling down stage.

Keywords: fall detection; inertial measurement unit sensor; point of no return

1. Introduction

Falls have long been researched from various perspectives [1–5]. Falls among the
elderly have emerged as a social issue owing to an exponential increase in the elderly pop-
ulation [6]. A survey on the welfare and living conditions of the elderly (2017), published
by the Ministry of Health and Welfare (MOHW), showed that the fall rate of seniors was
15.9% in 2017 [6].

Existing studies on falls can be mainly classified according to whether the fall detection
systems used are based on camera images or inertial measurement units (IMUs). When
protective devices for preventing falls—such as airbags—are used, fall detection systems
based on IMUs are generally utilized. Previous studies on fall detection systems that
apply IMUs focused on calculating a threshold based on the significant impacts generated
by falls or a rapid change in acceleration or developing measures or services that can
instantly cope with falls [7–9]. With the development of learning-based algorithms since
2010, research [10–12] on utilizing fall data obtained based on computer vision and data
obtained by IMU sensors [13–16] has been actively conducted. To utilize a learning-based
algorithm, a data set containing the characteristics of the problem to be solved is required;
more datasets provide better results. The sisFall dataset, which reflects 15 types of falls
based on five cases for each fall type, was recently released [17]. However, the volume of
fall data in this dataset was insufficient.

In some studies, falls were determined by considering areas related to the center
of mass (COM) and the base of support (BOS) of human beings as feature points based
on data collected by Kinect cameras [18,19]. Xu Tao (2017) predicted falls based on data
obtained by Kinect cameras and a long short-term memory (LSTM) algorithm. Specifically,
falls were predicted under the condition of 5 and 10 frames before the standard moment
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of collision with the floor. However, the prediction result (75%) obtained when applying
the condition of five frames before the standard moment was less accurate than under the
condition of 10 frames (91.7%) [19].

Similar to the public sisFall data set, the fall data set collected in existing fall studies
was collected by designing and mimicking the fall situation in several cases and the data set
quantity was insufficient. To reflect the characteristics of falls that occur in real situations,
a method is needed for reproducing a realistic fall situation. In addition, a method for
collecting a large amount of data and for determining the progress of the fall in real-time
is needed.

Thus, this study proposes a real-time fall progress detection system that can reflect
practical falls that occur in daily life, e.g., when walking or standing. Hence, fall data
were obtained via a fall implementation device that can reproduce realistic fall situations
to reduce artificial elements that might be generated in a laboratory and maximize the
volume of fall data obtained. Moreover, a learning model was operated based on a unit
of 10 ms to monitor the progress of falls and ultimately determine falls. In addition, IMU
sensor data were utilized for wearable situations. We thus developed a lower limb motion
caption device, visualization S/W monitoring motion data, and a fall-reproducing device
that induces falls. These devices were utilized to collect fall data and the fall data collection
experiment was conducted with the approval of the Institutional Review Board (IRB) at
Konyang University (project no.: KYU-2020-055-02).

The remainder of this paper is organized as follows. In Section 2, the critical phase
of falls is divided into an imbalance phase and a falling phase to facilitate real-time fall
recognition, and COM-based labels are described. In Section 3, the devices and methods
used for data collection are described. The learning and recognition results are presented
and analyzed in Section 4. In Section 5, the real-time implementation results based on the
target platform and verification method are presented. Finally, conclusions and future
research directions are presented in Section 6.

2. Materials and Methods
2.1. Sub-Division of the Critical Phase

A fall, defined in an existing study, is a sequential process of a person losing balance
during his or her daily activities, colliding with the ground, lying on the ground, and
standing up again. In this study, the entire phases of falling were divided into pre-fall,
critical, post-fall, and recovery phases [3]. This study aimed to detect the critical phase,
as presented in Table 1, i.e., the point where a person cannot recover his or her position
during the fall process. The pre-fall phase, which refers to daily activities, was limited to
falls generated by standing and walking. The critical phase, which refers to a fall progress
process, was sub-divided into two specific phases, as shown in Figure 1. In this figure, the
x- and y-axes indicate the time flow and location of the COM in the direction of gravity,
respectively. T0 indicates the moment when balance is disrupted by a causal factor, leading
to a fall, and T0 to Tα is the period during which a person can recover balance, according
to his or her exercise ability. The Tα point indicates when the imbalance has progressed to
some extent; after this, it is difficult to recover the posture using exercise ability. This study
aimed to detect the point of no return (PONR), i.e., when a person cannot recover his or
her balance based on his or her exercise ability. T1 refers to the point at which the chest or
bottom of a person touches the ground. The time after this point indicates a complete fall.
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Table 1. Sub-division of the critical phase among the entire phases of the fall progress.

Fall Phases Sub-Division of the Critical Phase Classification of Behaviors

Pre-fall phase Standing (S) Daily activities
Walking (W)

Critical phase Imbalance (I) Fall in progress
Falling down (F)

Post fall phase Post Fall (P)
After falling down

Recovery phase Recovery (R)

Figure 1. Phases of fall progress process and sub-division of the critical phase.

To develop a system for real-time detection of PONR, the process of falling in an ADL
situation is conceptualized as multiple frames and each frame is mapped to the result
inferred by the learning model. Then, the fall progress is expressed as a result value inferred
by the learning model (e.g., the continuous output value of a fall learning model, such
as 3333344444, where the value of the imbalance in our system is 3 and the falling down
is 4). Through continuous result values inferred from the learning model, entering the
falling down stage can be detected and the PONR time can be determined in real-time. This
system was performed every 10 ms in consideration of the time required for inference of the
learning model and the operating time of the system collecting data from several sensors.

2.2. COM-Based Labeling

The COM is an indicator for evaluating the walking and postural stability of the
human body; it provides significantly intuitive and crucial information. Walking and
posture become increasingly stable as the COM becomes closer to the BOS. This concept
has been actively applied to not only analyze the posture of the human body but also to
develop algorithms for controlling the posture of legged robots, especially bipedal robots,
such as the zero-moment point control algorithm [18]. Thus, in this study, the labeling
technique for classifying the postural stability of the human body was based on the COM,
which is calculated based on the following equation:

xcom =
∑n

i=1 Mx,i

∑n
i=1 Fx,i

=
∑n

i=1 mi · xc,i

∑n
i=1 mi

(1)

Here, Mx,i and Fx,i refer to the moment and force applied to the ith part of the human
body, respectively. mi is the weight of the ith part of the human body and xc,i is the
location of the COM for the ith part of the human body. Parts of the human body refer to
sections of the human body that are distinguished according to joints (e.g., the brachium
and antebrachium of arms, thighs, and calves). The equation for calculating the COM in
the x-direction is consistent with Equation (1) and can be applied in the same way as for
calculating the COM in the y- and z-directions.
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Theoretically, at least 17 IMU sensors should be installed to calculate the COM of the
human body in consideration of all parts of the human body. However, as it was necessary
to analyze only the postural changes according to the movement of the lower body, only
five IMU sensors attached to the lower body and waist of a person were utilized to estimate
the COM in this study.

The fall data were labeled based on the norm information on the COM estimated by
the five IMU sensors. Figure 2 shows the cases of labeling forward and backward fall data.
In this figure, the black dotted line indicates the standing phase among the activities of
daily living (ADL) and is labeled as S. The yellow dotted line refers to the walking phase
among the ADLs and is labeled as W. The blue dotted line refers to the imbalance phase
and is labeled as I. The red dotted line refers to the falling down phase and is labeled as
F. Index 1 refers to units of 10 ms. COM(x, y) represents the COM based on the moving
coordinates on a flat surface using the label values of the fall data. Figure 2b refers to a
backward fall caused by a person standing and falling backward. The COM(x, y) analysis
revealed that the internal area of a circle forming the BOS boundary was divided into
two sections, although the person was not walking. The COM(x, y) analysis in Figure 2a
revealed that the black dots in the standing phase were concentrated at one dot. These
dots were not clearly distinguished because they were covered by yellow dots during the
walking phase. The end of the red dotted line (i.e., the falling down phase) indicates the
point where the human body collides with the ground.

Figure 2. Examples of fall data labeling. The inverse COM is calculated and the instability increases
as the value increases.

3. Data Acquisition

A mat was used to obtain vast fall data in various directions under safe conditions.
A fall implementation device was also used in the experiment to obtain fall data during
the walking process and verify the overall system performance. Figure 3 shows Falls
data acquisition system comprising of (a) hardware and (b) software configuration of
the system.
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Figure 3. Falls data acquisition system; (a) hardware and (b) software configurations of the system.

3.1. Composition of the Falls Data Acquisition System

The fall data acquisition system that was developed to collect data in this study
consists of a data capture device, a real-time data processing S/W program, a visual tool
for previewing and editing the obtained data. Commercial data capture devices generally
obtain motion data from the entire body using 17 IMU sensors. A single sensor can collect
data at a rapid interval of 100 Hz. However, the capture period increased according to
the volume of data to be transferred when all sensors were utilized. In addition, real-
time data cannot be directly used in some cases because only data stored by a special
S/W program can be used. Thus, an independent data capture device was developed in
this study to obtain data in real-time. The device comprised five IMU sensors that were
connected in the form of a daisy chain USB hub, enabling users to attach these sensors to
their bodies more conveniently. The real-time data processing S/W program based on the
server-client structure managed data collected from the five sensors in the form of packets
and transmitted them through wired and wireless network communication. The visual
tool for previewing and editing the obtained data prevented the collection of incorrect
data by analyzing the data obtained by the data capture device, identifying motion based
on skeleton-shaped images and facilitating label editing in preparation for a context that
necessitates manual labeling.

The fall data acquisition system was operated based on the following processes:
first, the IMU sensors of the data capture device output Quaternion, Euler, accelerometer,
gyroscope, and magnetic data at 100 Hz. The real-time data processing S/W program
received the aforementioned data and transferred them to the visual tool through wired
and wireless networks. The visual tool monitored data in real-time and stored them as
CVS files based on the preview function. Label editing was performed when needed.

3.2. Falls Data Acquisition on the Mattress

Thirty healthy female and male adults in their 20 s and 30 s were selected as exper-
imental subjects. These participants stood on the mattress and obtained fall data from
them in the forward, rear, left, and right directions and were instructed to follow some
instructions. The subjects performed forward and backward falls 15 times and data were
obtained from 30 subjects, 450 times in total. The 30 subjects fell sideways nine times and
data were obtained from 30 subjects, 270 times in total.

Figure 4a,c show a subject falling forward and sideways, respectively. The subjects
were forced to fall after they took two to three steps to obtain forward and sideways fall
data. Figure 4b shows a subject participating in a real fall. The subjects were forced to fall
in the same place to obtain real fall data.
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Figure 4. Falls data acquisition experiment; (a) forward, (b) backward, and (c) sideward fall experiment.

3.3. Falls Data Acquisition on the Treadmill

Fall data were acquired using a treadmill equipped with a function to induce falls.
The test subjects consisted of 30 healthy adult males and females in their 20 s and 30 s. For
the fall data acquisition, forward and backward falls were performed 10 times each, and a
total of 300 fall data were acquired.

Figure 5 shows the treadmill developed to trigger falls. Two rails were designed to
rotate independently and the rotation velocity in the forward and reverse directions was
controlled to trigger falls. For forward and backward falls, control commands for changing
the velocity of the developed treadmill were generated at random intervals to prevent any
anticipation. To reduce the cognitive learning performance of the subjects, they were asked
to listen to music using ear sets and watch videos shown in front of the treadmill. The
experimental environment was then darkened. Harnesses and safety devices were used to
ensure the safety of the subjects.
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Figure 5. Dual-belt treadmill device for fall simulation experiment; (a) 3D-cad model of dual-belt treadmill device, (b) the
fall simulation experimental system, and (c) data flow diagram of the system.

4. Learning and Recognition Results

For fall data learning, the LSTM algorithm as shown in Figure 6a and CNN as shown
in Figure 6b were applied. In the LSTM model, the input sensor data were analyzed as
much as the time step of the window size to classify the category to which it belongs. In
the CNN model, the window size of the IMU sensor data and the number of sensor inputs
were mapped to the height and width of the image data, as was reported by Rueda et al.
in 2018 [20] and Gholamrezaii et al. in 2019 [21]. This was applied to as being used as the
input data that was applied to the CNN algorithm as shown in Figure 6b. Softmax was
used for classification in the final output.

Figure 6. Learning models.
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In the learning process, the window size was established based on the duration of
the imbalance and falling down phases. The results of the fall data analysis used in the
learning process revealed that the mean durations of the imbalance and falling phases
were 420 and 250 ms, respectively. The fall data were input at intervals of 10 ms. Therefore,
the time scale of the window was 250 ms. The mean duration of the falling down phase
was calculated with a window size set to 25. The trend of recognition rates of the learning
model was examined during the learning process, where the window size ranged from
8 to 24. The learning rate was set to 0.001 and the mean squared error was used as a loss
function. ADAM (lr = 0.001, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1 × 10−8) was utilized
as the optimizer.

As shown in Figure 7, tests on the learning models were conducted using data that
were not applied in the learning process. A single fall case was saved as a single file. As
shown in Figure 7a, the test results for each fall case were stored as CSV files. As shown in
Figure 7b, the true label values and predicted values were plotted at the top and bottom,
respectively, to simplify the analysis. The predicted result was correct if the colors of the
bars at the top and bottom were the same (otherwise, they were incorrect).

Figure 7. Recognition rates of learning models according to cases.

Regarding the input features indicated in Figure 8, the recognition rates of the learning
models were measured with (blue line) and without (orange line) the yaw value of the gyro
and the COM for comparison. Figure 8 shows that the recognition rate of the CNN model
on the ground tended to decrease gradually owing to its greater window size. When the
COM was input as a feature, its recognition rate increased. However, the recognition rate
of the LSTM model is not affected by window size. When the COM was input as a feature,
the recognition rate increased.

Figure 8. Results of recognition rates of CNN and LSTM models.

As shown in Figure 9, when the fall progress is viewed as a data flow, the structure
of the fall data has a cascading change structure (a structure in which data in the same



Appl. Sci. 2021, 11, 8626 9 of 12

state is continuous and then changed to another state section at one moment). When data
containing a transition section were input to a model trained by the CNN, recognition
errors mainly occurred near the transition section. In addition, the number of recognition
errors increased owing to the larger window size. It was conjectured that a recognition
error occurred because the information in the previous section and information in the next
section coexist in the image information corresponding to the window size in the transition
section. In contrast, the LSTM model generated a lower number of recognition errors in the
transition section. It was deduced that the difference between the recognition rates of the
CNN and LSTM models indicated in Figure 8 was caused by a difference in the degree of
recognition errors in the transition section. This result is also supported by the fact that the
recognition rate of the LSTM model did not decrease, despite an increase in the window
size, unlike the CNN model.

Figure 9. Recognition errors in transition sections.

5. Real-Time Implementation and Verification

The real-time execution program was operated using Python3.x, Tensorflow 2.0, and
the period of data input was 100 Hz. The main platform used was Jetson TX2, and only the
CPU was utilized for execution.

Figure 10 shows how to validate a fall prediction program in real-time. As shown in
Figure 10a, the server collects sensor data and converts it into a transport packet. Sensor
data collection may be performed in real-time from a data acquisition device, or data
collected in advance and stored in CSV format may be loaded. The server transmits
packet data to the client at 100 Hz. The client connects to the server, receives sensor data,
and executes the fall prediction program. In the fall prediction program, the prediction
result is output by inferring the input data using the pre-trained model. In Figure 10b,
the true_label(1) value at the bottom means the correct answer to be predicted, the top
target_pred(2), is the result inferred from the learned model by receiving the test fall data
file from the server through TCP and executing the fall prediction program implemented in
the multi-process structure in the client. (c) is the result of executing the model on LeNet5,
a kind of CNN, on the target platform. (d) is the result of running the LSTM model on
the target platform. The input data used in (c) and (d) are the same. The LSTM model
generates fewer errors than the CNN model.
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Figure 10. Model verification method and verification results.

As shown in Figure 11, the real-time execution program executed in the client has the
following multiprocessor structure: (1) a processor that manages data packets received at a
cycle of 100 Hz from the server, (2) a processor that converts the input format to be used in
the learned model, (3) a processor that performs inference of the learned model, and (4) a
processor that outputs the result of inference.

Figure 11. Real-time execution program.

Moreover, the execution times of the CNN and LSTM models that were already
trained on the Jetson TX2 platform were measured, as shown in Figure 12. Based on the
measurement results, it was shown that the CNN model performed faster than the LSTM
model and it was confirmed that both models performed within 10 ms.

Figure 12. Real-time execution time measurement.
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The fall prediction program was operated at an interval of 10 ms and determined
the PONR when the imbalance stage was converted to the falling down stage; three to
four prediction results were derived in a row, demonstrating that real-time fall prediction
can be performed using both the CNN and LSTM learning methods. Because the CNN
algorithm has a shorter execution time than the LSTM algorithm, we confirmed that it has
the potential to be applied to lightweight embedded systems.

6. Conclusions and Further Research

A fall goes through the stages of fall progression, as shown in Figure 1. If the instanta-
neous scene can be mapped to a label value representing the fall progression stage, then
the fall progression is expressed as a sequence of label values. The scene at every moment
during the fall was mapped to sensor data comprising window_size × input_num. In this
study, considering the input data and real-time execution time, the length of each moment
was set to 10 ms. The stage at which the instantaneous scene was made up of sensor data
for every moment 10 ms belongs to the subdivided fall progression stage. The progress of
the fall could be judged by the continuous label values determined in this way and it could
also be determined whether the person was passing the PONR point. The major factors
in achieving this were that more accurate labeling was possible based on the COM and
that the inference execution time of the learned model was within 10 ms. To estimate the
inference execution time of the learned model, the multi-process structure was utilized
as much as possible and learning was performed by setting a small window size of the
input data.

However, this study has several limitations. First, collecting an enormous volume
of fall data that completely reflected practical situations was difficult. Furthermore, the
standards used to collect such data may vary. In this regard, further research should be
conducted to increase the data volume through a method [22] that can modify sensor
data while preserving the labels. Another approach would be to apply a method that will
enable the learning model to perform reinforcement learning of the simulated results for
the human body based on sensor data obtained by the fall implementation device and
generate new fall data through the learning process. Specifically, simulation based on
reinforcement learning can be useful for simulating risky situations in which a fall test
cannot be performed several times.

Author Contributions: Conceptualization, B.S.K., J.J., D.-W.L., Y.K.S. and H.C.S.; methodology,
B.S.K., D.-W.L., Y.K.S. and J.J.; software, B.S.K., D.-W.L. and Y.K.S.; validation, B.S.K., J.J. and D.-W.L.;
formal analysis, B.S.K., J.J. and D.-W.L.; investigation, Y.K.S., J.J. and D.-W.L.; resources, B.S.K., Y.K.S.
and J.J.; data curation, B.S.K. and Y.K.S.; writing—original draft preparation, B.S.K.; writing—review
and editing, B.S.K., D.-W.L., Y.K.S., J.J. and H.C.S.; visualization, B.S.K. and Y.K.S.; supervision, Y.K.S.
and H.C.S.; project administration, Y.K.S. and H.C.S.; funding acquisition, Y.K.S. and H.C.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Institute for Information & Communications Technology
Promotion (IITP) grant funded by the Korean government (MSIT) (2017-0-01724, Development of
A soft wearable suit using intelligent information and meta-material/structure technology for fall
prediction and prevention) and by Electronics and Telecommunications Research Institute (ETRI)
grant funded by the Korean government (2017-0-00050, Development of Human Enhancement
Technology for auditory and muscle support).

Institutional Review Board Statement: The fall data used in this study were obtained with the
approval of the IRB at Konyang University (project no.: KYU-2020-055-02).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 8626 12 of 12

References
1. Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection. Biomed. Eng. Online 2013, 12, 66.
2. Delahoz, Y.S.; Labrador, M.A. Survey on Fall Detection and Fall Prevention Using Wearable and External Sensors. Sensors 2014,

14, 19806–19842. [CrossRef]
3. Noury, N.; Bourke, A.K.; ÓLaighin, G.; Lundy, J.E. A proposal for the classification and evaluation of fall detectors. IRBM 2008,

29, 340–349. [CrossRef]
4. Casilari, E.; Santoyo-Ramón, J.-A.; Cano-García, J.-M. Analysis of Public Datasets for Wearable Fall Detection Systems. Sensors

2017, 17, 1513. [CrossRef]
5. Hu, X.; Qu, X. Pre-impact fall detection. Biomed. Eng. Online 2016, 15, 61. [CrossRef]
6. Chung, K. Policy Report on a Survey on Welfare and Living Conditions of the Elderly, Paragraph 3 (Safety Conditions) Of Chapter 13

(Living Environments and Safety Conditions for the, Elderly); The Ministry of Health and Welfare (MOHW): Sejong, Korea; Institute
for Health and Social Affairs: Sejong, Korea, 2017.

7. Bourke, A.K.; O’Brien, J.V.; Lyons, G.M. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait
Posture 2007, 26, 194–199. [CrossRef]

8. Tolkiehn, M.; Atallah, L.; Lo, B.; Yang, G.Z. Direction Sensitive Fall Detection Using a Triaxial Accelerometer and a Barometric
Pressure Sensor. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
Boston, MA, USA, 30 August–3 September 2011; pp. 369–372. [CrossRef]

9. Zhao, G.; Mei, Z.; Liang, D.; Ivanov, K.; Guo, Y.; Wang, Y.; Wang, L. Exploration and implementation of a pre-impact fall
recognition method based on an inertial body sensor network. Sensors 2012, 12, 15338–15355. [CrossRef]

10. Choi, W.J.; Wakeling, J.M.; Robinovitch, S.N. Kinematic analysis of video-captured falls experienced by older adults in long-term
care. J. Biomech. 2015, 48, 911–920. [CrossRef]

11. Ma, X.; Wang, H.; Xue, B.; Zhou, M.; Ji, B.; Li, Y. Depth-Based Human Fall Detection via Shape Features and Improved Extreme
Learning Machine. J. Biomed. Health Inform. 2014, 18, 1915–1922. [CrossRef]

12. Fan, Y.; Levine, M.D.; Wen, G.; Qju, S. A deep neural network for real-time detection of falling humans in naturally occurring
scenes. Neurocomputing 2017, 260, 43–58. [CrossRef]

13. Özdemir, A.T.; Barshan, B. Detecting Falls with Wearable Sensors Using Machine Learning Techniques. Sensors 2014, 14,
10691–10708. [CrossRef]

14. Xu, J.; He, Z.; Zhang, Y. CNN-LSTM Combined Network for IoT Enabled Fall Detection Applications. J. Phys. Conf. Ser. 2019,
1267, 012044. [CrossRef]

15. Serpen, G.; Khan, R.H. Real-time Detection of Human Falls in Progress: Machine Learning Approach ScienceDirect. Proc. Comput.
Sci. 2018, 140, 238–247. [CrossRef]

16. Luna-Perejón, F.; Domínguez-Morales, M.J.; Civit-Balcells, A. Wearable Fall Detector Using Recurrent Neural Networks. Sensors
2019, 19, 4885. [CrossRef]

17. Sucerquia, A.; López, J.D.; Vargas-Bonilla, J.F. SisFall: A Fall and Movement Dataset. Sensors 2017, 17, 198. [CrossRef]
18. Otanasap, N.; Boonbrahm, P. Pre-impact fall detection approach using dynamic threshold based and center of gravity in multiple

Kinect viewpoints. In Proceedings of the 14th International Joint Conference on Computer Science and Software Engineering
(JCSSE), NakhonSiThammarat, Thailand, 12–14 July 2017; pp. 1–6. [CrossRef]

19. Tao, X.; Yun, Z. Fall prediction based on biomechanics equilibrium using Kinect. Int. J. Distrib. Sens. Netw. 2017. [CrossRef]
20. Moya Rueda, F.; Grzeszick, R.; Fink, G.A.; Feldhorst, S.; Ten Hompel, M. Convolutional Neural Networks for Human Activity

Recognition Using Body-Worn Sensors. Informatics 2018, 5, 26. [CrossRef]
21. Gholamrezaii, M.; Taghi Almodarresi, S.M. Human Activity Recognition Using 2D Convolutional Neural Networks.

In Proceedings of the 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran, 30 April–2 May 2019;
pp. 1682–1686. [CrossRef]

22. Kim, M.; Jeong, C.Y. Label-preserving data augmentation for mobile sensor data. Multidimens. Syst. Signal Process. 2021, 32,
115–129. [CrossRef]

http://doi.org/10.3390/s141019806
http://doi.org/10.1016/j.irbm.2008.08.002
http://doi.org/10.3390/s17071513
http://doi.org/10.1186/s12938-016-0194-x
http://doi.org/10.1016/j.gaitpost.2006.09.012
http://doi.org/10.1109/IEMBS.2011.6090120
http://doi.org/10.3390/s121115338
http://doi.org/10.1016/j.jbiomech.2015.02.025
http://doi.org/10.1109/JBHI.2014.2304357
http://doi.org/10.1016/j.neucom.2017.02.082
http://doi.org/10.3390/s140610691
http://doi.org/10.1088/1742-6596/1267/1/012044
http://doi.org/10.1016/j.procs.2018.10.324
http://doi.org/10.3390/s19224885
http://doi.org/10.3390/s17010198
http://doi.org/10.1109/JCSSE.2017.8025955
http://doi.org/10.1177/1550147717703257
http://doi.org/10.3390/informatics5020026
http://doi.org/10.1109/IranianCEE.2019.8786578
http://doi.org/10.1007/s11045-020-00731-2

	Introduction 
	Materials and Methods 
	Sub-Division of the Critical Phase 
	COM-Based Labeling 

	Data Acquisition 
	Composition of the Falls Data Acquisition System 
	Falls Data Acquisition on the Mattress 
	Falls Data Acquisition on the Treadmill 

	Learning and Recognition Results 
	Real-Time Implementation and Verification 
	Conclusions and Further Research 
	References

