Polyphasic Characterization of Microbiota of “Mastredda”, a Traditional Wooden Tool Used during the Production of PDO Provola dei Nebrodi Cheese
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Wooden Table Biofilms
2.2. Scanning Electron Microscopy
2.3. DNA Extraction, Miseq Library Preparation and Illumina Sequencing
2.4. Illumina Data Analysis and Sequences Identification by QIIME2
2.5. Classical Microbiological Analyses
2.6. Isolation, Grouping, Genotypic Differentiation and Identification of LAB
2.7. Shiga-Toxigenic E. coli Detection
2.8. Statistical Analyses
3. Results and Discussion
3.1. Scanning Electron Microscopy of Wooden Table Biofilms
3.2. Taxonomic Distribution of Wooden Table Bacteria
3.3. Levels of Viable Microorganisms
3.4. Microbiological and Hygiene Criteria for Foodstuffs
3.5. Differentiation and Identification of Viable LAB
3.6. Species Distribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziino, M.; Condurso, C.; Romeo, V.; Giuffrida, D.; Verzera, A. Characterization of “Provola dei Nebrodi”, a typical Sicilian cheese, by volatiles analysis using SPME-GC/MS. Int. Dairy J. 2005, 15, 585–593. [Google Scholar] [CrossRef]
- Italian Ministerial Decree, 309/2020. Decreto Ministeriale 23 Settembre 2020, n.309. Iscrizione della Denominazione «Provola dei Nebrodi» DOP nel Registro Europeo delle Denominazioni di Origine Protette e delle Indicazioni Geografiche Protette, Gazzetta Ufficiale, Serie Generale, n. 243. pp. 32–37. Available online: https://www.gazzettaufficiale.it/eli/id/2020/10/01/20A05246/sg (accessed on 30 June 2021).
- Licitra, G.; Caccamo, M.; Valence, F.; Lortal, S. Traditional wooden equipment used for cheesemaking and their effect on quality. In Global Cheesemaking Technology, 1st ed.; Papademas, P., Bintsis, T., Eds.; Wiley: Hoboken, NJ, USA, 2018; pp. 157–172. [Google Scholar]
- Commission Regulation (EC) No 2074/2005 of 5 December 2005 laying down implementing measures for certain products under regulation (EC) No 853/2004 of the European parliament and of the Council and for the organisation of official controls under regulation (EC) No 854/2004 of the European parliament and of the Council and regulation (EC) no 882/2004 of the European parliament and of the Council, derogating from regulation (EC) No 852/2004 of the European parliament and of the Council and amending regulations (EC) No 853/2004 and (EC) No 854/2004. Off. J. Eur. Union 2005, 338, 27–59. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32005R2074 (accessed on 30 June 2021).
- Lortal, S.; Di Blasi, A.; Madec, M.N.; Pediliggieri, C.; Tuminello, L.; Tangury, G.; Fauquant, J.; Lecuona, Y.; Campo, P.; Carpino, S.; et al. Tina wooden vat biofilm. A safe and highly efficient lactic acid bacteria delivering system in PDO Ragusano cheese making. Int. J. Food Microbiol. 2009, 132, 1–8. [Google Scholar] [CrossRef]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutini, F.; (Food: Divina (LN), the FDA Declares War on Our Chesees, AgenParl, Roma, Italy). Personal communication, 2014.
- Licitra, G.; Ogier, J.C.; Parayre, S.; Pediliggieri, C.; Carnemolla, T.M.; Falentin, H.; Madec, M.N.; Carpino, S.; Lortal, S. Variability of the bacterial biofilms of the “tina” wood vat used in the Ragusano cheese-making process. Appl. Environ. Microbiol. 2007, 73, 6980–6987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Didienne, R.; Defargues, C.; Callon, C.; Meylheuc, T.; Hulin, S.; Montel, M.C. Characteristics of microbial biofilm on wooden vats (‘gerles’) in PDO Salers cheese. Int. J. Food Microbiol. 2012, 156, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Settanni, L.; Di Grigoli, A.; Tornambé, G.; Bellina, V.; Francesca, N.; Moschetti, G.; Bonanno, A. Persistence of wild Streptococcus thermophilus strains on wooden vat and during the manufacture of a Caciocavallo type cheese. Int. J. Food Microbiol. 2012, 155, 73–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scatassa, M.L.; Gaglio, R.; Macaluso, G.; Francesca, N.; Randazzo, W.; Cardamone, C.; Di Grigoli, A.; Moschetti, G.; Settanni, L. Transfer, composition and technological characterization of the lactic acid bacterial populations of the wooden vats used to produce traditional stretched cheeses. Food Microbiol. 2015, 52, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Cruciata, M.; Gaglio, R.; Scatassa, M.L.; Sala, G.; Cardamone, C.; Palmeri, M.; Moschetti, G.; La Mantia, T.; Settanni, L. Formation and characterization of early bacterial biofilms on different wood typologies applied in dairy production. Appl. Environ. Microbiol. 2018, 84, e02107-17. [Google Scholar] [CrossRef] [Green Version]
- Mariani, C.; Briandet, R.; Chamba, J.F.; Notz, E.; Carnet-Pantiez, A.; Eyoug, R.N.; Oulahal, N. Biofilm ecology of wooden shelves used in ripening the French raw milk smear cheese Reblochon de Savoie. J. Dairy Sci. 2007, 90, 1653–1661. [Google Scholar] [CrossRef]
- Mariani, C.; Oulahal, N.; Chamba, J.F.; Dubois-Brissonnet, F.; Notz, E.; Briandet, R. Inhibition of Listeria monocytogenes by resident biofilms present on wooden shelves used for cheese ripening. Food Control 2011, 22, 1357–1362. [Google Scholar] [CrossRef]
- Galinari, É.; Nóbrega, J.E.D.; Andrade, N.J.D.; Ferreira, C.L.D.L.F. Microbiological aspects of the biofilm on wooden utensils used to make a Brazilian artisanal cheese. Braz. J. Microbiol. 2014, 45, 713–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzzon, R.; Carafa, I.; Tuohy, K.; Cervantes, G.; Vernetti, L.; Barmaz, A.; Larcher, R.; Franciosi, E. Exploring the microbiota of the red-brown defect in smear-ripened cheese by 454-pyrosequencing and its prevention using different cleaning systems. Food Microbiol. 2017, 62, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Sciancalepore, V. Industrie Agrarie: Olearia, Enologica, Lattiero-Casearia, 1st ed.; Utet: Milano, Italy, 1998. [Google Scholar]
- Franciosi, E.; Settanni, L.; Carlin, S.; Cavazza, A.; Poznanski, E. A factory-scale application of secondary adjunct cultures selected from lactic acid bacteria during “Puzzone di Moena” cheese ripening. J. Dairy Sci. 2008, 91, 2981–2991. [Google Scholar] [CrossRef] [PubMed]
- Cruciata, M.; Sannino, C.; Ercolini, D.; Scatassa, M.L.; De Filippis, F.; Mancuso, I.; La Storia, A.; Moschetti, G.; Settanni, L. Animal rennets as sources of dairy lactic acid bacteria. Appl. Environ. Microbiol. 2014, 80, 2050–2061. [Google Scholar] [CrossRef] [Green Version]
- Settanni, L.; Moschetti, G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 2010, 27, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Niro, S. Innovazione di Processo e di Prodotto in Formaggi a Pasta Filata. Ph.D. Thesis, University of Molise, Campobasso, Italy, 2011. [Google Scholar]
- Gaglio, R.; Scatassa, M.L.; Cruciata, M.; Miraglia, V.; Corona, O.; Di Gerlando, R.; Portolano, P.; Moschetti, G.; Settanni, L. In vivo application and dynamics of lactic acid bacteria for the four-season production of Vastedda-like cheese. Int. J. Food Microbiol. 2014, 177, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Jana, A.H.; Mandal, P.K. Manufacturing and quality of mozzarella cheese: A review study. Int. J. Dairy Sci. 2011, 6, 199–226. [Google Scholar] [CrossRef]
- Kosikowski, F.V. Problems in the Italian soft cheese industy. J. Dairy Sci. 1958, 41, 455–458. [Google Scholar] [CrossRef]
- Settanni, L.; Cruciata, M.; Guarcello, R.; Francesca, N.; Moschetti, G.; La Carrubba, V.; Gaglio, R. Valorisation of dairy wastes through kefir grain production. Waste Biomass Valoriz. 2020, 11, 3979–3985. [Google Scholar] [CrossRef]
- Gaglio, R.; Cruciata, M.; Di Gerlando, R.; Scatassa, M.L.; Mancuso, I.; Sardina, M.T.; Moschetti, G.; Portolano, B.; Settanni, L. Microbial activation of wooden vats used for traditional cheese production and evolution of the neo-formed biofilms. Appl. Environ. Microbiol. 2016, 82, 585–595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallia, S.; Carpino, S.; Corralo, L.; Tuminello, L.; Gelsonimo, R.; Licitra, G. Effects of aroma profiles of Piacentinu and Ricotta cheese using different tool materials during cheese making. In Food Flavor and Chemistry: Explorations into the 21st Century, 1st ed.; Spanier, A.M., Shahidi, F., Parliment, T.H., Mussinan, C., Ho, C.T., Tratras Contis, E., Eds.; Royal Society of Chemistry: Cambridge, UK, 2005; pp. 23–34. [Google Scholar]
- Gaglio, R.; Franciosi, E.; Todaro, A.; Guarcello, R.; Alfeo, V.; Randazzo, C.L.; Settanni, L.; Todaro, M. Addition of selected starter/non-starter lactic acid bacterial inoculums to stabilise PDO Pecorino Siciliano cheese production. Food Res. Int. 2020, 136, 109335. [Google Scholar] [CrossRef] [PubMed]
- Baker, G.C.; Smith, J.J.; Cowan, D.A. Review and re-analysis of domain-specific 16S primers. J. Microbiol. Methods. 2003, 55, 541–555. [Google Scholar] [CrossRef] [Green Version]
- Claesson, M.J.; Wang, Q.; O’Sullivan, O.; Greene-Diniz, R.; Cole, J.R.; Ross, R.P.; O’Toole, P.W. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 2010, 38, e200. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Gregersen, T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur. J. Appl. Microbiol. Biotechnol. 1978, 5, 123–127. [Google Scholar] [CrossRef]
- Koneman, E.W.; Allen, S.D.; Janda, W.M.; Schreckenberger, P.C.; Winn, W.C. The nonfermentative gram-negative bacilli. In Color Atlas and Textbook of Diagnostic Microbiology, 7th ed.; Koneman, E.W., Allen, S.D., Janda, W.M., Schreckkenberger, P.C., Winn, W.C., Eds.; Lippincott: Philadelphia, PA, USA, 1997; pp. 253–320. [Google Scholar]
- Barbaccia, P.; Busetta, G.; Matraxia, M.; Sutera, A.M.; Craparo, V.; Moschetti, G.; Francesca, N.; Settanni, L.; Gaglio, R. Monitoring Commercial Starter Culture Development in Presence of Red Grape Pomace Powder to Produce Polyphenol-Enriched Fresh Ovine Cheeses at Industrial Scale Level. Fermentation 2021, 7, 35. [Google Scholar] [CrossRef]
- Gaglio, R.; Francesca, N.; Di Gerlando, R.; Cruciata, M.; Guarcello, R.; Portolano, B.; Moschetti, G.; Settanni, L. Identification, typing and investigation of the dairy characteristics of lactic acid bacteria isolated from “Vastedda della valle del Belìce” cheeses. Dairy Sci. Technol. 2014, 94, 157–180. [Google Scholar] [CrossRef] [Green Version]
- Gaglio, R.; Francesca, N.; Di Gerlando, R.; Mahony, J.; De Martino, S.; Stucchi, C.; Moschetti, G.; Settanni, L. Enteric bacteria of food ice and their survival in alcoholic beverages and soft drinks. Food Microbiol. 2017, 67, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Osek, J. Rapid and specific identification of Shiga toxin producing Escherichia coli in feaces by multiplex PCR. Lett. Appl. Microbiol. 2002, 34, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Alfonzo, A.; Miceli, C.; Nasca, A.; Franciosi, E.; Ventimiglia, G.; Di Gerlando, R.; Tuohy, K.; Francesca, N.; Moschetti, G.; Settanni, L. Monitoring of wheat lactic acid bacteria from the field until the first step of dough fermentation. Food Microbiol. 2017, 62, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Gaglio, R.; Cirlincione, F.; Di Miceli, G.; Franciosi, E.; Di Gerlando, R.; Francesca, N.; Settanni, L.; Moschetti, G. Microbial dynamics in durum wheat kernels during aging. Int. J. Food Microbiol. 2020, 324, 108631. [Google Scholar]
- Settanni, L.; Barbaccia, P.; Bonanno, A.; Ponte, M.; Di Gerlando, R.; Franciosi, E.; Di Grigoli, A.; Gaglio, R. Evolution of indigenous starter microorganisms and physicochemical parameters in spontaneously fermented beef, horse, wild boar and pork salamis produced under controlled conditions. Food Microbiol. 2020, 87, 103385. [Google Scholar] [CrossRef]
- Logares, R.; Audic, S.; Bass, D.; Bittner, L.; Boutte, C.; Christen, R.; Claverie, J.M.; Decelle, J.; Dolan, J.R.; Dunthorn, M.; et al. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 2014, 24, 813–821. [Google Scholar]
- Bockelmann, W.; Willems, K.P.; Neve, H.; Heller, K.H. Cultures for the ripening of smear cheeses. Int. Dairy J. 2005, 15, 719–732. [Google Scholar] [CrossRef]
- Loong, S.K.; Lee, H.Y.; Khoo, J.J.; Lim, F.S.; Ahmad-Nasrah, S.N.; Azman, A.S.; Suntharalingam, C.; Panchadcharam, C.; AbuBakar, S. Microbiological analysis of raw milk unveiled the presence of a dairy contaminant, Corynebacterium lipophiloflavum. J. Appl. Biol. Biotechnol. 2019, 7, 41–44. [Google Scholar]
- Di Gioia, D.; Aloisio, I.; Mazzola, G.; Biavati, B. Bifidobacteria: Their impact on gut microbiota composition and their applications as probiotics in infants. Appl. Microbiol. Biotechnol. 2014, 98, 563–577. [Google Scholar] [CrossRef]
- Dinakar, P.; Mistry, V.V. Growth and viability of Bifidobacterium bifidum in Cheddar cheese. Int. J. Dairy Sci. 1994, 77, 2854–2864. [Google Scholar] [CrossRef]
- Di Grigoli, A.; Francesca, N.; Gaglio, R.; Guarrasi, V.; Moschetti, M.; Scatassa, M.L.; Settanni, L.; Bonanno, A. The influence of the wooden equipment employed for cheese manufacture on the characteristics of a traditional stretched cheese during ripening. Food Microbiol. 2015, 46, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Carpino, S.; Randazzo, C.L.; Pino, A.; Russo, N.; Rapisarda, T.; Belvedere, G.; Caggia, C. Influence of PDO Ragusano cheese biofilm microbiota on flavour compounds formation. Food Microbiol. 2017, 61, 126–135. [Google Scholar] [CrossRef]
- Scatassa, M.L.; Cardamone, C.; Miraglia, V.; Lazzara, F.; Fiorenza, G.; Macaluso, G.; Arcuri, L.; Settanni, L. Characterisation of the microflora contaminating wooden vats used for traditional Sicilian cheese production. Ital. J. Food Saf. 2015, 4509, 36–39. [Google Scholar] [CrossRef] [Green Version]
- Bellassi, P.; Rocchetti, G.; Nocetti, M.; Lucini, L.; Masoero, F.; Morelli, L. A combined metabolomic and metagenomic approach to discriminate raw milk for the production of hard cheese. Foods 2021, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Franciosi, E.; Settanni, L.; Cologna, N.; Cavazza, A.; Poznanski, E. Microbial analysis of raw cows’ milk used for cheese-making: Influence of storage treatments on microbial composition and other technological traits. World J. Microbiol. Biotechnol. 2011, 27, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Lafarge, V.; Ogier, J.C.; Girard, V.; Maladen, V.; Leveau, J.Y.; Gruss, A.; Delacroix-Buchet, A. Raw cow milk bacterial population shifts attributable to refrigeration. Appl. Environ. Microbiol. 2004, 70, 5644–5650. [Google Scholar] [CrossRef] [Green Version]
- Centeno, J.A.; Garabal, J.I.; Docampo, F.; Lorenzo, J.M.; Carballo, J. Recovering traditional raw-milk Tetilla cheese flavour and sensory attributes by using Kocuria varians and Yarrowia lipolytica adjunct cultures. Int. J. Food Microbiol. 2017, 251, 33–40. [Google Scholar] [CrossRef]
- Hugo, C.J.; Segers, P.; Hoste, B.; Vancanneyt, M.; Kersters, K. Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int. J. Syst. Evol. Microbiol. 2003, 53, 771–777. [Google Scholar] [CrossRef] [Green Version]
- Hantsis-Zacharov, E.; Halpern, M. Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int. J. Syst. Evol. Microbiol. 2007, 57, 2344–2348. [Google Scholar] [CrossRef] [PubMed]
- Hantsis-Zacharov, E.; Shaked, T.; Senderovich, Y.; Halpern, M. Chryseobacterium oranimense sp. nov., a psychrotolerant, proteolytic and lipolytic bacterium isolated from raw cow’s milk. Int. J. Syst. Evol. Microbiol. 2008, 58, 2635–2639. [Google Scholar] [CrossRef] [Green Version]
- Hantsis-Zacharov, E.; Halpern, M. Culturable psychrotrophic bacterial communities in raw milk and their proteolytic and lipolytic traits. Appl. Environ. Microbiol. 2007, 73, 7162–7168. [Google Scholar] [CrossRef] [Green Version]
- Ishida, T.; Yokota, A.; Umezawa, Y.; Toda, T.; Yamada, K. Identification and characterization of lactococcal and Acetobacter strains isolated from traditional Caucasusian fermented milk. J. Nutr. Sci. Vitaminol. 2005, 51, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Kiryu, T.; Yamauchi, K.; Masuyama, A.; Ooe, K.; Kimura, T.; Kiso, T.; Nakano, H.; Murakami, H. Optimization of lactobionic acid production by Acetobacter orientalis isolated from Caucasian fermented milk,“Caspian Sea yogurt”. Biosci. Biotechnol. Biochem. 2012, 1112272769. [Google Scholar]
- Sjöblom, S.; Brader, G.; Koch, G.; Palva, E.T. Cooperation of two distinct ExpR regulators controls quorum sensing specificity and virulence in the plant pathogen Erwinia carotovora. Mol. Microbiol. 2006, 60, 1474–1489. [Google Scholar] [CrossRef]
- Cruciata, M.; Gaglio, R.; Todaro, M.; Settanni, L. Ecology of Vastedda della valle del Belìce cheeses: A review and recent findings to stabilize the traditional production. Food Rev. Int. 2019, 35, 90–103. [Google Scholar] [CrossRef]
- Guarcello, R.; Carpino, S.; Gaglio, R.; Pino, A.; Rapisarda, T.; Caggia, C.; Marino, G.; Randazzo, C.L.; Settanni, L.; Todaro, M. A large factory-scale application of selected autochthonous lactic acid bacteria for PDO Pecorino Siciliano cheese production. Food Microbiol. 2016, 59, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Caldera, L.; Franzetti, L.V.; Van Coillie, E.; De Vos, P.; Stragier, P.; De Block, J.; Heyndrickx, M. Identification, enzymatic spoilage characterization and proteolytic activity quantification of Pseudomonas spp. isolated from different foods. Food Microbiol. 2016, 54, 142–153. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, 338, 1–26. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32005R2073 (accessed on 30 June 2021).
- European Food Safety Authority. European Centre for Disease Prevention and Control. The European Union One Health 2019 Zoonoses Report. EFSA J. 2021, 19, 6406. [Google Scholar]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.M.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 7, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Randazzo, C.L.; Liotta, L.; Angelis, M.D.; Celano, G.; Russo, N.; Hoorde, K.V.; Chiofalo, V.; Pino, A.; Caggia, C. Adjunct Culture of Non-Starter Lactic Acid Bacteria for the Production of Provola Dei Nebrodi PDO Cheese: In Vitro Screening and Pilot-Scale Cheese-Making. Microorganisms 2021, 9, 179. [Google Scholar] [CrossRef] [PubMed]
- Cronin, T.; Ziino, M.; Condurso, C.; McSweeney, P.L.H.; Mills, S.; Ross, R.P.; Stanton, C. A survey of the microbial and chemical composition of seven semi-ripened Provola dei Nebrodi Sicilian cheeses. J. Appl. Microbiol. 2007, 103, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
Wooden Table | City of Dairy Factory (Province) 1 | Age of Table (Years) | Type of Wood 2 |
---|---|---|---|
WTA | Randazzo (CT) | 5 | silver fir |
WTB | Maniace (CT) | 2 | silver fir |
WTC | Randazzo (CT) | 8 | douglas fir |
WTD | Randazzo (CT) | 10 | chestnut |
Bacterial Counts | Samples | p Value | |||
---|---|---|---|---|---|
WTA | WTB | WTC | WTD | ||
TMM | 7.34 ± 0.26 | 7.43 ± 0.25 | 7.55 ± 0.15 | 7.21 ± 0.21 | 0.352 |
Mesophilic rod LAB | 5.36 ± 0.16 | 5.82 ± 0.21 | 5.57 ± 0.23 | 5.55 ± 0.21 | 0.128 |
Thermophilic rod LAB | 5.73 ± 0.20 | 5.35 ± 0.17 | 5.59 ± 0.16 | 5.39 ± 0.13 | 0.074 |
Mesophilic coccus LAB | 7.39 ± 0.13 | 7.34 ± 0.20 | 7.25 ± 0.18 | 7.39 ± 0.12 | 0.690 |
Thermophilic coccus LAB | 5.87 ± 0.20 | 5.79 ± 0.21 | 5.63 ± 0.14 | 5.39 ± 0.13 | 0.057 |
Enterococci | 2.35 ± 0.17 C | 2.44 ± 0.15 BC | 2.78 ± 0.15 AB | 3.05 ± 0.17 AB | 0.0024 |
Pseudomonas | <1 B | 2.97 ± 0.12 A | <1 B | 2.84 ± 0.12 A | 0.0001 |
Enterobacteriaceae | 1.44 ± 0.15 D | 3.54 ± 0.19 A | 1.87 ± 0.12 C | 2.81 ± 0.10 B | 0.0001 |
E. coli | 1.24 ± 0.15 C | 3.44 ± 0.16 A | <1 D | 2.39 ± 0.13 B | 0.0001 |
Characters | Clusters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 (n = 10) | 2 (n = 51) | 3 (n = 9) | 4 (n = 19) | 5 (n = 85) | 6 (n = 36) | 7 (n = 13) | 8 (n = 29) | 9 (n = 14) | 10 (n = 11) | 11 (n = 37) | |
Morphology 1 | R | R | R | R | C | C | C | C | C | C | C |
Cell arrangement 2 | sc | sc | sc | sc | sc | sc | sc | sc | t | t | lc |
Growth: | |||||||||||
15 °C | - | + | + | + | + | + | + | + | + | + | - |
45 °C | + | + | + | - | - | + | - | + | + | + | + |
pH 9.2 | n.d. | n.d. | n.d. | n.d. | - | - | + | + | + | + | - |
6.5% NaCl | n.d. | n.d. | n.d. | n.d. | + | + | - | + | + | + | - |
Resistance to 60 °C | + | + | + | - | - | + | + | + | + | + | + |
Hydrolysis of: | |||||||||||
arginine | - | - | + | - | - | + | + | + | - | + | + |
aesculin | + | + | + | + | - | + | + | + | - | + | - |
Acid production from: | |||||||||||
arabinose | - | + | + | + | + | + | - | + | + | + | + |
ribose | - | + | + | + | + | + | + | + | + | + | + |
xylose | - | + | + | + | + | + | - | + | + | + | + |
fructose | + | + | + | + | + | + | + | + | + | + | + |
galactose | + | + | + | + | + | + | + | + | + | + | + |
lactose | + | + | + | + | + | + | + | + | + | + | + |
sucrose | + | + | + | + | + | + | + | + | + | + | + |
glycerol | + | + | + | + | + | + | + | + | - | + | + |
CO2 from glucose | - | - | - | - | + | + | - | - | - | - | - |
LAB Species | Wooden Tables | |||
---|---|---|---|---|
WTA | WTB | WTC | WTD | |
En. casseliflavus | ■ | |||
En. gallinarum | ■ | |||
Lb. delbrueckii | ■ | |||
Lc. lactis | ■ | |||
Lcb. rhamnosus | ■ | ■ | ■ | |
Lpb. plantarum | ■ | |||
Lvb. brevis | ■ | |||
Ln. mesenteroides | ■ | ■ | ■ | ■ |
Ln. pseudomesenteroides | ■ | |||
P. acidilactici | ■ | |||
St. thermophilus | ■ | ■ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Busetta, G.; Garofalo, G.; Mangione, G.; Botta, L.; Franciosi, E.; Di Gerlando, R.; Todaro, M.; Licitra, G.; Scatassa, M.L.; Gaglio, R.; et al. Polyphasic Characterization of Microbiota of “Mastredda”, a Traditional Wooden Tool Used during the Production of PDO Provola dei Nebrodi Cheese. Appl. Sci. 2021, 11, 8647. https://doi.org/10.3390/app11188647
Busetta G, Garofalo G, Mangione G, Botta L, Franciosi E, Di Gerlando R, Todaro M, Licitra G, Scatassa ML, Gaglio R, et al. Polyphasic Characterization of Microbiota of “Mastredda”, a Traditional Wooden Tool Used during the Production of PDO Provola dei Nebrodi Cheese. Applied Sciences. 2021; 11(18):8647. https://doi.org/10.3390/app11188647
Chicago/Turabian StyleBusetta, Gabriele, Giuliana Garofalo, Guido Mangione, Luigi Botta, Elena Franciosi, Rosalia Di Gerlando, Massimo Todaro, Giuseppe Licitra, Maria Luisa Scatassa, Raimondo Gaglio, and et al. 2021. "Polyphasic Characterization of Microbiota of “Mastredda”, a Traditional Wooden Tool Used during the Production of PDO Provola dei Nebrodi Cheese" Applied Sciences 11, no. 18: 8647. https://doi.org/10.3390/app11188647
APA StyleBusetta, G., Garofalo, G., Mangione, G., Botta, L., Franciosi, E., Di Gerlando, R., Todaro, M., Licitra, G., Scatassa, M. L., Gaglio, R., & Settanni, L. (2021). Polyphasic Characterization of Microbiota of “Mastredda”, a Traditional Wooden Tool Used during the Production of PDO Provola dei Nebrodi Cheese. Applied Sciences, 11(18), 8647. https://doi.org/10.3390/app11188647