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Abstract: Transmission error (TE) and backlash are important parameters used to evaluate the
transmission accuracy of cycloid-pin drives. Existing calculation methods are mostly based on two-
dimensional tooth profile models, and these methods ignore the influence of some abnormal meshing
phenomena caused by profile modifications (PMs), manufacturing errors (MEs), and assembly errors
(AEs), such as the instantaneous mesh-apart of tooth pairs and the eccentric load on the tooth surface.
To fill this gap, a novel approach to accurately calculating the TE and backlash of a cycloid-pin
gear pair based on the error tooth surfaces is proposed, and its feasibility and effectiveness are
validated by comparison with the theoretical analyses and the results from the literature. Based on
this, the effects of the PMs, MEs, and AEs on the transmission accuracy are studied, which will be
helpful in optimizing the tooth profile design of a cycloid gear and the tolerance allocation during the
installation of a gear pair. The proposed method is also expected to provide accurate error excitation
data for the dynamic analysis of cycloid-pin drives.

Keywords: transmission error; backlash; cycloid-pin drives; profile modifications; manufacturing
errors; assembly errors

1. Introduction

Cycloid-pin drives have the advantages of high transmission ratios, transmission accu-
racy, torsional stiffness, transmission efficiency, and compact structures. Cycloid-pin drives
have been widely used in high-precision equipment, such as industrial robots, machine
tools, and assembly and conveying equipment. This type of equipment usually requires
frequent forward and reverse rotation during work and has high position accuracy require-
ments, which mainly depend on the transmission error (TE) and backlash of cycloid-pin
drives. Establishing a calculation method for the TE and backlash, while comprehensively
considering the effects of profile modifications (PMs), manufacturing errors (MEs), and
assembly errors (AEs), is of great significance for optimizing the tooth profile design of a
cycloid gear and the tolerance allocation during the installation of a gear pair. It can also
provide the error excitation data for the accurate dynamic analysis of cycloid drives.

The cycloid-pin gear reducer was initially introduced by Botsiber and Kingston [1]
and Pollitt [2]. Then a series of novel cycloidal reducers was presented to obtain higher
rigidity [3–5] or more compact structure [6–8]. A typical structure of cycloid-pin gear
reducer is shown in Figure 1, which includes a gearbox casing, an input crankshaft, an
output mechanism, two cycloid gears, and pins. During the transmission process, the
cycloid gear not only rotates counterclockwise with the input crankshaft around the center
of the pin center circle, but it also rotates clockwise around its own center to drive the
output mechanism to rotate. For each cycloid gear, ideally, all the pins are in contact
with it during the transmission process, and half of the pins transmit the load. Due
to the multi-tooth meshing characteristics of cycloid-pin drives, these drives are more
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sensitive to MEs and AEs, and the tooth interference can easily occur in the transmission
process. However, MEs and AEs are inevitable in practice, and these errors will change
the number of contact teeth, the load distribution between teeth, the torsional stiffness,
and other meshing characteristics, thereby adversely affecting the TE and backlash of
cycloid-pin drives. In the published works, Blanche and Yang [9,10] first studied the
influence of manufacturing tolerances on torque ripples and backlash, but only the profile
tolerance was considered in their analysis model. Lin et al. [11] investigated the influence
of the manufacturing tolerance on the TE of a cycloidal gear reducer, and more types
of manufacturing tolerance were considered in their analysis model, such as the pin
radius error, pin position error, tooth profile error, and pitch error in the tooth profile.
Li et al. [12] also studied the effects of tooth profile and pitch errors on the TE and backlash
of a cycloidal-pin gear, achieving the effective pre-control of the tooth profile and the
meshing contact performance. Li et al. [13] investigated the influence of the clearance and
eccentricity errors on the gear ratio, transmission error, bearing load, and contact stress of
a cycloid reducer. Han and Guo [14] analyzed the global sensitivity of the transmission
accuracy for cycloid-pin drives with the Sobol method in comprehensive consideration
of the nonlinear and uncertainty factors, such as the MEs, AEs, and bearing clearances.
Ivanović et al. [15] studied the effects of the profile geometrical parameters of a trochoidal
gear on the gearing process, clearance height change, and pulsation of a drive moment.
Hidaka et al. [16,17] analyzed the TE of K-H-V-type planetary gears with cycloid gears
based on a two-dimensional model with twenty degrees of freedom. Meng et al. [18]
analyzed the effects of the kinematics parameters on the transmission performance of a
2K-H pin-cycloid planetary mechanism based on a static analysis of the actual meshing
transmission process between the gear pairs considering friction. In the above studies,
the analysis models of the TE and backlash were mostly established in a two-dimensional
plane, and the MEs that were considered were mostly along the tooth profile direction,
while the MEs along the tooth-width direction were rarely involved. Additionally, the
studies of the effects of the AEs on the TE and backlash were incomplete. Only the influence
of the eccentricity errors was analyzed, while the effects of misalignment deviations were
not considered.
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Figure 1. Typical structure of cycloid-pin gear reducer.

To avoid the tooth interference caused by MEs and AEs and obtain better lubrication
conditions, profile modifications (PMs) are necessary for cycloid-pin drives. This also has a
non-negligible effect on the TE and backlash of cycloid-pin drives. Sun et al. [5] proposed a
compound modification method combining negative isometric and negative offset modifi-
cation to reduce the influence of PMs on backlash. Li et al. [19] proposed a novel method
for PMs to improve the motion accuracy and modification quality that comprehensively
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considered the effects of the backlash, pressure angle distribution, and tooth tip and root
clearance. In addition, many scholars have studied the torsional stiffness, transmission
efficiency, load analysis, and optimization design methods of cycloid-pin drives. In terms
of torsional stiffness, Kumar et al. [20] proposed a new method for estimating the elastic
torsional compliance of single-stage cycloidal drives based on static experimental results.
Li et al. [21] proposed a new method to calculate the mesh stiffness of a cycloid-pin gear
pair considering the effects of PMs and the eccentricity error based on the unloaded tooth
contact analysis and the nonlinear Hertzian contact theory. Liu et al. [22] calculated the
torsional stiffness of a cycloid gear using the Majumdar–Bhushan contact model and the
finite element method. In terms of transmission efficiency, Garlo et al. [23] proposed a
simplified procedure to calculate the force distribution on cycloid drive elements, the
power losses, and the theoretical mechanical efficiency. Mackic et al. [24] analyzed the
effects of design parameters on the efficiency of a cycloidal gear drive, such as the pitch
radius and number of housing rollers. Sensinger [25] derived the efficiency equations
for cycloid drives using Del Castillo’s framework. In terms of load analysis, Malhotra
and Parameswaran [26] investigated the influence of the design parameters of a cycloid
speed reducer on forces and contact stress. Xu et al. [27] proposed a method for analyzing
the contact dynamics of the multi-tooth meshing in a cycloid-pin drive considering the
effect of the turning-arm cylindrical roller bearing. In terms of the optimization design
methods of cycloid-pin drives, Wang et al. [28] proposed an optimization design method
for cycloid drives with the goal of maximizing efficiency and minimizing volume based
on a genetic algorithm. Wang et al. [29] proposed a multi-objective optimal model for
cycloid-pin drives in which the objective functions were used for the bending stress of the
pins, the force of the crank bearing, and the reducer volume. With the development of
computing technology in recent years, the finite element method has been widely used
in the research of cycloid-pin drives. For example, Li [30] carried out loaded gear contact
analysis and strength calculations for trochoidal gear reducers based on a mechanics model
and a finite element method. Tran et al. [31] studied the lost motion of a cycloid reducer
using a combined finite element and kinematic analysis and concluded that the backlash of
a cycloid reducer was not only related to the torsional stiffness but also to the tolerance.
However, the multi-tooth meshing characteristics of cycloid-pin drives often lead to a huge
finite element model, low computational efficiency, and expensive computational costs.

Cycloid-pin gear pairs are the key components of the cycloid-pin drives. To accurately
calculate the TE and backlash of a cycloid-pin gear pair, a novel calculation method based
on error tooth surfaces is presented that has the ability to consider the influence of some
abnormal meshing phenomena caused by PMs, MEs, and AEs on the TE and backlash, such
as the instantaneous mesh-apart of tooth pairs and the eccentric load on the tooth surface.
In this paper, the first section reviews the research on the TE, backlash, and other meshing
characteristics of cycloid-pin drives. An error tooth surface model of a cycloid gear and pin
considering the PMs, MEs, and AEs is established in Section 2. Section 3 describes in detail
the principle of the novel calculation method of TE and backlash. The presented method is
verified by comparing the results with the theoretical analysis results and the literature, as
delineated in Section 4. Section 5 describes the investigation of the effects of the PMs, MEs,
and AEs on the TE and backlash of the cycloid-pin gear pair through a series of simulation
cases, and the analysis of the abnormal meshing phenomena caused by these errors in the
transmission process. Section 6 presents the conclusions of this study, and the significance
of the proposed method is summarized.

2. Error Tooth Surface Model of Cycloid Gear and Pin

A reasonable tooth surface model comprehensively considering PMs, MEs, and AEs
is the key to accurately calculating the TE and backlash of a cycloid-pin gear pair. In this
study, the tooth surfaces of a cycloid gear and pin are discretized into multiple elements
with the same size, as shown in Figure 2a. The surfaces of the nth

c cycloid tooth and the nth
p

pin are discretized into n1c and n1p elements along the tooth width, and into n2c and n2p
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elements along the tooth profile. ic and ip are the indices of the discrete elements along the
tooth width, and jc and jp are the indices of the discrete elements along the tooth profile.
Each discrete element on the tooth surface is approximately represented as a cylindrical
surface within a certain coordinate range and each discrete element has a corresponding
control point defined at the center of the element. The radius of the equivalent cylindrical
surface is equal to the radius of curvature at the element control point, and its axis is parallel
to the axis of the cycloid gear and pin. Once the coordinates, radius of curvature, and
normal vector at the element control point and the axis direction vector of the approximate
cylinder corresponding to the discrete element are determined, the equivalent cylindrical
surface is unique.
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Figure 2. Tooth surface model: (a) discrete tooth surfaces and (b) coordinate systems for generating the tooth surfaces with
PMs and MEs.

The coordinate systems for generating the tooth surfaces of a cycloid gear and pin
with PMs and MEs are shown in Figure 2b. The coordinate systems XfOfYf, XcOcYc, and
XpOpYp are rigidly connected to the frame, cycloid gear, and pin, respectively. Rrp and
Rp are the radii of the pin and the pin center circle, respectively. e is the eccentric distance
between Oc and Of. The rotation angles of XcOcYc and XpOpYp are defined as φc and φp,
respectively, and they have the relationship φc/φp = zp/zc, where zp and zc represent the
number of pins and the teeth of cycloid gear, respectively. α is the angle parameter at the
contact point P. The red and blue solid lines are the theoretical tooth profile of the cycloid
gear and pin, respectively. Based on the previous publication [5], the PMs of a cycloid gear
can be divided into four types, namely, isometric modification, offset modification, angle
rotation modification, and compound modification. Since the angle rotation modification
cannot produce a gap between the tooth tip and root of a cycloid gear and the pins, it
cannot be used alone, and is not considered in this study. The tooth surface of a cycloid gear
with the isometric modification and the offset modification can be obtained by changing
Rrp and Rp, and the tooth surface with the compound modification can be obtained by
changing them at the same time. Thus, the coordinates of the element control point of a
cycloid gear considering PMs are given as follows:

 Xncic jc
c1

Yncic jc
c1

Zncic jc
c1

 =


(

Rp + ∆Rp
)

cos
(

φ
ncic jc
p /zc

)
−
(

Rrp + ∆Rrp
)

cos
(

α − φ
ncic jc
p /zc

)
− e cos

(
zpφ

ncic jc
p /zc

)
(
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)

sin
(

φ
ncic jc
p /zc

)
+
(
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)

sin
(

α − φ
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p /zc

)
− e sin

(
zpφ
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p /zc

)
Bc − Bc(ic − 1/2)/n1c

, (1)
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where the superscripts nc, ic, and jc indicate the ic × jc element on the nth
c tooth of cycloid

gear, and the subscript c1 represents the tooth surface of a cycloid gear with PMs, and Bc is
the tooth width of a cycloid gear, and ∆Rrp and ∆Rp are the modification amounts of the
isometric modification and the offset modification, respectively. α can be calculated with:

α = arctan
zpe sin

(
φ

ncic jc
p

)
Rp + ∆Rp − zpe cos

(
φ

ncic jc
p

) . (2)

It is worth noting that the arc length of the cycloid tooth profile is a nonlinear function
of φp. If the tooth surface of the cycloid gear is discrete with the same φp in the tooth
profile direction, the arc lengths between the adjacent element control points along the
tooth profile are not equal, and the element control points are concentrated on the convex
tooth surface. To improve the calculation accuracy of the TE and backlash, the tooth surface
of the cycloid gear along the tooth profile direction is discrete with the same arc length. The
arc length corresponding to different φp can be obtained with numerical integration. Then
φp is fitted as a polynomial function of the arc length. It is assumed that N is the order of
the polynomial function, and AN, AN−1, · · · , A1, A0 are the coefficients of the polynomial
function. The φ

ncic jc
p in Equation (1) can be calculated with:

φ
ncic jc
p = AN

(
Sc(jc − 1/2)

n2c

)N
+ AN−1

(
Sc(jc − 1/2)

n2c

)N−1
+ · · ·+ A1

(
Sc(jc − 1/2)

n2c

)
+ A0, (3)

where Sc is the total arc length of a single tooth profile of the cycloid gear.
In Figure 2b, the green dashed line indicates the error tooth profiles of a cycloid

gear and pin with MEs. The MEs of the pin considered in this study include the total
profile deviation (Fp

α ), single pitch deviation (f pt), total cumulative pitch deviation (Fp),
and pin center circle diameter deviation (δRp). pt is the single pitch of a pin. Since the pitch
deviations of the cycloid gear and pin have similar effects on the TE and backlash, the pitch
deviation of the cycloid gear can be equivalently converted to the pins, and only the total
profile deviation of the cycloid gear (Fc

α) is considered in this study. The error profile of the
cycloid gear is located between the theoretical tooth profile and the virtual tooth profile
(see the solid purple line in Figure 2b) defined by the total profile deviation (Fc

α). According
to gear conjugate theory and coordinate transformation principle, the coordinates of the
element control points of the cycloid gear and pin considering PMs and MEs are given as:

 Xncic jc
c2

Yncic jc
c2

Zncic jc
c2

 =


(

Rp + ∆Rp
)

cos
(

φ
ncic jc
p

/
zc

)
−
(
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cos
(
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ncic jc
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/
zc

)
− e cos

(
zpφ

ncic jc
p

/
zc

)
(

Rp + ∆Rp
)

sin
(

φ
ncic jc
p

/
zc

)
+
(

Rrp + ∆Rrp + δncic jc
)

sin
(
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p
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− e sin

(
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/
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, (4)
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(5)
where the subscript c2 in Equation (4) represents the tooth surfaces of a cycloid gear with
PMs and MEs, and the superscripts np, ip, and jp indicate the ip × jp element on the nth

p

pin, and δncic jc and δnpip jp are the profile deviation of each element of the cycloid gear and
pin, respectively. Bp is the tooth width of a pin, and f z

pt is the single pitch deviation of the
zth pin. It is known that the MEs of a gear are distributed according to a probability in
their tolerance ranges. Thus, δncic jc , δnpip jp , f z

pt, and δRp can be obtained through different
probability distribution functions according to their tolerance ranges. Additionally, the
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pitch deviation of the pin ( f z
pt) must also meet the tolerance range of the total cumulative

pitch deviation (Fp). The part of the tooth surface of cycloid gear considering PMs and
MEs is shown in Figure 3a, and it is composed of multiple discrete elements with different
distances from the perfect tooth surface. Similarly, the tooth surface of the pin considering
MEs has the same characteristics.
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Figure 3b shows the definition of the AEs in this study. The AEs of cycloid gear and
pin are equivalently transferred to the axis position of the cycloid gear to simplify the error
tooth surface model. AB is the theoretical axis position of the cycloid gear without AEs,
and AcaeBcae is the new axis position of the cycloid gear when the AEs are considered.
The AEs are indicated by four parameters, where ∆x and ∆y are called the center distance
deviations, and ϕ and γ are the misalignment deviations on the XBZ-plane and the YBZ-
plane, respectively. The different AEs can be obtained using different combinations of the
above four parameters. The coordinates of the element control point ic × jc on the nth

c tooth
surface of the cycloid gear considering AEs are given as follows:[

Xncic jc
c Yncic jc

c Zncic jc
c 1

]T
= Mae

[
Xncic jc

c2 Yncic jc
c2 Zncic jc

c2 1
]T

, (6)

where Mae is the coordinate transformation matrix considering AEs, which is given
as follows:

Mae =


1 0 (1 − sin γ) tan ϕ − sin ϕ ∆x + Bc[sin ϕ − (1 − sin γ) tan ϕ]

0 1 − sin γ/cos ϕ ∆y + Bc sin γ/cos ϕ

0 0 sin γ − cos ϕ − 1 Bc(cos ϕ + 1 − sin γ)

0 0 0 1

. (7)

To summarize, the coordinates of each element control point of the cycloid gear and
pin considering PMs, MEs, and AEs have been obtained. Additionally, the radius of
curvature and the normal vector at each control point, as well as the axis direction vector
of the approximate cylinder corresponding to each element are also necessary to uniquely
determine the position and size of the equivalent cylindrical surface corresponding to each
element. The radii of curvature at each element control point of the cycloid gear and pin
are given as follows:
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ρ
ncic jc
c =

[
e2z2

p +
(

Rp + ∆Rp
)2 − 2ezp

(
Rp + ∆Rp

)
cos
(

φ
ncic jc
p

)]3/2

e2z3
p +

(
Rp + ∆Rp

)2 − ezp
(
1 + zp

)(
Rp + ∆Rp

)
cos
(

φ
ncic jc
p

) −
(

Rrp + ∆Rrp + δncic jc
)

, (8)

ρ
npip jp
p = Rrp + δnpip jp , (9)

where ρ
ncic jc
c can be negative (−) for a concave surface and positive (+) for a convex surface.

The normal vectors at each element control point of the cycloid gear and pin are
respectively given as follows:

nncic jc
c = Mae

[
dXncic jc

c1
/

dφ
ncic jc
p dYncic jc

c1
/

dφ
ncic jc
p 0 1

]T
, (10)

n
npip jp
p =

[
cos
(
2π
(

jp − 1/2
)/

n2p
)

sin
(
2π
(

jp − 1/2
)/

n2p
)

0 1
]T. (11)

The axis direction vectors of the approximate cylinder of each element of the cycloid
gear and pin are given as follows:

Vncic jc
c =

[
(1 − sin γ) tan ϕ − sin ϕ − sin γ

/
cos ϕ sin γ − cos ϕ 1

]T, (12)

V
npip jp
p =

[
0 0 1 1

]T. (13)

3. Calculation Principle of Transmission Error and Backlash

As shown in Figure 4, the TE and backlash of the cycloid-pin pair are calculated
with an iterative process. Firstly, the error tooth surface model proposed in Section 2 is
generated based on the input gear data, PMs, MEs, and AEs. Figure 5a shows the tooth
contact model of the cycloid gear and pin. XfOfYf is the fixed coordinate system established
at the center of the pin center circle (Of), and the center of the cycloid gear is defined as
Oc. The eccentric distance between Of and Oc is e. It is well known that a cycloid gear
not only rotates counterclockwise with the input crankshaft around Of, but also rotates
clockwise around Oc to drive the output mechanism to rotate. The rotation angles of the
cycloid gear around Of and Oc are defined as θf and θc, respectively, and the rotation step
sizes of the cycloid gear around Of and Oc are defined as ∆θf and ∆θc, respectively. At the
first position of the cycloid gear, θf and θc are initialized to zero.

To calculate the TE and backlash corresponding to each input angle of the gear pair, the
cycloid gear is first rotated θf (θf = θf + ∆θf) counterclockwise around Of and θc (θc = θf/I)
clockwise around Oc with coordinated transformation, when the cycloid gear and the pins
are in the theoretical meshing position. I is the transmission ratio of the cycloid-pin gear
pair. The coordinate transformation matrices of the cycloid gear rotating around Of and Oc
(Mof and Moc) are given as follows:

Mof =


1 0 0 e cos θf
0 1 0 e sin θf
0 0 1 0
0 0 0 1

, (14)

Moc =


cos θc − sin θc 0 e cos θf − e cos(θf + θc)

sin θc cos θc 0 e sin θf − e sin(θf + θc)

0 0 1 0

0 0 0 1

. (15)



Appl. Sci. 2021, 11, 8671 8 of 26

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 26 
 

f

f
of

1 0 0 cos
0 1 0 sin
0 0 1 0
0 0 0 1

e
e

θ
θ

 
 
 =
 
 
  

M , (14) 

( )
( )

c c f f c

c c f f c
oc

cos sin 0 cos cos
sin cos 0 sin sin

0 0 1 0
0 0 0 1

e e
e e

θ θ θ θ θ
θ θ θ θ θ

 − − +
 

− + =  
 
  

M . (15) 

 
Figure 4. Flow chart of the calculation process of TE and backlash. 

As shown in Figure 5a, when the cycloid gear is in the theoretical meshing position, 
there is a different initial clearance (⋯, ct−2, ct−1, ct, ct+1, ct+2, ⋯) between the cycloid gear and 
each pin due to the influences of the PMs, MEs, and AEs. In published works, the slicing 
method has been widely used to calculate the mesh stiffness of a helical gear pair [32–36]. 
According to the error tooth surface model proposed in Section 2, the cycloid gear and pin 
can also be regarded as composed of n1c and n1p slices, respectively, and each slice is com-
posed of n2c and n2p elements (see Figure 2a). Thus, as shown in Figure 5b, the clearance ct 
is the minimum clearance in all slices (⋯, 1

p
iS − , p

iS , +1
p
iS , ⋯, and, ⋯, 1

c
iS − , c

iS , +1
c
iS , ⋯) 

along the tooth width direction. Since each group of slices ( p
iS  and c

iS ) is also composed 

of multiple discrete elements, the clearance ( p c+i ic c ) between each group of slices is the 
minimum clearance of all elements on the two slices. Then the cycloid gear is rotated 
counterclockwise by Δθc around Oc to approach the pin. As the cycloid gear continues to 
rotate around Oc, the clearances p c+i ic c  are continuously reduced and contact deflection 

Input Gear data, PMs, MEs, and AEs

Error tooth surface model

Parameter initialization
(θc = 0, θf = 0, Δθc and Δθf)

θf = θf + Δθf, rotate the cycloid gear θf
counterclockwise around Of

θc = θf / I, rotate the cycloid gear θc
clockwise around Oc

Rotate the cycloid gear Δθc clockwise 
(θc = θc + Δθc) and counterclockwise (θc
= θc – Δθc) around Oc, respectively, and 
obtain the rotation angles (θc1 and θc2) 

at initial contact of cycloid gear and pin

Backlash = θc1 – θc2

Rotate the cycloid gear Δθc counter-
clockwise (θc = θc – Δθc) around Oc

Determine the contact slices and 
elements

Calculate the contact depth and contact 
stiffness

Calculate the contact force and output 
torque

Convergence
(ΔT < 1%)

Obtain the rotation angle of the cycloid 
gear (θc3) under load

TE = θc3 – θf / I

θc < 2π

Output Backlash and TE

Adjust the 
rotation step size 

of the cycloid 
gear based on 

bisection method

No

Yes

Yes

No

Figure 4. Flow chart of the calculation process of TE and backlash.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 26 
 

even occurs (see Figure 5c). In the initial stage of contact between the cycloid gear and pin, 
the total output torque generated by the gear pair is not enough to balance the external 
load, and the iterative process is continued until the difference between the total output 
torque and the external load converge within 1%. To improve the calculation efficiency, 
the rotation step size (Δθc) is adjusted according to the bisection method. 

 
 

 

(a) (b) (c) 

Figure 5. Tooth contact analysis: (a) tooth contact model of cycloid gear and pin, (b) initial position of each slice along 
tooth width, and (c) balance position of each slice along tooth width. 

When the total output torque of the gear pair is balanced with the external load, the 
rotation angle of the cycloid gear around Oc is defined as θc3. The TE is given as follows: 

f c3TE Iθ θ= − . (16) 

In contrast to the TE, the calculation of the backlash does not consider the influence 
of the tooth deflection under a load. When the cycloid gear is rotated to the theoretical 
meshing position, the cycloid gear is rotated clockwise and counterclockwise around Oc, 
and the rotation angles (θc1 and θc2) of the cycloid gear around Oc at the initial contact in 
the two directions are obtained. The backlash is given as follows: 

c2 c1Backlash θ θ= − . (17) 

According to the above detailed description of the calculation process of the TE and 
backlash, the determination of the contact between the cycloid gear and pin and the cal-
culation of the output torque generated by the cycloid-pin gear pair in the iteration pro-
cess are the keys to calculating the TE and backlash. According to the principle of the 
slicing method, it is assumed that each slice along the tooth width is independent and that 
the load on one slice cannot convey deflections to the neighboring slices [37]. Additionally, 
due to the geometry of a cycloid-pin gear pair, the contact deflection is much larger than 
the tooth bending and shear deflections, and it is regarded as local deflection [13]. Thus, 
only the contact deflection between the tooth surfaces is considered in this study, and it is 
feasible to ignore the influence of the load deflection between the adjacent slices along the 
tooth width. 

As mentioned above, each slice in Figure 5b is composed of multiple discrete ele-
ments, and each discrete element is approximately represented as a cylindrical surface. 
The position and the size of these cylindrical surfaces have been determined according to 
the description in Section 2. Thus, the contact of each group of slices can be converted into 
the contact of the corresponding equivalent cylindrical surfaces. There are four possible 
contact status for any two elements on each group of slices. As shown in Figure 6a,b, when 
the misalignment deviations (φ and γ) are not considered, the axes of the two elements (

c c c
c
n i jΣ  and p p p

p
n i jΣ ) are parallel to each other. The contact width is equal to the element 

width, and the contact depth is equal to the difference between the sum of the radii of 

fX

fY

e
fO
cO

tF

t
c

1tF −

1
tc −

2tc −
2tF −

1t
c

+

1t
F

+
2tc +

2tF+

2tL − 1tL −

tL

1tL +
2tL +

Cycloid gear

Pin

......

2
c
iS −3

c
iS − 1

c
iS −

c
iS 1

c
iS + 2

c
iS + 3

c
iS +

3
p
iS − 2

p
iS − 1

p
iS −

p
iS 1

p
iS + 2

p
iS + 3

p
iS +

3
p
ic − 2

p
ic − 1

p
ic −

p
ic 1

p
ic + 2

p
ic + 3

p
ic +

3
c
ic − 2

c
ic − 1

c
ic −

c
ic 1

c
ic + 2

c
ic + 3

c
ic +

...

Pin

Cycloid gear

...

3
p
iS − 2

p
iS − 1

p
iS −

p
iS 1

p
iS + 2

p
iS + 3

p
iS +

2
c
iS −3

c
iS − 1

c
iS −

c
iS 1

c
iS + 2

c
iS + 3

c
iS +

Figure 5. Tooth contact analysis: (a) tooth contact model of cycloid gear and pin, (b) initial position of each slice along tooth
width, and (c) balance position of each slice along tooth width.

As shown in Figure 5a, when the cycloid gear is in the theoretical meshing position,
there is a different initial clearance (· · · , ct−2, ct−1, ct, ct+1, ct+2, · · · ) between the cycloid
gear and each pin due to the influences of the PMs, MEs, and AEs. In published works,
the slicing method has been widely used to calculate the mesh stiffness of a helical gear
pair [32–36]. According to the error tooth surface model proposed in Section 2, the cycloid
gear and pin can also be regarded as composed of n1c and n1p slices, respectively, and each
slice is composed of n2c and n2p elements (see Figure 2a). Thus, as shown in Figure 5b,
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the clearance ct is the minimum clearance in all slices (· · · , Si−1
p , Si

p, Si+1
p , · · · , and, · · · ,

Si−1
c , Si

c, Si+1
c , · · · ) along the tooth width direction. Since each group of slices (Si

p and Si
c) is

also composed of multiple discrete elements, the clearance (ci
p + ci

c) between each group of
slices is the minimum clearance of all elements on the two slices. Then the cycloid gear
is rotated counterclockwise by ∆θc around Oc to approach the pin. As the cycloid gear
continues to rotate around Oc, the clearances ci

p + ci
c are continuously reduced and contact

deflection even occurs (see Figure 5c). In the initial stage of contact between the cycloid
gear and pin, the total output torque generated by the gear pair is not enough to balance
the external load, and the iterative process is continued until the difference between the
total output torque and the external load converge within 1%. To improve the calculation
efficiency, the rotation step size (∆θc) is adjusted according to the bisection method.

When the total output torque of the gear pair is balanced with the external load, the
rotation angle of the cycloid gear around Oc is defined as θc3. The TE is given as follows:

TE = θf/I − θc3. (16)

In contrast to the TE, the calculation of the backlash does not consider the influence
of the tooth deflection under a load. When the cycloid gear is rotated to the theoretical
meshing position, the cycloid gear is rotated clockwise and counterclockwise around Oc,
and the rotation angles (θc1 and θc2) of the cycloid gear around Oc at the initial contact in
the two directions are obtained. The backlash is given as follows:

Backlash = θc2 − θc1. (17)

According to the above detailed description of the calculation process of the TE and
backlash, the determination of the contact between the cycloid gear and pin and the
calculation of the output torque generated by the cycloid-pin gear pair in the iteration
process are the keys to calculating the TE and backlash. According to the principle of the
slicing method, it is assumed that each slice along the tooth width is independent and that
the load on one slice cannot convey deflections to the neighboring slices [37]. Additionally,
due to the geometry of a cycloid-pin gear pair, the contact deflection is much larger than
the tooth bending and shear deflections, and it is regarded as local deflection [13]. Thus,
only the contact deflection between the tooth surfaces is considered in this study, and it is
feasible to ignore the influence of the load deflection between the adjacent slices along the
tooth width.

As mentioned above, each slice in Figure 5b is composed of multiple discrete elements,
and each discrete element is approximately represented as a cylindrical surface. The
position and the size of these cylindrical surfaces have been determined according to the
description in Section 2. Thus, the contact of each group of slices can be converted into
the contact of the corresponding equivalent cylindrical surfaces. There are four possible
contact status for any two elements on each group of slices. As shown in Figure 6a,b, when
the misalignment deviations (ϕ and γ) are not considered, the axes of the two elements

(Σncic jc
c and Σ

npip jp
p ) are parallel to each other. The contact width is equal to the element

width, and the contact depth is equal to the difference between the sum of the radii of
curvature and the distance between the centers of curvature corresponding to the two
control points. The contact width and depth are given as follows:

Bi
n =

Bp

n1p
, (18)

δi
n = ρ

ncic jc
c + ρ

npip jp
p − dcp, (19)

where dcp is the distance between the centers of curvature corresponding to the two control
points, which can be obtained based on the coordinates, radius of curvature, and normal
vector at the element control point, as well as the axis direction vector of the approximate
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cylinder described in Section 2. When the contact depth δi
n is greater than zero, the two

elements are in contact. Otherwise, they are not involved in contact.
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(d) elements contact considering ϕ and γ.

As shown in Figure 6c,d, when the misalignment deviations (ϕ and γ) are considered,
the axis of cycloid gear is not parallel to the axis of the pin. To calculate the contact depth
in these two cases, the two cylindrical surfaces are discretized into ne arcs. It is assumed
that there are nec pairs of arcs that meet the above contact condition, and the mean of
their contact depth is approximated to the contact depth of the two discrete elements. The
contact width and depth are given as follows:

Bi
n =

Bpnec

n1pne
, (20)

δi
n =

nec

∑
J=1

δJ
cp
/

nec , (21)

where δJ
cp is the contact depth of the arcs ΓJ

p and ΓJ
c.
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The Hertzian contact stiffness of any two elements is given as follows [13]:

Ki
n =

Fi
n

δi
n
=

πBi
n

2
[

1−υ2
c

Ec

(
ln 4ρ

nc ic jc
c
bi

n
− 1

2

)
+

1−υ2
p

Ep

(
ln

4ρ
np ip jp
p

bi
n

− 1
2

)] , (22)

where Ec and Ep are the modulus of elasticity, and υc and υp are the Poisson’s ratios, where
the subscripts c and p represent cycloid gear and pin, respectively. Bi

n is the contact width
and bi

n is the semi-Hertzian contact width, which can be calculated with:

bi
n =

√
4Fi

nρ∗

πBi
nE∗ , (23)

E∗ =
EcEp

Ep(1 − υ2
c) + Ec

(
1 − υ2

p

) , (24)

ρ∗ =
ρ

ncic jc
c ρ

npip jp
p

ρ
ncic jc
c + ρ

npip jp
p

, (25)

where E* and ρ* are the equivalent elasticity modulus and the equivalent radius of curva-
ture, respectively.

The total output torque generated by the cycloid-pin gear pair is given as follows:

Tout =
zpc

∑
n=1

(
ns

∑
i=1

Ki
nδi

nLi
n

)
, (26)

where zpc is the number of contacted pins and Li
n is the arm of force of the slice Si

c (see
Figure 5a), which is given as follows:

Li
n =

∣∣∣PQ × nncic jc
c

∣∣∣∣∣∣nncic jc
c

∣∣∣ , (27)

where in the vector PQ, P is the control point of the contact element Σncic jc
c on the slice Si

c.
The coordinates of P can be obtained using Equation (6), and Q is the corresponding point
of P on the axis of the cycloid gear. The coordinates of Q are given as follows:[

Xncic jc
Q Yncic jc

Q Zncic jc
Q 1

]T
= Mae

[
e cos θf e sin θf Bc − Bc(ic − 1/2)

/
n1c 1

]T.
(28)

Thus, the vector PQ is given as follows:

PQ =
[

Xncic jc
Q − Xncic jc

c Ynic jc
Q − Yncic jc

c Zncic jc
Q − Zncic jc

c 1
]T

. (29)

4. Validation of Proposed Method

To verify the effectiveness of the proposed calculation method of the TE and backlash,
a cycloid-pin gear pair (see Table 1) is applied to the presented method, and the calculation
results are discussed in this section. The number of discrete elements of the cycloid gear
(n1c) and pin (n1p) along the tooth profile is 800, and the number of discrete elements
along the tooth width (n2c and n2p) is 100. The rotation step sizes ∆θf and ∆θc are 0.1◦

and 1/60 arcsec, respectively. When the tooth surfaces of the cycloid gear and pin are
perfect surfaces without errors, the calculation results are as shown in Figure 7. In the rest
of paper, the terms “MTE” and “MB” refer to the mean values of the TE and backlash,
respectively, the terms “PPTE” and “PPB” refer to the peak-to-peak values of the TE and
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backlash, respectively, and the term “MCS” refers to the maximum contact stress on the
tooth surface.

Table 1. Parameters of the cycloid-pin gear pair.

Parameters Data

Number of cycloid gear teeth 39
Number of pins 40

Radius of pin (mm) 3
Radius of pin center circle (mm) 64
Face width of cycloid gear (mm) 12

Eccentricity (mm) 1.3
Output torque (Nm) 206

Poisson’s ratio 0.3
Elasticity modulus (GPa) 206

As shown in Figure 7a, the backlash is always equal to zero during the entire meshing
cycle, which is because the influence of the PMs, MEs, AEs, and the tooth deflection
under a load are not considered when calculating the backlash. Additionally, according to
Figure 7a,b, it is not difficult to find that both the TE and the number of contact pins change
periodically with θf, and the maximum number and the minimum number of contact pins
are 20 and 19, respectively. Theoretically, when the tooth surfaces are perfect, half of the
pins are always in contact with the cycloid gear during the entire meshing cycle. However,
due to the influence of the tooth deflection under a load, the tooth pair in the critical contact
state loses contact.

The MTE and PPTE are −4.5206 arcsec and 0.0531 arcsec, respectively. According
to Equation (16), due to the tooth deflection under a load, the actual rotation angle of
the cycloid gear around Oc is greater than its theoretical value, resulting in a negative
mean value. Additionally, both the contact stiffness and the load shared on each pin are
different at the different positions of θf, which leads to the different tooth deflection under
a load. This is the reason why the TE has small fluctuations between its peaks and troughs.
During the transmission of the cycloid-pin gear pair, the position of the contact point on the
cycloid tooth surface changes with the rotation of the cycloid gear. However, according to
Equations (22) and (23), the contact stiffness has a nonlinear relationship with the radius of
curvature of the cycloid gear and the contact force. As shown in Figure 2a, the tooth surface
of the cycloid gear is discrete with the same arc length along the tooth profile, and Figure 7c
shows the relationship between the contact stiffness and the contact force at different arc
lengths of the single cycloid tooth profile. This shows that the contact stiffness is different
at the same arc length position under different loads. This is because the semi-Hertzian
contact width increases with the increase in the load, which increases the contact stiffness.
Additionally, the contact stiffness is different at different arc length positions under the
same load, especially in the transition region of the concave and convex tooth profiles. This
is because the radius of curvature of the cycloid gear varies greatly in the transition region,
because the radius of curvature at the transition point is theoretically infinite. Figure 7d
shows the load distribution on the pins when θf = 60◦, 120◦, and 180◦. The load distribution
on the pins shows a trend of first increasing and then decreasing. In addition, there is a
significant decrease in the load on one of the pins near the maximum load region, such
as the 25th pin, when θf = 180◦. This is because the corresponding contact point of this
pin is located near the transition region between the convex and concave tooth surfaces
of cycloid gear, and the radius of curvature at the contact point is too large, resulting in a
significant reduction in the contact stiffness.
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Figure 7. The results for the perfect tooth surface: (a) TE and backlash, (b) number of contact pins, (c) relationship between
contact stiffness and contact force at different arc length positions, (d) load distribution on pins, (e) contact stress on the
tooth surface of the cycloid gear, and (f) contact stress on the tooth surface of the pin.
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Finally, the contact stress distributions on the tooth surface of the cycloid gear and pin
are obtained based on Hertzian contact theory (see Figure 7e,f). This shows that the MCS is
1067.50 MPa. During the entire meshing cycle, half of the tooth surface of the single cycloid
tooth is engaged in meshing, and the contact range of the tooth surface of pin ranges from
zero to 54.45◦, which is very close to the maximum value of α (54.3692◦) calculated with
Equation (2). The error of the maximum value of α is related to the number of discrete
elements of the pin along the tooth profile. The MCS of the cycloid gear is located in the
transition region of the concave and convex tooth surfaces and is close to the convex tooth
surface. The MCS of the pin is at the position of the maximum value of α. The above results
are consistent with the theoretical analysis results and the results in the literature [13,26,27],
which verifies the feasibility and effectiveness of the presented calculation method.

5. Results and Discussions

It is well known that MEs and AEs are unavoidable in practical engineering appli-
cations. To avoid the tooth interference caused by MEs and AEs and to obtain better
lubrication conditions, the PMs of a cycloid gear are necessary. This section describes the
influence of the PMs on the TE and backlash and the optimal modification method that is
obtained to ensure the high transmission accuracy of a cycloid-pin gear pair. Then, with
the same conditions of the PMs, the effects of the MEs and AEs on the TE and backlash
are studied, and some abnormal meshing phenomena caused by the MEs and AEs are
analyzed. The cycloid-pin gear pair is shown in Table 1.

5.1. Effect of Profile Modifications

According to Ref. [13], the radial clearance (∆c) between the tip and the root of the
cycloid gear and the pin generated with PMs are ∆c = ∆Rrp − ∆Rp. To avoid the tooth
interference, the radial clearance (∆c) should be a positive value. Thus, only the positive
isometric modification (+∆Rrp), negative offset modification (−∆Rp), and three types of
compound modification (−∆Rrp and −∆Rp, +∆Rrp and −∆Rp, and +∆Rrp and +∆Rp) are
considered in this study. To quantitatively study the influence on the TE and backlash, a
series of cases is applied to the proposed calculation method, as shown in Table 2. Cases 1–4
have positive isometric modification with different modification amounts, cases 5–8 have
negative offset modification with different modification amounts, and cases 9–20 have
three types of compound modification. Among them, case 4, case 8, and cases 9–20 have
the same radial clearance. The results for different PMs are shown in Figure 8.

Table 2. Cases of different PMs.

Case
+∆Rrp −∆Rp −∆Rrp and −∆Rp +∆Rrp and −∆Rp +∆Rrp and +∆Rp

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

∆Rrp (µm) 2 3 4 5 0 0 0 0 −4 −3 −2 −1 1 2 3 4 6 7 8 9
∆Rp (µm) 0 0 0 0 −2 −3 −4 −5 −9 −8 −7 −6 −4 −3 −2 −1 1 2 3 4

According to the calculation results of cases 1–4, it is not difficult to find that as the
modification amount increases with isometric modification, the absolute values of the
MTE and MB increase. For the offset modification, the same conclusion can be drawn
from cases 5–8. However, for the same modification amount, both of the absolute values
of the MTE and MB of the isometric modification are greater than those of the offset
modification. Compared with the MTE and MB, both the isometric modification and the
offset modification have little influence on the PPTE and PPB. These results indicate that
the transmission accuracy decreases with the increase in the modification amount for both
the isometric modification and the offset modification, and the isometric modification has
a greater influence on the transmission accuracy than the offset modification with the same
modification amount.
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Figure 8. Results with PMs: (a) MTE and PPTE, (b) MB and PPB, (c) mean value of number of contact pins, and (d) MCS.

For the compound modification, cases 9–20 have the same radial clearance (5 µm).
According to the results of the compound modification, the compound modification of
the negative isometric and negative offset (−∆Rrp and −∆Rp) makes it easier to obtain
a smaller backlash, and the absolute value of the MTE is also smaller. Similarly, the
compound modification has little influence on the PPTE and PPB compared to their mean
values. Additionally, the radial clearances of case 4 and case 8 are also 5 µm. Comparing
the results of case 4, case 8, and cases 9–12, the compound modification of the negative
isometric and negative offset is more conducive to improving the transmission accuracy
than the isometric modification and the offset modification. To summarize, in order to
obtain higher transmission accuracy, the compound modification of the negative isometric
and negative offset should be preferable.

In addition, Figure 8c,d shows the mean of the number of contact pins and the MCS.
Overall, when the PMs are considered, the number of contact pins is greatly reduced
compared with Figure 7b, and the MCS is greatly increased compared with Figure 7e,f.
This indicates that some of the original contact pins lose contact under the influence of the
PMs, and the load distributed on each contact pin increases. Specifically, the mean of the
number of contact pins decreases with the increase in the modification amount for both
the isometric modification and the offset modification, while the MCS increases. Thus, for
the isometric modification and the offset modification, the increase in the modification
amount will not only reduce the transmission accuracy but also worsen the force condition
of the cycloid gear and pin, thereby reducing the contact fatigue lifetime of the tooth
surface. For the compound modification of the negative isometric and negative offset,
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with the same radial clearance, although the transmission accuracy is improved with the
increase in the absolute values of ∆Rrp and ∆Rp, the mean of the number of contact pins
is reduced, and the MCS is increased. Thus, while using the compound modification of
the negative isometric and negative offset to improve the transmission accuracy, it is also
necessary to reasonably determine the modification amounts of ∆Rrp and ∆Rp on the basis
of considering the force condition on the tooth surfaces of the cycloid gear and pin.

5.2. Effect of Manufacturing Errors

According to Section 2, the MEs considered in this study include the total profile
deviation of the cycloid gear, and the total profile deviation, pitch deviation, and center
circle diameter deviation of the pin. To study their effects on the transmission accuracy,
a specific case is applied for the proposed calculation method. The MEs in this case are
Fc

α = ±3 µm, Fp = 15 µm, δRp = 4 µm, and the upper and lower deviations of Fp
α are zero

and −2 µm, respectively. The pitch deviation is usually considered to be the long-term
components of the MEs [38], and the linear function [11] and the sine function [38–40]
are generally used to simulate the cumulative pitch deviation (Fp) in published works.
However, these two functions ignore the effect of the randomness of the pitch deviation on
the contact state of the gear teeth. Thus, a sine function and a random variable that obeys
the normal distribution are superimposed to simulate the cumulative pitch deviation in this
study. The expectation and the standard deviation of the normal distribution are 0 µm and
2 µm, respectively. The cumulative pitch deviation of the pins used in this study is shown
in Figure 9. Additionally, it is assumed that the profile deviation of each discrete element
on the tooth surface is randomly distributed in its tolerance zone. To ensure the lubrication
requirements and the compensation for MEs, the compound modification of the negative
isometric and negative offset is adopted based on the results described in Section 5.1, and
the PM parameters of the cycloid gear are ∆Rrp = −0.004 mm and ∆Rp = −0.017 mm.
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Figure 10 shows the calculation results of the TE and backlash considering different
types of MEs. The figure shows that the pitch deviation (Fp) not only changes the curve
waveforms of the TE and backlash, but also the main source of their peak-to-peak value.
The profile deviation (Fα) produces slight fluctuations in the curves of the TE and backlash
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compared with the results without MEs and the results considering the pin center circle
diameter deviation (δRp). This is mainly because the contact element on each slice has
changed under the influence of the profile deviation, which leads to changes in the contact
stiffness and the tooth deflection under a load. The fluctuations of the TE and backlash
also cause the PPTE and PPB to increase, but the increase is very small compared to the
results considering the pitch deviation. In addition, the profile deviation and the pin center
circle diameter deviation mainly affect the MTE and MB. According to the above analysis,
the MTE and MB are mainly related to the initial gap between the tooth surfaces. For the
profile deviation, the initial gap mainly depends on the upper deviation of Fα. Since the
upper deviations of Fc

α and Fp
α have a similar effect on the initial gap, only the influence

of the upper deviation of Fc
α on the TE and backlash is considered in this study. In the

above case, the upper and lower deviations of Fc
α are 3 µm and −3 µm, respectively. To

quantitatively study the influence of Fα on the MTE and MB, the above-mentioned Fc
α are

moved equivalently to obtained different upper deviations, and the TE and the backlash
for different Fc

α and δRp are calculated (see Figure 11).
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Figure 10. Results with MEs: (a) TE and (b) backlash.
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Figure 11. MTE and MB with different (a) profile deviations and (b) pin center circle diameter deviations.

According to Figure 11, the absolute values of the MTE and MB decrease with the
increase in the upper deviation of Fc

α , and the values increase with the increase in δRp.
Additionally, the MTE and MB have an approximate linear relationship with the upper de-
viation of Fc

α and the δRp, and the slopes of the TE and backlash curves are used to evaluate
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their influence on the MTE and MB. The slopes of the TE and backlash curves in Figure 11a
are 4.1848 and −8.4004, respectively, and the slopes of the TE and backlash curves in
Figure 11b are −2.6029 and 4.7578, respectively. This indicates that the profile deviation
has a greater effect on the MTE and MB than the pin center circle diameter deviation.

In addition, the number of contact pins and the load distribution on the pins with
different types of MEs (corresponding to Figure 10) are calculated, as shown in Figure 12.
As shown in Figure 12a, when the pitch deviation is considered, the number of contact
pins varies from three to ten, instead of periodically changing between six and seven pins
when the MEs are not considered. This shows that the early contact (e.g., θf = 80◦) or the
instantaneous mesh-apart (e.g., θf = 180◦) of the pins occur due to the influence of the pitch
deviation. The irregular changes of the number of contact pins in a large range are the
main reasons for the changes in the waveforms of the TE and backlash and the increase
in their peak-to-peak value (see Figure 10), and this will also cause the vibration of the
transmission system and worsen the force condition of the pins. Figure 12b shows that the
load on some of the pins is significantly increased when the pitch deviation is considered
(e.g., the 11th pin when θf = 60◦), which will greatly increase the MCS.

Since the upper deviations of the profile deviations Fc
α and Fp

α are 3 µm and zero,
respectively, the initial gap between the tooth surfaces is reduced, which leads to an increase
in the mean value of the number of contact pins, as shown in Figure 12c. Additionally,
due to the influence of the profile deviation, the minimum initial gap between the tooth
surfaces of each pair is different, which leads to the irregular changes in the number of
contact pins, and this is also another reason for the slight fluctuations in the curves of
the TE and backlash in Figure 10. Compared with Figure 12a,c, the number of contact
pins changes more regularly and periodically under the influence of the pin center circle
diameter deviation, as shown in Figure 12e. Since the pin center circle diameter deviation
is 4 µm in this case, the initial gap between the tooth surfaces increases, which leads to a
decrease in the mean value of the number of contact pins. As can be observed by comparing
Figure 12b,d,f, the profile deviation and the pin center circle diameter deviation have much
less influence on the load distribution on the pins than the pitch deviation. To summarize,
the pitch deviation is the main factor that affects the TE and backlash in the MEs. It is
suggested that the pitch deviation should be strictly controlled in the gear manufacturing
process to achieve a smaller PPTE and PPB, and a smaller MTE and MB can be obtained
through different tolerance allocation of the profile deviation and the pin center circle
diameter deviation during the installation of the gear pair.

5.3. Effect of Assembly Errors

AEs are also another major factor affecting the TE and backlash. According to the
definition of the AEs in Section 2, the AEs are divided into the center distance deviations
(∆x and ∆y) and the misalignment deviations (ϕ and γ). Since ∆x and ∆y have similar
effects on the TE and backlash, only the influences of ∆y, ϕ, and γ are investigated in
this section. To ensure the lubrication requirements and the compensation for the AEs,
the compound modification of the negative isometric and negative offset is applied, and
the PM parameters of the cycloid gear are also determined to be ∆Rrp = −0.004 mm and
∆Rp = −0.0017 mm. The calculation results for the TE and backlash considering different
center distance deviations are shown in Figure 13.
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Figure 13. Results with center distance deviation: (a) TE, (b) backlash, (c) MTE and PPTE, and (d) MB and PPB.

According to Figure 13a,b, the waveforms of the curves of the TE and backlash
change significantly under the influence of the center distance deviation, which is similar
to the harmonic function curve. According to Figure 13c,d, as the absolute value of ∆y
increases, the PPTE, PPB, and MTE increase, while the MB decreases, and the influence
of the center distance deviation on the MB is greater than that on the MTE. Figure 14
shows the number of contact pins when ∆y = 9 and −9 µm, as well as the load distribution
on the pins when ∆y = 9 µm. According to Figure 14a, when ∆y = 9 µm, the number of
contact pins first decreases and then increases with the change of θf, which is caused by
the change of the initial gap between the tooth surfaces. In addition, the load on the pins
increases significantly with the decrease in the number of contact pins (e.g., when θf = 90◦

in Figure 14b), which will increase the MCS and shorten the contact fatigue lifetime of
the tooth surface. At the same time, this will also produce vibration and noise in the
gear system.

The calculation results of the TE and backlash considering the misalignment devia-
tions ϕ and γ are shown in Figure 15. Similar to the center distance deviation, both the
misalignment deviations ϕ and γ have a greater effect on the waveform of the curves of
the TE and backlash. The curves of the TE and backlash considering the misalignment
deviations ϕ and γ are also similar to the harmonic function curve. When ϕ and γ have
the same value, the PPTE and PPB considering the misalignment deviation ϕ are equal to
the PPTE and PPB considering the misalignment deviation γ, while their phase difference
is 90◦. With the increase in ϕ and γ, both the PPTE and PPB increase and the MB decreases,
while the misalignment deviations ϕ and γ have little effect on the MTE. Although the
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misalignment deviations ϕ and γ are conducive to reducing the MB, the adverse effect of
the increase in the PPTE and PPB on the transmission accuracy cannot be ignored.
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Figure 14. Effect of center distance deviation on (a) number of contact pins, and (b) load distribution on pins.
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Figure 15. Results with misalignment deviations: (a) TE (ϕ), (b) backlash (ϕ), (c) TE (γ), and (d) backlash (γ).



Appl. Sci. 2021, 11, 8671 22 of 26

Figure 16 shows the number of contact pins and the load distribution on pins when
the misalignment deviations ϕ and γ are equal to 0.02◦. According to Figure 16a,c, the
misalignment deviations ϕ and γ will cause the mean number of contact pins to increase,
and the number of new contact pins is different with the rotation angle of the cycloid gear.
Theoretically, the load distributed on each pin should decrease when the number of contact
pins increases, but in fact, the load on some contact pins increases instead, such as the 27th
and 28th pins shown in Figure 16b when θf = 180◦. In addition, even if the number of
contact pins remains the same, the load distributed to each contact pin is different from that
without the misalignment deviations, such as the 13th to 18th pins, shown in Figure 16d,
when θf = 90◦. To analyze the cause for the change of the load distribution on the contact
pins, the instantaneous contact lines on the tooth surface of the contact pins are calculated
for different θf, ϕ, and γ, as shown in Figure 17.
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Figure 16. Effect of misalignment deviations on (a) number of contact pins (ϕ = 0.02◦), (b) load distribution on pins
(ϕ = 0.02◦), (c) number of contact pins (γ = 0.02◦), and (d) load distribution on pins (γ = 0.02◦).
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The proposed method and the above conclusions are of great significance for the op-
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Figure 17. Contact lines on the tooth surface of the contact pins: (a–c) without ϕ and γ, (d–f) ϕ = 0.02◦, and (g–i) γ = 0.02◦.

According to Figure 17a–c, the number of contact pins at the three different positions
of the cycloid gear (θf = 90◦, θf = 180◦ and θf = 270◦) is the same when the misalignment
deviations are not considered, and the force condition on the tooth surface of the contact
pins at the three different position is similar. As shown in Figure 17d–f, when ϕ = 0.02◦,
there are two new pins involved in contact at the three positions, and a serious eccentric
load occurs on the tooth surface of some pins, such as the 14th to 16th pins when θf = 90◦

(see Figure 17d). The contact line on the tooth surface of some pins is shortened, such as
the 17th to 20th pins when θf = 90◦, which indicates that part of the tooth surface of these
pins loses contact. A similar eccentric load phenomenon also occurs when γ = 0.02◦, as
shown in Figure 17g–i. These phenomena explain why the number of contact pins is the
same but the load distribution on each contact pin is different when the misalignment
deviations are considered, and why the load on some pins increases instead of decreases
when the number of contact pins increases. In addition, when the values of ϕ and γ are
equal, the force condition on the surface of the contact pins shown in Figure 17d is similar
to that shown in Figure 17h, and the force condition on the surface of contact pins shown
in Figure 17e is also similar to that shown in Figure 17i. The difference between the θf in
Figure 17d,h is 90◦, and the difference between the θf in Figure 17e,i is also 90◦. This is the
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same as the above conclusion for the 90◦ phase difference of the TE curves (or the backlash
curves) when ϕ and γ are considered (see Figure 15).

To summarize, both the center distance deviation (∆y) and the misalignment devia-
tions (ϕ and γ) will change the waveform of the curves of the TE and backlash, and the
PPTE and PPB will increase with the increase in these deviations. The two misalignment
deviations ϕ and γ have a similar influence on the TE and backlash, and there is a phase
difference in the curves of the TE and backlash for the two misalignment deviations. When
the center distance deviation is considered, the number of contact pins will increase or
decrease with the rotation of the cycloid gear, while the number of contact pins will in-
crease under the influence of the misalignment deviations. Although the increase in the
number of contact pins helps to improve the force condition of each contact pin in theory,
the misalignment deviations will cause serious eccentric load on the tooth surface of the
contact pins. This will increase the MCS and shorten the contact fatigue lifetime of the tooth
surface, and the uneven load distribution on the tooth surface will cause the transmission
accuracy to decrease and at the same time accelerate the tooth surface wear and reduce the
transmission accuracy lifetime of the cycloid-pin gear pair.

6. Conclusions

In this study, a novel approach for calculating the transmission accuracy of a cycloid-
pin gear pair based on a three-dimensional error tooth surface model has been proposed.
Compared with the traditional analysis method for a cycloid-pin gear pair, this method has
the capability to consider the influence of some abnormal meshing phenomena caused by
PMs, MEs, and AEs on the tooth contact state, TE, and backlash, such as the instantaneous
mesh-apart of tooth pairs and the eccentric load on a tooth surface. The feasibility and
effectiveness of this method is validated by comparison with the theoretical analysis results
and the results in the literature.

Based on this method, a series of cases is simulated to quantitatively study the in-
fluence of PMs, MEs, and AEs on the TE, backlash, the number of contact pins, load
distribution on pins, contact stress, and instantaneous contact lines on the tooth surface of
a pin. The obtained results show that the compound modification of the negative isometric
and negative offset should be preferred in order to avoid the tooth interference and to
obtain higher transmission accuracy. With this compound modification method, although
the increase in the modification amount improves the transmission accuracy; this increase
also leads to a decrease in the mean of the number of contact pins and an increase in the
MCS. Among the MEs and AEs, the pitch deviation, the center distance deviation, and the
misalignment deviations are the main influencing factors of the TE and backlash. They
not only change the waveform of the TE and backlash curves, but also the main source of
the peak-to-peak values of the TE and backlash, while the profile deviation and the pin
center circle diameter deviation mainly affect the mean values of the TE and backlash. In
addition, the pitch deviation and the center distance deviation will cause the number of
contact pins to fluctuate in a large range, and they will cause the load on some pins to
increase significantly. Under the influence of the misalignment deviations, although the
mean of the number of contact pins increases and the load distribution on the pins does not
change significantly, a serious eccentric load occurs on the tooth surface of some contact
pins. The increase in the load on the pins and the occurrence of the eccentric load not only
increase the MCS and shorten the contact fatigue lifetime of the tooth surface, but they
also accelerate the tooth surface wear and reduce the transmission accuracy lifetime of the
cycloid-pin gear pair.

The proposed method and the above conclusions are of great significance for the
optimal design of the tooth profile of a cycloid gear, the tolerance allocation during the
installation of a gear pair, and the accurate prediction of the TE and backlash of a cycloid-
pin gear pair. The error tooth surface in this study is obtained through different probability
distribution functions based on the tolerance range of various errors, and this method is
expected to be used for the prediction of the transmission accuracy range of the gear pair in
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engineering practice. The error tooth surface can also be generated using the measurement
coordinates of the element control point on the tooth surface, and this method can provide
more accurate internal excitation data for the dynamic analysis of a cycloid-pin gear pair,
which will be implemented in future research.
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