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Abstract: Modern distribution networks face an increasing number of challenges in maintaining
balanced grid voltages because of the rapid increase in single-phase distributed generators. Because
of the proliferation of inverter-based resources, such as photovoltaic (PV) resources, in distribution
networks, a novel method is proposed for mitigating voltage unbalance at the point of common
coupling by tuning the volt–var curve of each PV inverter through a day-ahead deep reinforcement
learning training platform with forecast data in a digital twin grid. The proposed strategy uses
proximal policy optimization, which can effectively search for a global optimal solution. Deep
reinforcement learning has a major advantage in that the calculation time required to derive an
optimal action in the smart inverter can be significantly reduced. In the proposed framework,
multiple agents with multiple inverters require information on the load consumption and active
power output of each PV inverter. The results demonstrate the effectiveness of the proposed control
strategy on the modified IEEE 13 standard bus systems with time-varying load and PV profiles.
A comparison of the effect on voltage unbalance mitigation shows that the proposed inverter can
address voltage unbalance issues more efficiently than a fixed droop inverter.

Keywords: voltage unbalance; volt–var curve control; smart PV inverter; multiagent proximal
policy optimization

1. Introduction

The effort in decarbonizing a power system is undergoing major changes including
a large amount of distributed generation (DG) replacing conventional generators and
transportation undergoing electrification. Most DG, such as photovoltaic (PV) generation
and electric vehicle (EV) charging stations, are connected to a distribution network in
a single phase. The high penetration of DG and EV charging stations has resulted in
new challenges for maintaining the proper voltage quality in a distribution network. The
fluctuating characteristic output patterns of single-phase DG and the irregularity of EV
charging patterns [1,2] aggravated the voltage unbalance. Unbalanced voltages cause
heat, vibration, and inefficiency by shortening the lifespan of three-phase transformers
and power-electronics-based equipment [3,4]. Especially at the point of common coupling
(PCC) in the distribution network (DN), it is necessary to reduce the voltage unbalance
because it is directly connected to the high-voltage stage with a three-phase transformer.

Various methods have been proposed to mitigate the voltage unbalance at high PV
penetration rates in distribution networks. Power-electronics-based equipment, such as
static synchronous compensators or passive devices, such as shunt capacitors, can mitigate
the unbalanced voltage by compensating for the reactive power. However, these methods
have low economic feasibility because they require additional equipment and maintenance
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costs. Most strategies proposed for using PV inverters to improve phase unbalance rely on
centralized cooperative control to solve the economic problem. For example, [5] presents a
bi-level VVO framework for CVR by coordinating the operation of distribution system’s
legacy voltage control devices and smart inverters to efficiently handle the discrete and
continuous control variables. Ref. [6] analyses and compares four of the most relevant
smart EV charging controls as follows: (1) active power droop control; (2) reactive power
droop control for single-phase EV chargers; (3) Load Balancing control; and (4) Sequence
Compensation control (SC), with the aim of reducing the VUF and avoiding under-voltage
conditions. In a previous article [7], a method for mitigating voltage unbalance by adjusting
reactive power injections from PV systems was presented. By using the Karush–Kuhn–
Tucker optimization method, the negative and zero phase components of the voltage can
be selectively reduced. In another study [8], the voltage unbalance in the DN was solved
using the reactive power compensation capability of the inverter through centralized
and decentralized methods. The centralized method solves the voltage unbalance by
presenting a mathematically calculated value using a Steinmetz design. However, the
process of centralized control requires three steps: (1) receiving measured data through
communication; (2) calculating set points based on their optimization problem, which is
formulated to obtain some optimal parameters with the predefined objective functions;
and (3) sending the set points to each control unit. These procedures are repeated every
control time. In the process, the load on the system or the output of renewable energy has
already changed. And computation time is accompanied by a correlation between the scale
of the power system and the computational load. Thus, centralized controls are difficult to
dispatch accurately in real time.

On the other hand, the Deep Reinforcement Learning (DRL) method calculates the
optimal parameters based on offline analysis results and uses them for the next day’s
online operation. Moreover, the optimal policies which are composed by neural network
are determined by performing power flow calculations on the previous day. The Neural
networks (NNs) take little time (less than 1ms) to derive the output, so NN has an advantage
in using real time [9]. This feature can be usefully applied when the fast response in the
parameter updates of the control unit is required for online operation. Decentralized
control adopting DRL enables many system operating points to respond in real time with
little communication. Therefore, recent efforts have focused on problems in power systems
combined with DRL [10–15]. In several challenging tasks for power system operation, DRL
shows great potential. For example, a novel adaptive emergency control scheme using
DRL by leveraging the high-dimensional feature extraction and nonlinear generalization
capabilities of DRL for complex power systems was proposed [14]. Elsewhere [15], the volt–
var optimization algorithm was proposed for reinforcing voltage regulation and power
loss reduction. However, the existing voltage control methods using DRL only focus on
adjusting voltage profiles without looking into mitigating voltage unbalance and are not
flexible enough to adopt changing distribution networks with various newly connected
devices and inverter-based resources.

In this article, a novel volt–var control strategy for single-phase DG smart inverters for
mitigating voltage unbalance targeting the PCC under time-varying operating conditions
in a three-phase distribution system is proposed. The problem is extended to the Markov
decision process by integrating it with the DRL algorithm. Multiagent proximal policy
optimization methods [16] were used to train multiple inverters in a distribution network
owing to the stable and fast convergence ability. In the proposed framework, a probability
model based on actual PV generations and load profiles is adopted to ensure that the
inverter acts properly under the influence of uncertainty in PV outputs. Then, a voltage-
passive device, such as the on-load tap-changer (OLTC) and static voltage compensator, is
considered as a realistic assumption for a grid. Furthermore, because more inverter-based
resources will be added to the grid in the future, an adaptive learning method is needed by
using the latest learning models, which are trained using the digital twin model [17]. The
digital twin provides an environment for exploration and exploitation for the learning of
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agents that converges to the optimal solution through various experiences. The proposed
volt–var control, which is used by the distribution system operator in control rooms, was
predefined through day-ahead training based on forecast PV and load consumption data.
Figure 1 shows the structure of updating the model through day-ahead training in data
learning centers using digital twins.
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The procedure for using the developed platform mainly includes two stages: (1) at
the training stage, day-ahead training of smart inverters with forecast information about
PV generation and load consumption; and (2) at the implementation stage, for using
the NN trained on the actual grid, updating the existing NN to the trained one. During
the training stage, agents learn an optimal policy through exploration and exploitation
and automatically save the best-performance NN parameters. Once the training stage
is completed, the agents at the implementation stage use the trained optimal policy to
provide optimal control actions to the environment.

These efforts are detailed in the following sections. Section 2 shows the voltage unbalance
factor at PCC, the volt-var curve and the reactive power capability of each inverter. Section 3
shows the Multiagent DRL Design for Proposed Method, and Section 4 shows the simulation
result carried out in the modified IEEE 13-bus system with time-varying load and PV
profiles. The conclusion and future work are presented in Section 5.

2. Problem Formulation
2.1. Voltage Unbalance Factors and Sequence Voltage

Distribution networks are experiencing a steady increase in the number of unbalanced
components, such as single-phase PV systems, EV charging stations, and loads distributed
along feeders that cause voltage unbalance at the PCC. The voltage unbalance is defined
by voltage unbalance factors (VUFs) [18,19]. To calculate VUFs, sequence voltages such as
positive sequence voltage V+, negative sequence voltage V−, and zero-sequence voltage
V0, are required, which are computed by the Fortescue transformation. Equation (1)
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shows the Fortescue transformation, where α = ej2π/3 = 1∠120◦, and VA, VB, VC are
phase-to-neutral voltages [20]. V0

V+

V−

 =

 1 1 1
1 α2 α
1 α α2

−1 VA
VB
VC

 (1)

The negative sequence voltage unbalance factor and the zero-sequence voltage un-

balance factor are defined as VUF− and VUF0, where VUF−(%) =
|V−|
|V+ | × 100 and

VUF0(%) =
|V0|
|V+ | × 100. In this study, the aim was to minimize the total sum of VUF− and

VUF0 at the PCC during one day. The objective function defined by the VUFs is explained
in Section 3.3.

2.2. Volt–Var Curve

In the proposed strategy, mitigating the voltage unbalance at the PCC is achieved by
passively injecting or absorbing reactive power into the points connected in the PV system
by following the defined volt–var curve, as illustrated in Figure 2, without altering the
active power injection, where the x-axis represents the phase to a neutral voltage at the
bus, which is connected to the PV system. The IEEE 1547 standard provides a minimum
requirement guideline for the volt–var curve, where V1 = 0.92× Vref, V2 = 0.98× Vref,
V3 = 1.02×Vref, and V4 = 1.08×Vref for DER in category B [21]. The proposed scheme
adjusts the scales of V1, V2, V3, V4. When agents observe the state, the output of the NN is
a combination of V1, V2, V3, V4. After training, each NN creates an optimal volt–var curve
in a given situation. Qlim

i,t is the reactive power capability at time t for i-th PV system.
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2.3. Reactive Power Capability

The reactive power capability for each PV system is determined by its apparent
power rating Srated

i and the active power rating Prated
i for the i-th PV system, as shown

in Equation (2), where kvarMax is the maximum value of the reactive power per unit
that the inverter can provide to the grid. If the i-th PV inverter is less than 0.05× Prated

i ,
it is not allowed to provide/absorb reactive power. In addition, it is not allowed to
provide/absorb reactive power more than kvarMax. According to the IEEE 1547 standard,
it is assumed that the magnitude of kvarMax is 0.44× Srated

i . Figure 3 shows the reactive
power capability curve.
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Qlim
i,t =


0, 0 ≤ Pi,t ≤ 0.05× Prated

i
Pi,t

Prated
i
× kvarMax, 0.05× Prated

i < Pi,t ≤ 0.2× Prated
i

kvarMax, 0.2× Prated
i < Pi,t

(2)

3. Multiagent DRL Design for Proposed Method
3.1. Principles of Deep Reinforcement Learning

In reinforcement learning (RL), the multiple agents learn to make optimal decisions
by interacting with the environment through exploration and exploitation, as illustrated in
Figure 4, with a set of states (St), actions (At) and rewards (Rt) for each agent. At time t,
each agent observes the state and receives the reward from the environment. At the same
time, each agent takes action based on its policy.
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The goal is to find an optimal action for each agent in the current state based on
their policy, where γt ∈ [0, 1] is a discount factor. Thus, solving RL involves finding the
individual policy expressed as πθ(a|s) , which is parameterized by θ, which is determined
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by the weights and biases of an NN. The agent updates θ to maximize the cumulative
discounted rewards Gt, as shown in Equation (3).

Gt =
T

∑
t=0

γtrt (3)

The state value function Vπ(s) and action-value function Qπ(s, a) are two important
value functions in RL, which are defined in Equations (4) and (5), respectively. Here, Vπ(s)
calculates the expected reward for agents starting in such a state according to a particular
policy to evaluate the value of a particular state. However, Qπ(s, a) calculates the expected
reward for agents starting in such a state with action according to a particular policy to
evaluate the value of an action.

Vπ(s) = E(Gt|st = s; π) (4)

Qπ(s, a) = E(Gt|st = s, at = a; π) (5)

3.2. Proximal Policy Optimization

Proximal policy optimization (PPO) is based on the Monte Carlo policy gradient
method, which computes an estimator of the policy gradient (PG) using a stochastic
gradient ascent algorithm. An estimated return form of the PG algorithm was reported in a
previous article to update the policy parameter θ iteratively using the Monte Carlo method.
Because the total expected return Gt can be calculated from the real sample trajectory, the
policy gradient is updated as

∇θ J(θ) = ∇θVπ(s0)(θ) = Eπ [Qπ(s, a)∇θ Inπθ(a|s )] (6)

θ ← θ + α∇θ J(θ) (7)

where α is the learning rate, which can be tuned manually, and J(θ) is the objective function.
However, the PG algorithm does not guarantee adequate convergence, so PPO secures

it in two ways: (1) using the advantage function of Equation (8) instead of the action-value
function Qπ(s, a) of Equation (6) to reduce the variance of the estimate during parameter
update and (2) adopting a certain trust region to improve the stability of training by
ensuring a clipped surrogate objective at every iteration by modifying J(θ) in Equation (6)
to Equations (9) and (10).

Adπ(s, a) = Qπ(s, a)−Vπ(s) (8)

J(θ) = Eπθold

[
min

(
πθ(a|s)

πθold(a|s) Adπθold (s, a), g
(
ε, Adπθold (s, a)

))]
(9)

Jg
(
ε, Adπθold (s, a)

)
=

{
(1 + ε)Adπθold (s, a), Adπθold (s, a) ≥ 0
(1− ε)Adπθold (s, a), Adπθold (s, a) < 0

(10)

where θold is the present parameters in the NN, and the size of the trust region for updates is
decided by ε. By clipping operators, the new policy does not influence excessively to avoid
being trapped in the local minimum of the objective function geometry. The convergence
performance of the PPO algorithm becomes stable and effective when learning multiple
agents through these two methods. For the reasons mentioned above, PPO was applied to
the method of learning the PV inverter to mitigate the voltage unbalance at the PCC.

3.3. PPO-Based Multiagent DRL Framework for Autonomous Control

In the proposed training process, the environment is the DN, which is composed of
time-varying load consumption and PV generation and passive OLTC. Massive episodes
are applied to train inverters connected to PV systems. To address such errors as the
forecast error of load consumption and PV production or errors occurring because of
communication, each episode has Gaussian noise. Each agent has its own actor–critic NN,
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which is trained to take actions with respect to the given operating condition to mitigate
voltage unbalance at the PCC. Figure 5 shows the training architecture of the proposed
learning platform. The states, actions, and rewards are discussed in this section.
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3.3.1. State

The appropriate choice of the state is important because each agent determines the
action using the state. In this study, the PV and load have a large influence when deter-
mining the volt–var curve of each inverter, so the amount of PV generation and load is set
as the state. In the case of day-ahead training for real-time operation, learning is carried
out by putting the i-th PV generation and load as the state predicted on the previous day.
The set of states for the i-th inverter at time step t is denoted as si

t =
{

Ppv.i
t , Sload

t

}
, where

Ppv.i
t represents the active power of the i-th PV generation, and Sload

t is the normalized
apparent power of the load consumption. In addition, various pieces of system infor-
mation can be helpful when determining the volt–var curve for the inverter; however,
additional information is not used because the communication burden must be reduced
for real-time control.

3.3.2. Action

To mitigate voltage unbalance at the PCC at each time step t, each inverter determines
the volt–var curve according to its action. The action was the set of {V1, V2, V3, V4}, where
V1 < V2 < 1 < V3 < V4. V1, V2 are selected in {0.92, 0.94, 0.96, 0.98}, and V3, V4 are
selected in {1.02, 1.04, 1.06, 1.08}. Therefore, the number of action spaces is 36. When states
pass through the NN of the agent, the probability of action is returned. The action for
i-th inverter, represented as ai

t, was selected by the roulette-wheel selection method [22]
according to the probability. After the training, the NN assigns a large part of the probability
to the optimal action.
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3.3.3. Reward

A proper reward function is necessary to train the policy of the multiple agents
appropriately. In this study, the reward function is defined as

Rt = −
{

VUFproposed −VUF f ixed
}

(11)

where VUFproposed = VUFproposed
2 + VUFproposed

0 and VUF f ixed = VUF f ixed
2 + VUF f ixed

0
respectively. Because the policy of agents is trained to maximize the reward, the minus was
implemented at the beginning of Equation (11) to minimize VUF at the PCC. In addition,
−VUF f ixed makes the proposed strategy more effective than fixed volt–var curve inverters.
The fixed volt–var curve inverters are explained in Section 4.2.

3.4. Proposed Algorithm

The proposed training and the implementation algorithm are shown in Figure 6.
Algorithm 1 presents the pseudocode of the training algorithm in detail. The closed-loop
training dataset comprises 3000 episodes, where each episode comprises 50,400 1-s intervals
(from 6 to 20 o’clock assuming that the PV system generates active power during daytime)
of raw data. For each episode, the corresponding decisions and rewards are saved in
batches to calculate the gradient descent to update the NN. After day-ahead training, NN
has an optimal policy to act properly.
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The PV generation data and load data were selected from the historical yearly PV
generation data of the Korea Power Exchange [23]. Figure 7 shows the normalized PV
generation and load consumption, which are applied to various PV generation and load
consumption per unit.
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At each time step t (1 s), PV generation and load consumption, including their Gaus-
sian noise, are used to consider the difference between the forecast and actual active
power of the PV generation load consumption. The stochastic variations in PV genera-
tion and load consumption follow normal distributions. Equation (12) shows a normal
distribution function.

f (x) =
1

δ
√

2π
e−

1
2 (

x−µ
δ )

2

(12)

where µ denotes the mean value of PV generation and load consumption at time t, and δ
denotes the standard deviation of PV generation and load consumption.

Algorithm 1. Training algorithm based on PPO.

1: Initialize network
2: Initialize the critic and actor networks with weights
3: for episode = 1 to N do
4: for time step = 360 min (6 h) to 1200 min (20 h) do
5: each agent selects an action at

i for each st ∈ S
6: Execute at

i in environment
7: for time step = 0 s (0 min) to 60 s (1 min) do
8: Solve power flow with proposed volt–var curve
9: Calculate VUFproposed at PCC
10: Solve power flow with fixed volt–var curve
11: Calculate VUF f ixed at PCC

12: reward calculate −
{

VUFproposed −VUF f ixed
}

13: end
14: Send a set of states st+1 and reward rt to each agent
15: Each agent selects at+1

i through st+1

16: Store the transition pairs in replay buffer
17: Sample a random minibatch
18: Update target critic and actor by stochastic gradient
descent to the loss function of network
19: step+ =1
20: end
21: end

4. Case Study

In the process of analyzing the voltage profiles in a distribution system, it is im-
portant to use an accurate continuous power flow calculation methodology. Recently,
novel methodologies have been proposed for solving both Power-Flow and Continuation
Power-Flow in distribution systems. Reference [24] proposed several corrector techniques
based on efficient Newton-like methods to improve the computational performance of
conventional continuation power flow analysis. Reference [25] studied some relevant
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aspects related with the power flow solution of ill-conditioned cases using the current
injection formulation. Reference [26] solve the OPF problem using meta-heuristic MPA
algorithm. In this study, we used the OpenDSS as the power flow calculation tool which is
an electric power distribution system simulator developed by the Electric Power Research
Institute [27]. OpenDSS has great advantage that determines the voltage and operating
point of each inverter based on its volt-var curve. Moreover, OpenDSS offers a Python
COM interface that enables users to script customized simulations adopting Python’s rein-
forcement learning package PyTorch, which provides NN and training for agents [28]. To
demonstrate the effectiveness of the system, a simulation was conducted on the modified
IEEE 13 bus system from [8] and the modified IEEE 34 bus system from [29], as shown
in Figure 8. In this study, we did not consider the size and the connected position of PV
systems. Once the PV system installed by its owner is in the distribution system, the size
and the connected position of the PV system cannot change at all. We focused on the
operation strategy of the distribution system operator in the situation after the topology
of the distribution network has already been determined. Therefore, the data about the
topology of the test system is extracted from other references which are adopting PV
inverters in distribution systems. In this section, the detailed experimental environment
and a comparison with other control methods are presented.
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4.1. Simulation Data

The PV systems were added at buses 646, 645, 632, 633, 634, and 671 line-to-line and
611, 692, 675, 652, and 680 line-to-neutral in IEEE 13 bus system. In IEEE 34 bus system
3 phase PV systems are added at buses 830 line-to-neutral and 840 and 890 line-to-line.
Table 1 shows the phase and rated active power of each PV system. The phases AB, BC,
and CA are represented as 1, 2, and 3 for PV systems connected line-to-line, and A, B, and
C are represented as 1, 2, and 3 for PV systems connected line-to-neutral.

Table 1. Identification of single-phase PV systems.

Line-to-Line Line-to-Neutral
Network IEEE 13 Bus IEEE 34 Bus IEEE 13 Bus

Location 646 645 632 633 634 671 840 890 830 611 692 675 652 680

Capacity Srated
i (kVA) 110 110 110 165 70 60 110 110 110 60 110 122 110 60

Prated
i (kW) 100 100 100 150 60 50 100 100 100 50 100 110 100 50

Phase 2 2 1 1 1 3 1, 2, 3 1, 2, 3 1, 2, 3 3 3 1 1 1
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4.2. Comparison

To verify the performance of the proposed strategy, three different cases were examined:

• Case 1: inverters with volt–var curve controlled by the proposed method
• Case 2: inverters with volt–var curve with a fixed value
• Case 3: inverters with no reactive power compensation

In case 1, V1, V2, V3, V4 at each inverter volt–var curve were tuned by the proposed
method. In case 2, the V1, V2, V3, V4 at each inverter volt–var curve were 0.92, 0.98, 1.02,
and 1.08, respectively. In case 3, inverters with no reactive power compensation were used
as the base case for comparison with cases 1 and 2.

4.3. Simulation Result

Figure 9 shows the reward profile of each epoch, where the epochs represent the
number of iterations. With epochs at 2000, the reward almost converges, which means that
the training is almost complete; therefore, the variables of the neural nets are rarely updated.
Thus, the policy that returns optimal action when observing the state has been trained.
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After the convergence of the reward, the experiment was conducted on cloudy and
sunny days to evaluate the performance of trained inverters. The Figures 10a and 11a
shows the normalized PV generation and load consumption for each day, which are applied
o various PV generation and load consumptions per unit. The Figures 10b and 11b shows
the VUF(%) at the PCC in modified IEEE 13 bus system for each case during the day. The
Figures 10c and 11c show the VUF(%) at the PCC in the modified IEEE 34 bus system for
each case during the day. Table 2 shows the average VUF(%) at the PCC for each case
during the day.

Table 2. Average VUF(%) for each case during both conditions.

Network Case 1 Case 2 Case 3

VUF(%)
Sunny day IEEE 13 1.23 1.38 1.37

IEEE 34 0.05 0.0514 0.52

Cloudy day IEEE 13 1.29 1.40 1.42
IEEE 34 0.053 0.054 0.055
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In Figure 11, in the time period of 6~7 h and 19~20 h, there doesn’t seem to be any
difference between VUF(%) of each case. It is not allowed to provide/absorb reactive
power from each PV inverter when the inverter’s active power generation is less than
0.05× Prated

i . So the VUFs(%) of each case are the same while normalized PV is lower
than 0.05. Additionally, the VUF(%) of case 1 is lower than others for each day. This
means that the proposed strategy mitigates the voltage unbalance at the PCC more than
for other comparisons. However, the proposed strategy compensates the reactive power
based on its volt-var curve for each inverter and not the mathematically calculated value.
Therefore, it is impossible to make the VUF(%) zero, but it is a significant advantage
to compensate reactive power in real-time according to its volt-var curve. It is expected
that the VUF(%) of case 1 is lower than that of case 2 for the sunny condition because
of the similarity between the actual and forecast profiles of PV and load. Moreover, the
outstanding performance of case 1 can be seen in cloudy conditions. This demonstrates
that the proposed strategy can also act appropriately even when far from the forecast data
owing to cloudiness and other factors. The effect of case 2 was either insignificant or made
matters worse than case 3, despite the compensation of reactive power based on the fixed
volt–var curve. In other words, inappropriate volt–var control should be discouraged.

5. Conclusions and Future Work

A novel method for mitigating voltage unbalance at the PCC by tuning the volt–var
curve of each PV inverter through a day-ahead DRL training platform with forecast data in
a digital twin grid was proposed. The simulation results demonstrated the performance
of the proposed method. The auxiliary service of DG, such as volt–var control, becomes
necessary because of the increasing proportion of DG in the power system. Moreover,
the improvement of auxiliary service of DG leads to an increased capacity for renewable
energy. Related future works include the further application of the proposed method to
ensure transient voltage stability. Moreover, we will develop the strategy for the incentives
of this auxiliary service to encourage participation by PV system owners.
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