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Abstract: Nanomaterials with enzyme-like activity (nanozymes) have found applications in vari-
ous fields of medicine, industry, and environmental protection. This review discusses the use of
nanozymes in the regulation of cellular homeostasis. We also review the latest biomedical appli-
cations of nanozymes related to their use in cellular redox status modification and detection. We
present how nanozymes enable biomedical advances and demonstrate basic design strategies to
improve diagnostic and therapeutic efficacy in various diseases. Finally, we discuss the current
challenges and future directions for developing nanozymes for applications in the regulation of the
redox-dependent cellular processes and detection in the cellular redox state changes.

Keywords: metals; metal oxides; metal nanozymes; homeostasis; oxidative stress

1. Introduction

Nanomaterials with enzyme-like activity, generally referred to as “nanozymes”, have
innumerable potential in various fields of biomedicine. Nanoparticles that can functionally
mimic the activity of cellular antioxidant enzymes are of great interest because of their
possible therapeutic potential in oxidative stress-related disorders.

Since natural enzymes are proteins, their production and storage are difficult and
expensive. Their instability during transfer, modification, and, very often, incompatibility
with desired activity conditions limits their use. In addition, there are more and more
new needs related to the development of medical knowledge. Meanwhile, designing ab
initio a new protein structure that would meet the expected steric and catalytic require-
ments is beyond the possibilities of modern science. After systematically examining the
structure-function relationship of natural enzymes, researchers hypothesized that the ratio-
nal assembly of functional atoms or molecules could generate similar catalytic activities on
enzyme substrates and represent a self-assembled system that mimics the enzyme [1–3].
Recent advances in nanotechnology have given rise to developments in this direction and
have allowed scientists’ access to an ever-evolving set of artificial enzymes. The nanozyme
concept has revolutionized our basic understanding of biology and chemistry, facilitating
many applications in the fields of biodetection, biology, and medicine (Figure 1) [4–6].
Nanoenzymes have also found numerous applications as catalysts for chemical reactions
in the industry [7], wastewater treatment [8], diagnostics [9,10], and others [11].

This review discusses the use of nanozymes in regulating the cellular redox status
and thus cell signaling pathways modulation. We also review the latest biomedical applica-
tions of nanozymes related to their use in cellular redox status modification and detection.
We present how nanozymes enable biomedical advances and demonstrate basic design
strategies to improve diagnostic and therapeutic efficacy in various diseases. We discuss
the current challenges and future directions in developing nanozymes for regulation of the
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redox-dependent cellular processes and detection in the cellular redox state changes. It
should be noted that the purpose of this review is not to exhaustively cover all the work
performed to date in the field of nanozymes in cellular applications. It would be very
difficult at present, due to the large amount of work in this field, which is constantly grow-
ing exponentially. The authors aimed only to outline the most promising and surprising
directions of research that allow discovering the potential hidden in these seemingly simple
structures, which are nanoparticles of metals and their oxides.
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2. A Short History of Nanozymes

The term “artificial enzyme” was used by Ronald Breslow in 1970 for a chemical
structure combining a metal catalytic group and a hydrophobic binding cavity of a polysac-
charide [12], while the term “nanozyme” was first used in 2004 by Manea et al. for
triazacyclonane-functionalized gold nanoparticles that have been used as catalysts for
phosphate ester transphosphorylation [13]. The essence of the catalytic action of this en-
zyme boils down to the interaction of Zn2+ ions on the surface of gold nanoparticles and
inspired researchers in this developing field. Another example of using catalytic systems
with an activity similar to the enzyme is described in 2007 by Gao et al. [14], where the in-
trinsic enzyme peroxidase-like activity of magnetic nanoparticles (Fe3O4) was utilized in an
immunoassay. This discovery used the same element atoms with different valences on the
nanoparticle surface for catalytic reactions. In addition, numerous studies have revealed
that various metal and metal oxide nanoparticles (such as iron, cerium, and gold oxide
nanoparticles), carbon nanomaterials (including carbon nanotubes and graphene oxide),
and many organometallic structures exhibit excellent catalytic properties by mimicking
structures or functions of natural enzymes [4,15,16]. Together, these nanozyme systems
offer higher catalytic stability, ease of modification, and lower production costs in a variety
of biomedical applications compared to natural enzymes (see, e.g., [4,15,17,18]).

Nanozymes can be divided into three categories according to material types: metal-
based nanozymes (e.g., gold, platinum, and cobalt), metal oxides or metal sulfide nanozymes
(e.g., ferric oxide, cerium dioxide, vanadiumpentoxide, and iron sulfide), and carbon-based
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nanozymes, (e.g., fullerenes, graphene, and carbon dots). Herein, according to the keynote
of the special edition, we focus on the metal- and metal-oxide-based nanozymes. The cat-
alytic reaction of nanozymes is like that of natural enzymes, which conforms to the kinetic
curve of Michaelis–Menten equation. Kinetics analysis performed by researchers [19–23]
indicated that nanozymes showed typical Michaelis−Menten behavior toward H2O2, TMB
(3,3,5,5-tetramethylbenzidine) glucose and other substrates. The selected examples of
the Km (Michaelis–Menten constant) values and Vmax (maximum rate) of the reaction for
certain substrates are shown in Table 1 (see also [19]).

Table 1. Comparison of the Km and Vmax of selected nanozymes.

Nanozymes Substrate Km (mM) Vmax (M × s−1) Ref.

V2O5
TMB
H2O2

0.738
0.232

1.85 × 10−5

1.29 × 10−5 [21]

Fe3O4 MNPs TMB
H2O2

0.434
154

10.00 × 10−8

9.78 × 10−8 [21]

MOF(Co/2Fe0) TMB
H2O2

0.25
4.22

0.38 × 10−7

0.49 × 10−7 [20]

AuNPs glucose 0.41 0.10 × 10−6 [22]

ZnO starch 0.022 1.81 × 10−6 [23]

GOx-Fe0@EM-A H2O2 29.59 3.81 × 10−8 [24]
TMB—3,3,5,5-tetramethylbenzidine, Km—Michaelis–Menten constant, Vmax—maximum rate.

The redox properties of metal and metaloxide nanozymes are mainly responsible for
their regulatory action, analogous to natural enzymes containing metal centers. Recently,
however, the possibility of regulating their auxiliary properties, such as lipophilicity, stere-
ospecificity, and the ability to respond to destination-specific stimuli, has gained increasing
importance. Similar to natural enzymes, the activities of nanozymes can be tuned by many
factors, such as pH [25,26], temperature [26], surrounding environment [27], and the type
of the metal ion [26]. One class of such easily tunable substances are organometallic frame-
works (MOFs). They are a class of coordination polymers containing metal ions/clusters
linked by coordination bonds with organic ligands organized into a repeating structure and
have aroused great interest in researchers over the past decades. It must be mentioned that
the particular interest in MOFs is not only due to their catalytic activity but also to their reg-
ulated structures and morphologies, excellent surface areas, high porosity and crystallinity,
high loading capacity, thermal/chemical stability, and tunable affinity, which makes them
functionally even more similar to natural enzymes. Studies of activities mimicking the
enzymes of catalytic nanoparticles based on metals and their oxides gained popularity in
the last decade and are currently in the phase of exponential growth (Figure 2).
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3. Mechanisms of Pro-Oxidative and Antioxidant Action of Nanozymes

Reactive oxygen species (ROS) such as O2
•−, •OH, and H2O2 are natural byproducts

of cellular metabolism [28]. Low ROS levels can serve as important transmitters in cell
signaling and participate in many signaling processes [29]. However, overexpression
of ROS leads to many undesirable effects, such as oxidative damage to lipids, proteins,
DNA, and other biological molecules. Moreover, ROS can induce caspase to activate cell
apoptosis [30–34]. Therefore, ROS overexpression is associated with many pathological
conditions such as neurodegeneration, cancer, diabetes, atherosclerosis, arthritis, and
kidney disease [35], contributing to aging and death. Therefore, the regulation of ROS
levels is of great importance in maintaining intracellular redox homeostasis.

It is assumed that the cytotoxicity of nanoparticles results from oxidative stress in-
duction. Its mechanisms are well known and described in the literature. Nanomaterials
can generate and induce ROS production through various mechanisms. Radicals such as
O2
•−, •OH, SiO•, or TiO• may be present on the surface of the nanomaterial. These, in

turn, can generate secondary ROS. The nanomaterial surface may also contain structural
defects inducing the formation of reactive groups [36], as well as transition metals that can
generate ROS by Fenton and Haber–Weiss type reactions [37]. In addition, environmental
oxidants such as ozone, semiquinones, and NO can adsorb to the nanomaterial surface
and enter cells through the so-called “Trojan horse effect” [37]. Nanomaterials may also
indirectly enable the production of ROS by triggering cellular mechanisms. For example,
damage to or activation of mitochondria can lead to the release of ROS produced by the
mitochondrial electron transport chain [38], structural damage, activation of nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase-like enzyme activity, and via irre-
versible membrane potential loss in the mitochondria [39,40]. The native NADPH oxidase
can also be activated by nanomaterials, as shown for ZnO NP [41]. This membrane-bound
enzyme is highly expressed in neutrophils and macrophages, where it induces the so-called
oxygen burst, designed to kill invading microorganisms by producing ROS. Nanomaterials
can activate inflammatory cells, inducing oxygen burst in the absence of pathogens [42].
Macrophage activation is a particularly important mechanism for ROS production by the
so-called long aspect ratio nanomaterials, as long, thin, and biopersistent fibers can lead
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to ‘frustrated phagocytosis’ [43]. This mechanism led to the sustained release of oxidants
and proinflammatory mediators and was first described as explaining the toxicity of as-
bestos but has since also been observed in carbon nanotubes (CNTs) [44]. The involvement
of NADPH oxidase in the toxicity of CeO2 and CoCr NP has also been demonstrated,
for example, in fibroblasts [45]. Nanomaterials can also inhibit repair mechanisms that
eliminate ROS-damaged molecules, enhancing their toxicity [46,47]. Another indirect
mechanism by which nanomaterials induce oxidative stress is depletion or inhibition of
antioxidants, leading to an imbalance of redox homeostasis in the cell. For example, Au@Pt
nanorods have been shown to oxidize ascorbic acid [48]. There are numerous reports
and reviews concerning the oxidative stress-related mechanisms and effects induced by
metallic nanoparticles. At the same time, there are several strategies to overcome this:
not always desired property of nanoparticles or even giving nanoparticles the antioxidant
properties [49,50]. There are attempts to achieve this by combining, quenching, or coating
nanoparticles with classic chain-breaking antioxidants, such as tocopherols (vitamin E) [51],
flavonoids [52,53], ascorbate (vitamin C [54,55]), aromatic amines [56], and nitroxides [57].
Some other nanomaterials could by themselves scavenge radicals on their surface or exert
antioxidant properties (e.g., Au, Ag, CeO2, and Pl NPs).

The antioxidant activity of metal-based nanoparticles can be related to those of natural
enzymes. There are several types of antioxidant enzymes in the cellular system, such as
catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), peroxiredoxin,
etc. [58]. These antioxidant enzymes play an important role in maintaining cellular redox
balance. Many nanomaterials have catalytic effects similar to those of antioxidant enzymes.
This interesting antioxidant property of some nanomaterials is intended to be used in
nanomedical applications (Colon et al., 2010, Rehman et al., 2012). As reviewed by Qu
et al. [26], among the various antioxidant nanoparticles reported to date, metal oxide
nanozymes have proven to be effective candidates in mimicking the antioxidant activities
of first-line enzymes, i.e., SOD, CAT, and GPX.

Based on the reaction mechanism, nanozymes can be divided into two main families:
4 (i) the oxidoreductase family and (ii) the hydrolase family. The oxidoreductase mimetic
nanozymes catalyze the oxidation reaction in which reducing agents and oxidants act
as electron donors and acceptors, respectively. Among the metallic nanoparticles that
exhibit oxidoreductase activity are nanoparticles of platinum [59], cerium oxide [60], iron
oxide [61], and others. Hydrolase nanozymes catalyze the hydrolysis reaction by cleaving
chemical bonds. In this process, the larger molecule dissociates into two smaller molecules.
For example, gold nanoparticles are widely used as common nanoenzymes of hydrolases
to catalyze the hydrolysis reaction [62–64].

Nanozymes can also be classified into (i) antioxidants and (ii) pro-oxidants [65]. In
biological systems, the pro-oxidant induces oxidative stress by producing free radicals. For
example, the presence of a transition metal can generate a hydroxyl radical (HO•) by Fenton
chemistry [66]. Antioxidant nanozymes clean or scavenge free radicals using CAT-like
or SOD-like actions. Superoxide (OO-·) decays at a low pH as the result of the reaction
between its protonated and deprotonated form (Equation (1), k = 8.9 × 107 M−1 s−1 in
H2O), while at low pH and in organic solvents, decisive is the reaction between two
molecules of the protonated form (Equation (2), k = 7.6 × 105 M−1 s−1 in H2O).

O2
•− + HOO• + H+ → O2 + H2O2, (1)

HOO• + HOO• → O2 + H2O2, (2)

The self-decomposition of peroxide is thus highly pH-dependent, with a maximum
rate at pH = 4.5, and becomes slower with increasing pH. At physiological pH = 7.4, this
reaction has an apparent rate constant of 2× 105 M−1 s−1. Meanwhile, even a small amount
of HOO• can initiate lipid peroxidation and cause radical damage to biomolecules. Thus,
the SOD activity is important, catalyzing the decomposition of the dangerous reactive
peroxide radical. The SOD mimetic catalyzes the dismutation of superoxide anions to
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hydrogen peroxide, which in turn can be converted to molecular oxygen and water by a
catalase-like nanozyme. On the other hand, peroxidase mimetic can convert hydrogen
peroxide into hydroxyl free radicals. Peroxidase-like activity is demonstrated, among oth-
ers, by iron oxide nanocomposites [67–70] and iron-containing nanomaterials [71]. These
materials are widely used for glucose detection [72,73]. Figure 3 summarizes the classifica-
tion of nanozymes based on the reaction mechanism and the generation/scavenging of
free radicals.
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4. Strategies in the Quest for New Nanozymes

Almost all of the metals and their oxides in block d (and many of block f) of the peri-
odic table are useful as redox catalysts mimicking natural enzymes. The important quality
in the research seems to consist not so much in proving the catalytic abilities of subsequent
metallic nanoparticles and metaloxides but in the use of a set of structural solutions in
experimental design (Figure 4). This brings particularly interesting effects that inspire new
approaches to nanozyme catalysis, allowing very selective activities of nanozymes, as was
the case in an interesting work of Parac-Vogt et al. [76] on discrete hafnium metal-oxo
cluster [Hf18O10(OH)26(SO4)13

•(H2O)33] (Hf18), centered by the hexamer motif found in
many MOFs. This water-insoluble nanoparticle acts as a heterogeneous catalyst for the
efficient hydrolysis of horse heart myoglobin (HHM), inducing a strictly selective cleavage
at directed protein sites. Among 154 amino acids present in the sequence of HHM, cleavage
at only six solvent-accessible aspartate residues was observed. The hydrolytic activity
was likely derived from the actuation of HfIV Lewis acidic sites and the Brønsted acidic
surface of Hf18, by a heterogeneous reaction. The selective hydrolysis of proteins by nonen-
zymatic catalysis is difficult to achieve, yet it is crucial for applications in biotechnology
and proteomics.
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An important aspect of searching for new catalytic nanoparticles is careful observation
and inspiration with naturally occurring processes. For example, one of the reasons why
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natural enzymes contain mostly d-block metals is the valence flexibility of the latter. There-
fore, bioinspired nanomaterials that show great potential for constructing novel nanozyme
catalysts are those based on molybdenum. The main valence states of Mo include Mo (0),
Mo (III), Mo (IV), Mo (V), and Mo (VI). No wonder then that this extremely valence-flexible
metal is an essential trace element and nutrient in bacteria, plants, and animals serving as a
cofactor for various Mo-based enzymes such as xanthine dehydrogenase, aldehyde oxi-
dase, sulfite oxidase (SuOx), and nitrate reductase (NRase) [77]. The classes of bioinspired
Mo-based nanozymes so far include molybdenum disulfide (MoS2) [78,79] molybdenum
selenide (MoSe2) [80] molybdenum oxide (MoOx, 2 ≤ x ≤ 3) [81], molybdenum carbide
(Mo2C) [82,83], and hybrid Mo-based nanomaterials (TiO2@MoS2/CoFe2O4, Au–Pd/MoS2,
MoS2/GO, MoS2:CeO2, etc.) [84–87]. The MoOx NPs were first reported to have oxidase
(OXD)-like catalytic activity, and the MoS2 NSs were reported to have peroxidase-like
activity [78,88]. MoSe2 and hybrid Mo-based nanozymes were then found to possess
various enzyme-like activities, including POD, OXD, CAT, SOD, and RNase [80,81,89,90].
Li, Zhang, et al. [91] successfully used cysteine-protected nanodots MoS2 with CAT and
SOD catalytic properties for protection against ionizing radiation. The electrochemical
measurements of cysteine-protected MoS2 dots evidenced their strong in vitro catalytic
activities in H2O2 and oxygen reduction reactions. Viabilities of mouse fibroblast cells
treated with MoS2 dots in different doses under exposure to gamma rays were significantly
increased. The in vivo experiments showed that the surviving fractions of mice can be
significantly increased with exposure to gamma rays (7.5 Gy; 76% survival at the dose of
50 mg/kg vs. 0% for non-treated irradiated mice).

The oxidation state of the metal is a decisive factor influencing the nanozyme activity,
as shown in the research of Wang et al. [92]. The authors obtained the porous LaNiO3
nanocubes. The 3+ oxidation state of Ni was shown to be superior to Ni0 and Ni2+ for
the nanozymes’ catalytic activities. Specifically, the peroxidase-mimicking activity of the
porous LaNiO3 nanocubes with Ni3+ was, respectively, about 58-fold and 22-fold higher
than that of NiO with Ni2+ and Ni nanoparticles with Ni0. The oxidation state was very
important for cerium oxides’ [93,94] and iron oxides’ [95] enzyme mimicking activities.

Fe3O4 nanoparticles are one of the most classic nanozymes showing peroxidase and
catalase-like activity [14]. Enzyme-mimicking iron-oxide-based nanomaterials can be
synthesized in various conformations, yet the decisive factor that allows one to fully reveal
the iron oxide catalytic potential seems to rely on the application of the proper ligand
environment. Again, the observation of nature prompts the application of the amino acid
ligand entourage. For example, distal histidine, highly conserved in nearly all globins
and all heme peroxidases, is important in tuning the affinity of these proteins ligands.
In globins, the distal His stabilizes O2 binding and has possible subsidiary functions
of preventing autoxidation and discrimination against CO binding to the heme Fe. In
peroxidases, the distal His has the nearly opposite role of activating bound H2O2 for
heterolytic bond cleavage [96]. Indeed, as shown by Fan et al. [97], covalently modifying
the histidine residues on the Fe3O4 surface resulted in nanozymes having a significantly
higher affinity for H2O2 than that of unmodified Fe3O4. As in the case of many other
metaloxide nanozymes, the presence of metal in two different oxidation states on the
surface of the nanozyme is crucial for enzymatic activity of Fe3O4-based nanozymes. Such
a multivalent system brings the nanozymes functionally closer to the systems present in the
active centers of various proteins, for example, those containing heme [98] or iron–sulfur
clusters [5,99,100]. Prussian Blue (PB) nanoparticles and their analogues are organometallic
structures (MOFs) composed of alternately arranged Fe2+ and Fe3+ atoms coordinated
with cyanides. Due to this multivalent structure, they exhibit activity resembling those
of catalytic sites in metals. Moreover, they possess other important properties such as
highly porous structure and biocompatibility [101]. The property of PB nanoparticles
to scavenge ROS is due to their affinity for hydroxyl radicals and their ability to mimic
three enzymes: SOD, CAT, and peroxidase. Different oxidation states are responsible
for the unique multicatalytic properties of these enzymes, which can be changed by the
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regulation of external potentials (PB has a low redox potential). The HRP-like (horseradish
peroxidase) catalytic activity of PB is mainly due to the presence of ferrous ions [95].
For another instance, cerium (IV) oxide nanoparticles have been shown to exhibit SOD
properties due to their mixed valence (Ce3+ and Ce4+) [102]. Interestingly, the ability of
nanoceria to scavenge superoxide is directly related to higher cerium (III) concentrations at
the surface of the particle, while the CAT mimetic activity correlates with a reduced level
of cerium in the +3 state, in favor of the 4+ [93,94]. Concluding, the catalytic mode of the
nanozyme can be tuned by changing the oxidation state of the nanoparticle’s surface.

Another observation of nature implicates that the choice of the metal according to the
observed natural effects can be useful in tuning the catalytic potential of nanozymes. For
example, the research showed that natural Mn SOD works better than Cu/Zn SOD and Fe
SOD [103], which suggests that it should also be similar in regard to manganese nanozymes.
Indeed, Yao et al. [104] obtained Mn3O4 nanozymes, which dismutated superoxide anion
radicals, hydrogen peroxide, and hydroxyl radicals in vitro and protected live mice from
ROS-induced ear-inflammation in vivo.

Specific steric features of the matrix of the nanozymes with active metallic centers can
bring other effects allowing for targeted selectivity of the obtained nanoparticles. For exam-
ple, upon being entrapped on the amine-terminated PAMAM dendrimer (AuNCs-NH2),
gold nanoclusters unexpectedly lost their peroxidase-like activity while still retaining their
CAT-like activity in physiological conditions [105]. The possible mechanism was proposed
that the enrichment of polymeric 3◦-amine on the surface of AuNCs-NH2 (or AuNCs-OH)
provided sufficient suppression of the critical mediator •OH, which is responsible for the
peroxidase-like activity. Because their CAT-like activity was superior to that of AuNCs-OH
and their hidden peroxidase-like activity diminished cytotoxic effects, AuNCs-NH2 were
further chosen for H2O2-mediated cytotoxicity tests in primary neuronal cells. Testing indi-
cated a potential for the use of AuNCs-NH2 in protecting primary neuronal cells against
H2O2-induced toxicity.

Many metallic NPs can display multienzymatic activity, as it is in the case of Pt
nanoparticles, which serve as both CAT and SOD mimics [59,106–108]. Simultaneous
expression of multiple antioxidant enzymes is more effective than single or double expres-
sion in combating oxidative stress [109]. It has been reported that CAT-GPx cooperativity
is important for the proper control of H2O2 levels under pathophysiological conditions.
While CAT is responsible for the removal of excess H2O2 during oxidative stress, GPx is
known to fine-tune the concentration of H2O2 for cell signaling. Unlike CAT activity that
is common for many metal and metal oxide materials, GPX is a selenium-based enzyme.
GPx is a GSH-dependent antioxidant enzyme that can catalyze peroxides such as H2O2
to form nontoxic products in the presence of gluthatione (GSH) [110,111]. Thus, it plays
an important role in the maintenance of intracellular redox homeostasis. Until recently,
mimicking GPx has mainly focused on designing selenium-based organic molecules [112].
However, these molecules can have disadvantages such as complicated preparation process,
high toxicity, low cycle efficiency, etc. Therefore, the development of new and biocom-
patible GPx mimics is of great importance [113–116]. Mugesh, D’Silva, and colleagues
also discovered that V2O5 nanowires could as well mimic GPx activity by using cellular
GSH [115]. Although bulk V2O5 is known to be toxic to the cells, the property is altered
when converted into a nanomaterial form. The vanadium-based nanozymes were readily
internalized into mammalian cells and fully restored the redox balance without perturbing
the cellular antioxidant defense. The potential of the biocompatible V2O5 nanowires in
the treatment of aging, heart disease, and many neurological diseases was thus shown.
This work was a breakthrough in mimicking GPXs by the non-selenium-based materials.
Mugesh, D’Silva, et al. [116] reported that Mn3O4 nanoparticles with flower-like morphol-
ogy (Mnf) could potentially exhibit the activities of all three primary antioxidant enzymes
namely SOD, CAT, and GPX. They studied the GPx-like activity of Mnf using the classical
coupled assay system involving glutathione reductase (GR) and NADPH to confirm the
formation of GSSG. The catalytic properties of Mnf, investigated using steady-state kinetics
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by independently varying the concentrations of H2O2 (0–1.8 mm) and GSH (0–5.0 mm),
followed the Michaelis–Menten kinetics. A proportional dependence of the initial rate
corresponding to the first-order kinetics was observed as the concentration of Mnf was
varied by keeping the concentration of other reactants constant. Interestingly, Mnf was
found to be highly specific to H2O2 as there was a significant decrease in the activity when
cumene hydroperoxide or t-butyl hydroperoxide was used as substrates. The observed
selectivity was attributed to the availability of active sites on the surface specific to small
molecule H2O2 and not bulky organic peroxides.

In turn, in ceria-vanadium systems, a combination of the surface composition involves
vanadium species (polymeric VOx and CeO2 acting as Lewis acid sites, whereas CeVO4
act like Brønsted acid sites). Hence, Peng et al. [117] suggested that the duality of both
V-containing species (i.e., VOx and CeVO4) can explain synergetic effects and can widen
the operating window. A cerium vanadate (CeVO4) nanozyme can substitute the function
of superoxide dismutase 1 and 2 (SOD1 and SOD2) in the neuronal cells even when the
natural enzyme is downregulated by specific gene silencing. The nanozyme prevents the
mitochondrial damage in SOD1- and SOD2-depleted cells by regulating the superoxide
levels and restores the physiological levels of the antiapoptotic Bcl-2 family proteins [118].

Combining different oxides gives additional catalytic potential. Qu et al. [119] con-
structed a manganese oxide composite with V2O5 nanowires decorated with MnO2. V2O5
nanowire served as GPX mimic, while MnO2 nanoparticle was used to mimic SOD and CAT.
To assemble V2O5 nanowires with MnO2 nanoparticles, polydopamine (pDA) was used to
combine two nanomaterials. In this way, the obtained V2O5@pDA@MnO2 nanocomposites
could serve as a multinanozyme model to mimic the intracellular enzyme-based antioxida-
tive process. Moreover, pDA can also serve as an antioxidant to remove ROS [120]. Thus,
by combining the antioxidant capacity of nanozymes and pDA, the V2O5@pDA@MnO2
nanocomposites exhibited a synergistic ROS-scavenging effect that would protect cell
components from oxidative damage. To further explore the potential of nanocomposites, a
mouse model of phorbol 12-myristate 13-acetate (PMA)-induced otitis was designed. The
results showed that V2O5@pDA@MnO2 nanocomposites can be effective in lowering ROS
levels as well as ameliorating the adverse effects caused by inflammation in mice.

More recently, Hyeon et al. [84] followed the idea of oxidative protection in cells
designing CeO2 conjugated with Mn3O4 nanoparticles. The authors presented a very
interesting emerging insight into the principles governing the structural physico-chemistry
of nanomaterials. Namely, they managed to use the possibility of tuning the surface strain
of metallic nanoparticles to modify their redox potential. Manganese ions deposition
on the surface of CeO2 nanocrystals caused the formation of strained layers of Mn3O4
islands, increasing the number of oxygen vacancies in the CeO2 phase. This feature
enhanced the efficiency of oxygen adsorption on the surface of the nanocrystals, allowing
for more effective removal of ROS. As a result, nanoparticles administered in vitro to
hematopoietic intestinal stem cells protected them from radiation-induced ROS damage.
In the mouse model, CeO2/Mn3O4 nanocrystals prevented radiation-induced multiorgan
damage in vivo and improved survival after total body irradiation.

An important issue concerning metallic particles is their stabilization and biocom-
patibility. One method is the use of surfactants such as poly(acrylic acid) (PAA) [121].
Citrate-capped PtNPs were also shown to have SOD, CAT, and peroxidase-like properties
that can reduce intracellular increased ROS levels in genetic model hyperoxia (krit1-ko
MEF cells), protecting cell components from oxidative stress [122]. Similarly, citrate-capped
nanocrystals of Pd can serve as both CAT and SOD mimics [123]. Nevertheless, other, more
sophisticated coating methods can be applied, providing additional bioinspired features
of the nanomaterials. For example, Nie et al. used apoferritin (apoFt) as a nanocarrier for
the in situ synthetized Pt nanostructures [124]. Apoferritin was treated with K2PtCl4 salt
at pH 8.5 to increase the electrostatic interaction between Pt ions and the interior surface
of the protein. Pt ions were reduced, resulting in PtNPs trapped inside the FT shell. The
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obtained platinum ferritin nanoparticles were bioactive, nontoxic, and stable, with an
excellent CAT-like activity [124].

Many interesting designs with multimodal effects are being developed as part of the
research that extends the similarity of metaloxide NPs to naturally occurring enzymes.
For example, Qu et al. constructed a bifunctional ROS control and Cu2+ chelation sys-
tem based on the CeO2 NPs [125]. The system consisted of a mesoporous nanoparticle
functionalized with a derivative of phenylboronic acid (MSN-BA). It is used to design
glucose-responsive materials due to its unique reversible covalent interactions with the
cis-diol moiety in glucose to form cyclic boronate moieties [126]. Such modified CeO2NPs
behave like reservoirs with pore blockers to prevent the premature release of the encapsu-
lated drug at unwanted sites in the organism. The release mechanism depends on a redox
reaction involving the presence of H2O2 to which the arylboronic esters are oxidized to phe-
nols [127]. The complete breakage of arylboronic esters results in the release of CeO2NPs
and their payload after that. Due to the catalytic ability of CeO2 nanocomposites similar
to the antioxidant enzyme, the authors proposed this nanocomposite for the treatment
of Alzheimer’s disease (AD) in an in vitro mouse model on PC12 cells. As an additional
charge to the antioxidant function, preventing the oxidative aggregation of amyloid plaque,
5-chloro-7-iodo-8-hydroxyquinoline (CQ) was chosen as a guest molecule, as described
below in the section devoted to AD. As a result, a cooperative effect of chelation and ROS
enzymatic decomposition was found. Similarly, a noteworthy cooperative multimodal
system containing nanovalves was also designed and applied in multimodal imaging in
the work of Yang et al. [128].

The abovementioned discoveries of the multienzymatic antioxidant activity of the
metaloxide-based nanoenzymes are of great importance for potential medical applications.
Gu et al. discovered that PB nanoparticles with multienzyme-like properties can effectively
lower intracellular ROS levels and achieve excellent cytoprotection efficacy [95]. In vivo ex-
periments showed their anti-inflammatory activity in a mouse model of lipopolysaccharide-
induced hepatitis [101]. The results demonstrated their unique characteristics in inflam-
mation and ROS-related damage. PBNPs and their analogues are gathering an increasing
research interest [129].

5. Metal Nanozymes as Enzyme Inhibitors

In addition to biocatalytic functions, nanozymes can be used to selectively bind
various enzymes and inhibit their activity [130]. This is related to their abovementioned
features: a developed surface that is easy to modify and functionalize, and their architecture,
which can be highly ordered and often has features important from the point of view of
biocatalysis, such as chirality [131].

Protein surface recognition is an important issue in biomedical and biomaterial re-
search. In addition to its use in immunoimaging methods, it is necessary for the specific
inhibition of enzymes [132]. Until recently, small molecules, such as polypeptides or metal
complexes, have been used as structures recognizing the active sites of enzymes [133],
but the complicated geometry of enzyme active sites often requires structurally complex
inhibitors difficult to precisely design. The required large receptor-protein contact surfaces
and the inherent complexity of protein surfaces, the need to consider the hydrophobic
nature of the active electrostatic center, and hydrogen bonds are still a challenge for modern
biochemistry [131]. To obtain functional nanomaterials compatible with protein surfaces,
You et al. [132] constructed carboxylic acid-functionalized gold nanoparticles with various
L-amino acids and investigated their effect on the rate of R-chymotrypsin (ChT) catalyzed
N-succinyl-L-alanine-p-nitroanilide (SPNA) hydrolysis. The authors observed an explicit
charge-dependent inhibition of the enzyme. In the presence of negatively charged amino
acid-modified gold nanoparticles, the rate of ChT-catalyzed SPNA hydrolysis was reduced,
while the positively charged amino-acid-modified gold nanoparticles had no obvious effect
on ChT activity. This is well following the fact that the ChT active site is surrounded by
cationic residues. Circular dichroism (CD) analysis showed conformation changes depen-
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dent on the side chains of negatively charged amino acids with which the nanoparticles
were decorated. At the same time, in the presence of gold particles with a hydrophobic
side chain of the NP-L-Leu amino acid, almost no changes in the CD ChT spectrum were
observed. In addition, the hydrophobicity was postulated decisively for the observed
inhibition effect: After 24 h incubation with nanoparticles, hydrophilic NP_L-Asp induced
approximately 90% denaturation of ChT, while hydrophobic NP_L-Leu induced only 20%
denaturation. Moving on, You et al. showed that the interaction between nanoparticles
and protein influences both the catalytic constants and Michaelis constant values, resulting
in the modulation of the association/dissociation processes. The recognition of the ChT
surface by charged nanoparticles opens up new horizons for research into the affinity of
protein-active centers [132,134].

As mentioned, apart from electrostatic interactions, the surface geometry is also of
great importance for the interaction with the active center of the enzyme. This situation has
been observed by VanEpps, Kotov et al. [135], who showed that small zinc oxide nanopar-
ticles (ZnO NP), pyramids, plates, and spheres, can inhibit the activity of β-galactosidase
(GAL), a proteolytic enzyme, the upregulation of which is usually associated with primary
ovarian cancer and cell aging. The inhibition of enzymes by ZnO nanoparticles is reversible
and strongly depends on their geometry [135].

Pandit et al. [136] synthesized several functionalized two-dimensional molybdenum
disulfide (2D-MoS2) nanomaterials capable of inhibiting penicillinase, also known as β-
lactamase, which is responsible for penicillin-resistance bacterial strains [137]. The authors
showed that carboxylate-functionalized negatively charged MoS2 effectively blocked the
β-lactamase active site and exhibited a competitive inhibitory effect. The inhibition mecha-
nism was attributed both to electrostatic and non-covalent interactions with the β-lactamase
center surrounded by cationic residues (lysine and arginine), as well as to geometry and
steric blockade between the enzyme and the inhibitor.

Table 2 summarizes the above-described inhibition mechanisms and their potential
applications in enzyme regulation.

Table 2. Nanozymes inhibit natural enzymes by various interaction modes.

Nanozyme Ref. Target
Enzyme Enzyme-Nanozyme Interaction Type Application

AuNPs [132] ChT electrostatic interactions Protein interaction
ZnONPs [135] Beta-Gal Hydrogen bonding, Van der Vaals, molecular shape Ovarian cancer, cell aging
2DMoS2 [138] β-Gal, ChT electrostatic interactions diagnosis, treatment
2DMoS2 [136] β-lactamase electrostatic interactions, steric hindrance overcoming penicillin resistance

Abbreviations: AuNPs, gold nanoparticles; ZnONPs, ZnO nanoparticles; ChT, R-chymotrypsin β-Gal, beta-galactosidase.

6. Metal Nanozymes as Cellular Probes for Biosensing

Over the past decade, nanozymes have proved to be excellent providers of high-
performance and ultra-sensitive biosensors, including colorimetric, fluorometric, chemi-
luminescent, surface-enhanced Raman scattering, and electrochemical assays [139]. Due
to their oxidase-like activity, metallic, metaloxide, and metal-organic nanoparticles are
used for colorimetric and fluorimetric sensing of H2O2, O2 and H2S, glucose, ascorbic acid,
cysteine, GSH, and other bio-thiols, cholesterol, uric acid, dopamine, epinephrine, phenol,
Hg2+, cancer cells, thrombin, ALP, HIV DNA, sulfadimethoxine, xanthine, bacteria, heavy
metal ions, and many others (a detailed review on analytical applications of MOF-based
nanozymes can be found in [79]; Detailed reviews on metal nanozyme biosensors can be
found in [19,140]).

Colorimetric detection provides a quick response (color change), often allowing the
naked eye to evaluate the sample parameters and subsequent quantification in UV-VIS.
The advantage of naked-eye detection is that it can be used as a first-pass screening test
for rapid disease diagnosis. This feature of colorimetric sensors makes them suitable for
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developing fast and inexpensive screening tools in medicine (i.e., detection of disease-
specific molecules, proteins, and cells), biotechnology, and environmental sciences.

Nanozymes can oxidize a variety of chromogenic substrates, such as (e.g., TMB), 2,2′-
azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 3,3′-diaminobenzidine (DAB), and
o-phenylenediamine dihydrochloride (OPD)) in the presence of hydrogen peroxide (H2O2)
and produce a distinguishable color. The analytical determination of hydrogen peroxide is
of considerable importance for medical diagnosis because H2O2 is formed as an interme-
diate product in a large number of important detection processes (Equations (3) and (4),
Figure 5). Nanozymes can easily replace peroxidase in conventional assays, often extending
the field of application of tests by, e.g., a larger pH range. This makes them interesting for
the investigation of combined multienzyme assays with oxidases that require a narrower
pH range for their optimum activity, as shown for the glucose/glucose oxidase catalytic
test [141].

Substrate + substrate oxidase + O2 → oxidation product +H2O2, (3)

H2O2 + Peroxidase nanozyme mimic + Oxygen acceptor (Colorless)→ H2O + Oxidized acceptor (Colored), (4)
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Sometimes a nanozyme may fulfill a tandem role, as obtained by Li et al., of “non-
naked” AuNP coated with protein (bovine serum albumin). Although the “naked” Au
NPs have peroxidase-like activity and GOx-like activity, the optimal pH ranges of the
two activities are different. Fortunately, synthesized “non-naked” Au NPs exhibit dual
enzymatic activity at the same pH, benefiting the establishment of one-pot enzyme-free
glucose detection.

The on/off colorimetric sensors have been also designed, for example, based on the re-
versible surface passivation of noble metal nanozymes with single-stranded DNA [142] (ss-
DNA) or an aptamer [143]. Self-regulated colorimetric sensors use the nanozyme activity of
nanoceria to detect acetylcholinesterase, nerve agents, drugs, and bioactive ions, by in situ
modulating the oxidase-like activity of nanoceria through proton-producing (or proton-
consuming) enzymatic reactions [144]. Several other sensitive colorimetric sensors based on
functional nanozymes have been reported, among others for the detection of cocaine [145],
immunochromatographic analysis of the Ebola virus [146], and Escherichia coli [147]. In addi-
tion, a sensor array based on combined analysis of analytes’ influence on Pt Ru and IrNPs’
peroxidase-like activities has been designed to discriminate between biothiols, proteins,
and cancer cells [148].

In terms of sensitivity, one of the most spectacular improvements brought by nanozymes
concerns their application in the popular enzyme-linked immunosorbent assay (ELISA).
ELISA is the most widely used technique for the detection and quantification of peptides
and antigens. The enzyme-conjugated primary antibody (direct ELISA) or the secondary
antibody (indirect or sandwich ELISA) in the ELISA test specifically recognizes the antigen.
The most commonly used enzyme reporter in the ELISA test is HRP. It catalyzes the oxida-
tion of TMB in the presence of H2O2 to produce a colorimetric signal, and the intensity of
the signal is proportional to the concentration of the recognized antigen. However, HRP has
a lot of limitations that are typical of proteins. It is not resistant to many preservatives such
as sodium azide. It is also subject to proteolytic degradation. Its enzymatic activity is limited
to a narrow range of pH and temperature [10]. In addition, the sensitivity of a conventional
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ELISA is limited [149]. To overcome these limitations, numerous nanozymes have been
developed, considered direct substitutes for HRP [150]. For instance, Xu and Cheng [151],
to avoid the occurrence of false positives and false negatives caused by conventional ELISA,
have recently developed a nanozyme-linked immunosorbent assay based on metal-organic
frameworks (MOFs) for sensitive detection of aflatoxin B1. As a result, the limit of detection
(LOD) of the MOFLISA method was 0.009 ng/mL with a linear working range from 0.01 to
20 ng/mL, thus having a 20-fold improved LOD value compared with the conventional test.

In a fluorescent sensor, nanozyme usually converts a non-fluorescent substrate into
a fluorescent-active substrate by catalyzing a hydrolysis or oxidation reaction [152–154],
including application in fluorescent ELISA tests [155,156]. For example, Perez et al. demon-
strated that the ability of poly (acrylic acid)-coated nanoceria to mimic oxidase depends
on the pH of the solution [156]. In the pH range 4−7, HRP/H2O2 oxidized ampliflu
to nonfluorescent resazurin. By contrast, at pH 6–8 nanoceria oxidized ampliflu to the
intermediate oxidation fluorescent product resorufin, while at or below pH 5.0, nanoceria
also yielded the terminal oxidized nonfluorescent product resazurin. Thus, the ability of
nanoceria to oxidize ampliflu to a stable fluorescent product in the pH range 6−8 was used
to develop a sensitive cell-based ELISA at neutral pH without the use of H2O2. In recent
years, the ratiometric fluorescence sensors have gained popularity due to their ability to
autocalibrate to correct the signal, allowing for more reliable detection [157,158]. The work
of Mao et al. [159] describes a solution slightly different from these classic examples but
due to its specific design allowing cellular imaging. The authors have reported an example
of using nanozeolitic imidazolate framework (ZIFs), ZIF-90, self-assembled from Zn2+ and
imidazole-2-carboxyaldehyde, to target subcellular mitochondria and image dynamics of
mitochondrial ATP in live cells by fluoroscopy. Rhodamine B (RhB) loading into ZIF-90
suppressed the emission of RhB, while the competitive coordination between ATP and the
metal node of ZIF-90 dissembled ZIFs, resulting in the release of RhB for fluorimetric ATP
sensing. This allowed cellular imaging of the mitochondrial ATP and fluctuations in ATP
levels in the processes of cell glycolysis and apoptosis.

It should not be forgotten that metal-based nanoparticles, apart from their redox
activities, very often consist of an excellent contrast agent in magnetic resonance imag-
ing (MRI). Of particular interest are multimodal MOF-based platforms, such as those
described by Yang et al. [128]. An intelligent theranostic nanoplatform based on nanovalve
operated metal-organic framework (MOF) core-shell hybrids, incorporating tumorous
microenvironment-triggered drug release, MRI, and effective chemotherapy in one pot
was reported. This complex structure was based on the Fe3O4 core, covered by the UiO-66
an archetypal Zr-based MOF with a very high surface area. Due to its high thermal sta-
bility, tunability, and functionality, UiO-66 has gained scientific popularity over the last
decade [160]. Thus, the mentioned multimodal core/shell NPs were further loaded with
5-fluorouracil (5FU) and equipped with the so-called stalk components binding pillarene-
based nanovalves via host–guest binding. This arrangement allowed the multistimuli
responsive drug release. In acidic extracellular microenvironments of cancer cells, the
host–guest interaction between a nanovalve and a stalk could be broken, causing the turn-
on of the nanovalve and subsequent release of cytostatic 5FU loaded in the as-prepared
core–shell nanoplatform. Consequently, the release rate increased with the decrease in
pH, at pH 5.0, achieving approximately two times faster rate than in pH 7.0. Furthermore,
abnormal ion content caused by pathological changes was also shown to trigger dissocia-
tion of the nanovalve and release the drug load. This renders the obtained nanoplatforms
useful in the treatment of medical conditions characterized by disrupted ion levels, such as
the increased Zn2+ concentration in the central nervous system and Ca2+ dyshomeostasis
in related bone diseases. The host–guest interaction was also shown to be weakened as
temperature increased, giving prerequisites for photothermal therapy (PTT) [128].

A promising direction in biosensing is connected to modification of the metal-based
NPs allowing their selective affinity towards important macromolecular biomarkers, such
as nucleic acids [161–163] and peptides [164]. Over the past few decades, electrochemical
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biosensors have been successfully used to detect a wide variety of molecular and cellular
biomarkers. Most importantly, the electrochemical detection system is susceptible to
miniaturization and offers advantages such as simplicity, cost-effectiveness, and high
sensitivity and specificity [165]. Tunable electrochemical biosensors based on analogous
Zr-MOFs were developed for protein detection, the performances of which rely on the
pore sizes and surroundings of the MOFs that show diverse binding behaviors to aptamers
and then the targeted proteins [166]. The optimized Zr-MOF-based sensor was shown
to be highly selective to lysozyme in a wide concentration range and a low detection
limit of 3.6 pg mL−1, with good repeatability, stability, and applicability in real samples.
The selectivity of the Zr-MOF-based sensor was explored toward a series of interference
proteins. However, this study has not yet provided any cellular-based evidence for the
possibility of the test to be used in vivo, and there soon emerged new instances, such
as presented in the work of Chen and co-workers, who designed a sandwich-type Zr-
MOFs biosensor with amino-functionalization for the detection of human breast cancer
MCF-7 cells (human breast cancer cell line with estrogen, progesterone, and glucocorticoid
receptors) [167] and developed them as platforms to anchor phosphate group-modified
HER2-targeted aptamer (PO4-Apt) to sensitively detect MCF-7 cancer cells. The UiO-66-
2NH2-based aptasensor exhibited highly significant biosensing to detect MCF-7 cells and
showed an extremely low detection limit of 31 cell mL−1. The electrochemical impedance
spectroscopy (EIS) and cyclic voltammetry (CV) techniques were used as the detection
method. As HER-2 is overexpressed in many, especially breast, cancer cells, the choice of
the aptamer was highly justified. However, it is worth emphasizing that in the conducted
research it is extremely important to prove the significance of the principle of operation of
such a sensing method, while the issue of selecting appropriate aptamers is an open issue
for modification in accordance with the diagnostic requirements. From the medical point of
view, the prospect of imaging cancerous lesions is of particular importance. However, still,
there is room for extensive research in this field, so that the research could be translated into
methods that can be carried out on living tissue. A nonobvious but extremely promising
solution to this issue was presented in the paper of Wang and coworkers [168]. This
group reported a high-sensitivity strategy to selectively detect a lung cancer biomarker
of patients’ exhalation, aldehydes that possess small Raman cross-section via using gold
particles coated with ZIF-8 GSPs@ZIF-8 as a SERS substrate. They used core-shell 3D
MOF-based biosensor called GSPs@ZIF-8, composed of Au NPs as core and ZIF-8 as
shell, with the pore size allowing adsorption of small aromatic compounds. After the
Raman-active 4-ATP molecules were grafted onto the ZIF-8 surface, 4-ethylbenzaldehyde
reacted with the amino group on 4-ATP and allowed sensitive aldehyde detection at the
ppb level. The porous structure of MOF shell allowed better surface-substrate interaction,
overcoming long-standing limitations that gaseous molecule difficultly absorb on solid
substrates. By nucleophilic addition reaction with the pregrafted Raman-active molecule of
4-ATP, the gaseous aldehydes were selectively captured and could be detected at ppb level.
The GSPs@ZIF-8 exhibited additional Raman enhancements due to not only the precise
arrangement of nanoparticles but also the altering penetration depth of electromagnetic
field that enhanced the Raman signal of analytes. A capability to selectively trace gaseous
cancer biomarkers at ppb levels in mixed exhalation gases gives promising prospects for
noninvasive recognition of lung malignancies.

Another biomarker testing the level of homeostasis is the methylation of DNA, which
is a well-known way of regulating gene expression [169]. In recent years, nanozymes have
been used for the colorimetric detection of DNA methylation as a potential epigenetic
biomarker. For instance, Shiddiky et al. [75] developed a unique method to detect DNA
methylation using the peroxidase-like activity of mesoporous iron oxides. The test suc-
cessfully detected up to a 10% difference in global DNA methylation levels in synthetic
samples and cell lines with good reproducibility and specificity (% RSD = <5%, for n = 3).
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7. Nanozymes in the Fighting of Neurodegenerative Diseases

The examples described above show that many nanozymes have an inherent activity
similar to that of antioxidant enzymes. On this basis, they can be used for cytoprotection, re-
lieving inflammation; thus, they promise possible applications in the treatment of oxidative
stress-related medical conditions, including alleviating neurodegenerative diseases.

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
characterized by misfolded accumulation of α-synuclein (α-syn) [170]. New evidence
suggests that oxidative stress is an inevitable pathogenesis factor contributing to the prion-
like spread of protein damage [171,172]. For example, paraquat can induce oxidative
stress in vivo and in vitro, significantly leading to increased spread of α-syn [171,173,174].
Pathological α-syn has been shown to increase ROS by facilitating the spread of α-syn
and causing severe neurodegeneration and behavioral deficits in vivo [175]. At the same
time, inhibitors of the NOS-related pathway can significantly prevent α-syn-induced
pathogenesis [175], indicating that reducing the level of oxidative stress may be an effective
means of counteracting the pathological spread of α-syn in PD. Therefore, experiments
on metal-based nanozymes having antioxidative action [176], consisting of platinum and
copper (called bimetallic PtCu nanoalloys), showed that the nanozymes could be applied in
the treatment for PD due to their antioxidative potential. It was shown that the antioxidative
action of nanozymes could prevent the spread of misfolded alpha-synuclein by breaking
the positive feedback loop between the accumulation of misfolded alpha-synuclein and
the formation of free radicals (Figure 6).
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Platinum and copper were used because of their strong antioxidant properties. The
antioxidant capacity of an alloy largely depends on its composition. When injected into
the brain, PtCu nanoalloys acted as CAT and SOD. It was found that nanozyme reduced
disease symptoms caused by misfolded alpha-synuclein, inhibited neurotoxicity, and
reduced the number of free radicals in mice. Nanozyme also prevented alpha-synuclein
from moving from cell to cell and from the substantia nigra to the dorsal striatum, two
midbrain areas responsible for movement and cognition [176]. Kuang et al. designed
phenylalanine-modified CuxO nanoclusters showing potential for the treatment of PD [177].
The generated CuxO nanoclusters behaved like SOD, CAT, and GPx mimics. To further
explore the potential therapeutic efficacy of these nanozymes, a mouse model of Parkinson’s
disease was constructed. CuxO nanoclusters were shown to modify the levels of Allograft
inflammatory factor 1 (AIF-1, Iba1), whose expression is upregulated in microglia following
nerve injury central nervous system ischemia, and several other brain diseases [178]. Iba1
levels were lowered in the PD mouse model after treatment with CuxO compared to the
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untreated PD mice. PD mice treated with CuxO nanoclusters also showed significantly
better spatial learning, memory, escape latency, and swim speed during the training process,
indicating that CuxO induced cognitive regeneration.

Another example of a disease whose pathogenesis is associated with the overpro-
duction of ROS is Alzheimer’s disease (AD). Cellular changes show that oxidative stress
precedes the appearance of the hallmark pathologies of the disease [179]. AD, one of the
most common types of dementia, affects approximately 10% of the elderly (age 65 and
over) [180,181]. Accumulation of amyloid protein (Aβ) plaques and neurofibrillary tangles
in the brain are the two major pathological markers of AD [182]. Aβ accumulation induced
by protein misfolding has been recognized as a hallmark of neurodegenerative disease.
Moreover, Aβ-induced mitochondrial dysfunction is also considered a possible AD caused
through abnormal ROS expression [183].

Since ROS-induced mitochondrial dysfunction occurs earlier than Aβ plaque forma-
tion in the brain, protecting the mitochondria from oxidative damage would be useful in the
prevention and early treatment of AD. Recently, Hyeon et al. designed CeO2 nanoparticle
modified with triphenylphosphonyl (TPP) as a new platform for the treatment of AD [184].
The resulting nanocomposite favored being localized to the mitochondria, markedly in-
hibiting Aβ-induced mitochondrial ROS and inhibiting neuronal death in the 5XFAD AD
transgenic mouse model. In a mouse model, TPP-modified CeO2 nanoparticles attenuated
Aβ-Induced neuronal cell damage. This can be used as a new mitochondrial therapy for
neuroinflammation, which is of great importance in the treatment of Alzheimer’s disease
and other neurodegenerative diseases.

Qu et al. [185] designed ceria/polyoxometalate hybrid nanomaterials (CeONP@POMs)
nanoparticles. As mimics of proteolytic enzymes. These nanozymes were shown to
effectively inhibit Aβ aggregation as well as reduce intracellular ROS levels. CeONP@POM
was found to promote the proliferation of PC12 pheochromocytoma of the rat adrenal
medulla cells, while effectively inhibiting the Aβ-induced activation of BV2 microglial
cells. An earlier study found that POMs, especially characterized with Wells–Dawson
structure, inhibited the aggregation of Aβ by binding to the His13 to Lys16 (HHQK) cationic
region [186].

Fan et al. [187] studied the antioxidant effects in vitro and in vivo of the Fe3O4 nanopar-
ticles. Two cell lines were used in their work in vitro tests, including PC12, rat adrenal
medullary phaeochromocytoma from the fetal nerve crest. NPs were shown to locate in cy-
tosol. Fe3O4 NPs with CAT-like properties can efficiently remove intracellular excess ROS
in this neutral environment, protecting cells from oxidative damage and H2O2-induced
apoptosis. The neuroprotective properties of Fe3O4 nanoparticles were tested in vitro on
PC12 cells. PC12 cells originate from the neural crest that has a mixture of neuroblastic cells
and eosinophilic cells and can differentiate into neuron-like cells by nerve growth factor
(NGF) stimulation. 1-methyl-4-phenylpyridinium ion (MPP+) induces oxidative stress and
apoptosis in differentiated PC12 cells, which is often used as a model for neuroprotective as-
says relevant to PD. Cellular studies showed that NP Fe3O4 can be effective in ameliorating
cell death induced by 1-methyl-4-phenylpyridinium (MPP+) as well as reducing the levels
of α-synuclein activation protein and caspase-3. The authors investigated the function of
NPs also in AD. They applied a classic in vivo model based on ectopic expression of Aβ

in Drosophila [188]. For the fly AD model, neuronal-specific expression of Aβ peptide was
achieved by crossing the elav-Gal4 and UAS-Aβ lines, allowing tissue-specific expression of
Aβ throughout the nervous system. When fed with food containing Fe3O4 NP, AD-model
fruit flies showed increased climbing ability and longer lifespan as compared to untreated
ones. The Drosophila AD model further verified the excellent antioxidant properties of NP
Fe3O4 in delaying animal aging and ameliorating ROS-induced neurodegeneration.

It is widely known that high concentrations of metal ions (such as Cu2+ and Zn2+) play
an important role in the accumulation of Aβ deposition and its neurotoxicity [189–191].
Therefore, in addition to oxidative damage, metal ion abnormalities can also be used
as targets in AD therapy [26]. Having this in mind, Qu et al. [125] used the discussed



Appl. Sci. 2021, 11, 9019 19 of 43

above multimodal G-CeO2NPs nanoparticles to prevent Aβ aggregation. Thanks to the
cooperative H2O2-induced Cu chelator release and the anti-ROS enzymatic activity of
CeO2 NPs, a synergistic therapeutic effect was observed in PC12 neuronal cells. Moreover,
Aβ plaque inhibition effect via copper chelation was confirmed in the noncellular buffered
systems at low pH, upon the release of CQ from the NPs.

8. Metal Nanozymes in Cancer Treatment

Cancer is one of the leading causes of death worldwide. In the last two decades,
the development of nanotechnology has facilitated researchers’ ability to design new
nanoparticles for sensitive, rapid, and specific methods to detect and quantify cancer
cells at an early stage and kill the existing tumor cells. A nanozyme can kill cancer cells
in two ways. The first is direct killing by increasing ROS in vivo through the oxidase
and peroxidase activities of nanozymes [192]. The second is indirect killing, which is
related to the CAT or SOD activity of nanozymes by relieving the hypoxia of a tumor
microenvironment (TME), aided by light, sound, or chemotherapy.

It is good to remember that ROS, also called oxygen free radicals, are a side product of
cellular metabolism, generated primarily by mitochondrial activity, and other sources such
as xenobiotics [193], cytostatics [194], and UV-radiation [195]. In excess, ROS contribute to
membrane damage by lipid peroxide formation and are part of the signaling sequence lead-
ing to apoptosis [196]. However, if not regulated properly, e.g., antioxidants, excess ROS
result in oxidative stress. Consequently, this leads to damage of cellular macromolecules
and inhibits cellular functions, leading to certain pathologies, including cancer [197].

The important technological advantages of nanoparticles used as drug carriers are
their high stability and high carrier capacity. The ability to adjust the composition of
nanoparticles to the properties of the drug makes them feasible for the incorporation
of both hydrophilic and hydrophobic substances. This is of paramount importance for
drug delivery because lipophilicity is a major determining factor in a compound’s absorp-
tion, distribution in the body, penetration across vital membranes and biological barriers,
metabolism, and excretion [198]. The surface of the NP is a target for functionalization.
By modifying the NPs surface with hydrophilic moieties, one can improve NPs’ stability
in the biological fluids. Charged functional groups provide adequate zeta potential and
prevent their aggregation and precipitation. Due to the possibility to functionalize NPs
with targeting molecules, it is possible to increase the drug concentration at desired sites
of action and reduce systemic levels of the drug in healthy tissues. In addition, function-
alizing of fluorescent or radioactive NPs with targeting molecules allows the imaging of
lesions using PET (Positron emission tomography) [199], SPECT (Single-photon emission
computed tomography) [200], MRI [199,201], and spectroscopic [202] methods.

In the therapy and visualization of cancer, NPs have another very important feature:
in contrast to small molecules that do not discriminate tumor and normal tissue [203],
high-molecular-weight substances preferably accumulate in cancer. This is related to the
specific properties of tumorous tissue: poorly aligned defective endothelial cells with wide
fenestration, innervation with the wider lumen, impaired angiotensin II receptors’ lack of
effective lymphatic drainage [204]. At the same time, normal tissue is not permeable to
big particles and quickly purified due to lymphatic clearance, the tumor tissue tends to
accumulate macromolecules, especially lipids [203,205–207]. This phenomenon has been
characterized and termed the tumor-selective enhanced permeability and retention (EPR)
effect. The enhancement of vascular permeability plays a critically important role in tumor
growth to facilitate an adequate supply of nutrients and possibly oxygen to meet the great
demands of rapidly growing tumors. Here, the vascular permeability is concerned with the
macromolecular size of the drugs with which selective tumor targeting is highly enhanced.
Therefore the EPR idea is now regarded as a gold standard in designing new ant-cancer
agents [206].

Herein, we describe two main categories of nanozymes according to material types:
metal-based nanozymes (e.g., gold, silver, palladium, platinum, and cobalt) [208] and
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metal oxides or metal sulfide nanozymes (e.g., cerium dioxide, ferric oxide, vanadium
pentaoxide, and iron sulfide), which are applied for cancer treatment [6].

One of the best-described metals-based nanozymes are ultrasmall gold nanoparticles
(AuNPs), which show oxidase, peroxidase, and catalase mimicking activities. They have been
reported to show improved therapeutic effects when coupled with drug molecules [209,210].
This is because the AuNPs have a large surface area which provides high packing capacity
for drug loading and improves the hydrophilicity and stability of drugs. Furthermore, their
surface can be modified by targeting ligands to enhance the tumor-selective accumulation
compared to free drugs. Nanozymes can passively target neoplastic lesions with leaky
neovessels by the EPR effect. The additional advantage is the skill to control the release of
loaded drugs in response to internal or external stimuli [211]. AuNPs were also reported to
be effectively employed in cancer treatment by applying photodynamic therapy (PDT) and
PTT [212]. For example, Li et al. constructed indocyanine green (ICG)-loaded ultrasmall gold
nanoclusters (Au NCs-ICG) to modulate tumor hypoxia and augment cancer PDT and RT,
respectively. In in vivo studies (4T1 tumor-bearing mouse models), the authors observed a
high tumor accumulation of Au NC-ICG nanozymes visualized by near-infrared fluorescence,
photoacoustic, and computed tomography imaging. They proved the potential of obtained
nanozymes for the monitoring and guidance of PDT and RT.

Additionally, they pointed out that the Au NCs-ICG nanozymes effectively decom-
posed intratumoral H2O2 into O2 for overcoming hypoxia [213]. Another example of
metal-based nanozymes is copper hexacyanoferrate (Cu-HCF), with active single-site cop-
per exhibits cascade enzymatic activity within TME, describe by Wanget et al. Their work
demonstrated that Cu-HCF could amplify the killing efficacy of singlet oxygen species and
suppress tumor growth in vivo [214].

Furthermore, Zhu et al. [215] constructed a PEGylated manganese-based SAE (Mn/PSAE)
by coordinating single-atom manganese to nitrogen atoms in hollow zeolitic imidazolate
frameworks. Mn/PSAE catalyzes the conversion of cellular H2O2 to COH, promotes the
decomposition of H2O2 to O2, and continuously catalyzes the conversion of O2 to cytotoxic
CO2 via oxidase-like activity. The catalytic activity of Mn/PSAE is more pronounced in
the weak acidic tumor environment; therefore, these cascade reactions enable the sufficient
generation of ROS and effectively kill tumor cells.

Another aspect of tumor treatment is the diagnosis of tumor tissue which is crucial in
cancer detection. Metal-based nanozymes built from iron are one of the earliest inorganic
nanomaterials with available catalytic behaviors [216]. Some representative examples
are ferromagnetic nanoparticles which may provide critical benefits for tumor treatment,
including Fenton-augmented ROS stress and hypoxia amelioration [217].

Fan et al. found that magnetic ferritin nanozymes (M-HFn) can be used to target and
visualize tumor tissues without any targeted ligands or contrast agents [218]. Ferritin is
an iron storage protein that plays a key role in iron homeostasis and the antioxidation of
cells [219]. Iron oxide nanozymes (CS-IONzyme) are encapsulated in a recombinant human
heavy chain ferritin (HFn) shell, which binds to tumor cells that overexpress transferrin
receptor 1 (TfR1). CS-IONzymes catalyzes the oxidation of peroxidase substrates in the
presence of hydrogen peroxide to produce a chromogenic reaction for the observation of
tumor tissues. They confirm that this diagnostic method detects tumor tissue with 98%
sensitivity and 95% specificity. In addition, the ferritin nanozyme diagnostic technique
is simple, rapid, and economical. This method simplifies the conventional immunohisto-
chemical experiment for tumor detection and shortens the testing time from 4 to 1 h.

Gao et al. [14] reported that magnetite nanoparticles (Fe3O4) possess an intrinsic
enzyme mimetic activity similar to that found in natural peroxidases and developed two
immunoassays using the intrinsic dual functionality of the Fe3O4 MNPs as a peroxidase
and magnetic separator.

Metal-based and metal-organic-based nanozymes are not the only ones applied for
cancer diagnosis. Wang et al. underline that early cancer diagnosis is the key to improving
patient survival rate [220] and point out that metal-organic frameworks (MOFs) consist
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of infinite crystalline lattices with metal clusters and organic linkers may provide oppor-
tunities for detection of cancer cells which has remained unknown. They reported the
successful use of Fe-MIL-101 MOF with intrinsic peroxidase-like to detect cancer cells by
conjugating folic acid onto Fe-MIL-101 without any surface modification. Furthermore,
the authors found that the Fe-MIL-101-FA bound selectively to the target cells (human
cervical carcinoma cells (Hela), colon adenocarcinoma cells (HT-29), and human mouth
epidermal carcinoma cells (KB)) through the interaction between FA and folate receptor.
Correspondingly, Chen et al. used MOF as an exemplary model of oxygen catalyzer be-
cause of their rich catalytic site and sensitizing effect due to the presence of radiosensitizer
(high-Z element Hf) in their structural array [221] (Figure 7). The authors designed a folic
acid-modified enzyme-like hafnium-based manganoporphyrin metal-organic framework
nanoparticles (MnTCPP-Hf-FA MOF NPs) to overcome hypoxia-induced radioresistance
and prevent a postoperative recurrence. The MOF NPs they proposed increased radiother-
apy’s therapeutic efficiency and significantly decreased the risk of local tumor recurrence
inside a solid tumor with an inadequate oxygen supply. In vivo experiments revealed that
the MnTCPP-Hf-FA MOF NPs could effectively inhibit melanoma growth and prevent
tumor postoperative recurrence with only one X-ray irradiation after intravenous injection.Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 45 
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The presented study revealed that MOF NPs could be used not only for cancer
diagnosis but also for cancer therapy, especially when radiosensitizers are at MOF NPs. The
additional value of combining X-ray irradiation with MOF-NP joined with radiosensitizer
and prospects is a versatile approach to solving hypoxic tumors’ critical radioresistance
issue [222].

Zhang, Liu et al. [223] constructed a nanozyme with dual enzyme-like activities
(PtFe@Fe3O4) for highly efficient tumor catalytic therapy in response to the TME, which
is generally known to feature unique characteristics such as the mildly acidic nature, hy-
poxia, and overproduced hydrogen peroxide (H2O2). Serving as an H2O2-responsive
nanozyme, PtFe@Fe3O4 exhibited both intrinsic POD-like and CAT-like activities under
acidic conditions. On the other hand, due to the reduced H2O2 concentration in TME, the
effect of single-nanozyme-based catalytic therapy is not competent enough compared with
combination therapy. The authors have shown that it is possible to achieve efficient deep
pancreatic cancer therapy by combining photothermal effects. The catalytic activities of
PtFe@Fe3O4 and their therapeutic effect were significantly enhanced under the irradiation
of the near-infrared (NIR) laser. At the same time, under light irradiation, nanocatalysts
could promote ROS production by direct electron transfer and photoenhanced Fenton reac-
tion [223], (Figure 8). Furthermore, they presented that metal/metal oxide nanomaterials
with excellent dual enzyme-like activities can provide a new perspective for the design of
nanomedicines and achieve the balanced combination of tumor catalytic therapy and PTT.
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Petty et al. have focused on metal-oxidase nanozymes WO3/Pt nanoparticles, an
NADPH oxidase biomimetic that uses NADPH to synthesize ROS. They prepared nanopar-
ticles that can be excited by visible light using the photodeposition method. WO3 absorbed
a visible light, and an electron was promoted from the valence band to the conduction
band and accumulated at Pt sites. Next, it catalyzed the multielectron reduction of O2 to
hydroxyl radicals. At the same time, in the semiconductor, a valence band hole appeared
and migrated to the NPs surface, where it abstracted an electron from the environment
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(e.g., TME). The reaction at both the photocathode and photoanode led to target tumor cell
damage. The authors developed WO3/Pt nanoparticles tailored for implementation and
use in PDT. They have found that the chemical reactions of WO3/Pt nanoparticles mimic
those of the NADPH oxidase and suggest that WO3/Pt nanoparticles can augment or re-
place this functional attribute of immune effector cells and, in consequence, to killing tumor
cells. Furthermore, they suggested that these nanoparticles could be targeted to other sites
or employed in other indications by using different ligands. The WO3/Pt nanoparticles
developed by Petty et al. have numerous therapeutic benefits such as producing large
amounts of hydroxyl radicals, lowering cellular anti-oxidant defenses by utilizing NADPH
while simultaneously producing hydroxyl radicals, minimal toxicity, remaining effective at
low pH, and being resistant to photobleaching [224–226].

However, due to light’s limited tissue penetration depth, PDT is commonly used to
treat relatively small, superficial tumors [227]. Moreover, the drawback of PDT clinical
application is serious skin phototoxicity after systemic administration of photosensitizers.
As an alternative to PDT, sonodynamic therapy (SDT) developed uses highly penetrating
acoustic waves to activate a class of sound-responsive materials called sonosensitizers
(organic sonosensitizers and inorganic sonosensitizers). Organic sonosensitizers are mostly
porphyrin derivatives and other fat-soluble small molecules. However, they have some
limitations concerning water solubility, poor stability during ultrasound (US), and fast
body clearance, leading to low enrichment in tumor sites.

By contrast, inorganic sonosensitizers have stable chemical properties, long blood
circulation time, and can effectively reduce phototoxicity. They can also operate as carriers
for delivering organic sonosensitizers, effectively overcoming their inherent shortcomings.
Possible mechanisms of SDT could be summed up as a generation of ROS, mechanical
effects, and thermal effects [228,229].

The most recognized mechanism of SDT is the ROS, including singlet oxygen (1O2),
hydroxyl radicals (•OH), superoxide anion (O2

•−), or hydrogen peroxide (H2O2) after
absorbing the energy from the ultrasound. As an example, Cheng et al. presented an
ultrasmall oxygen-deficient bimetallic oxide MnWOX nanoparticle for multimodal imaging-
guided enhanced SDT against cancer which, as PEGylated MnWOX nanoparticles, could
be used for efficient ultrasound (US)-triggered cancer therapy [227]. Similar observations
related to generating singlet oxygen and hydroxyl radicals for enhanced SDT efficiency
were made by Han et al. [230], who applied for the experiments titanium oxide TiO2 NPs
NPs. However, Cheng et al. found that the generation of 1O2 by MnWOX-PEG was much
higher under the same US irradiation conditions than TiO2 and PpIX nanoparticles.

Mechanical effects of SDT mostly include the cavitation and sonoporation effect.
Cavitation is a complex mechanism closely related to gas oscillation and generates ROS
by inducing water thermal dissociation. During exposure to the US, gas bubbles rapidly
collapse, and then the cavitation of inertial induces the release of energy, producing high
temperature and pressures, leading to cell necrosis or producing strong shock waves,
resulting in the mechanical damage for cell destruction. The sonoporation effect refers to
the formation of pores in the cell membrane under US irradiation. These formed pores
allow for the transfer of molecules and NPs into cells. In that way, the sonoporation effect
could increase the uptake and accumulation of drug molecules, genes, or NPs.

The last mechanism is the thermal effect trigger by increasing tissue temperature due
to the absorption of US energy to destroy tumor cells.

To increase the therapeutic responses to SDT, ultrafine titanium monoxide nanorods
(TiO1+x NRs) were used by Chang et al., with great improvement of sonosensitization
and Fenton-like catalytic activity [231] (Figure 9). In addition, the authors modified con-
ventional TiO2 nanoparticles with the PEG−TiO1+x NRs resulted in a much more effi-
cient US-induced generation of ROS. On the other hand, PEG–TiO1+x NRs also exhibit
horseradish-peroxidase-like nanozyme activity and can produce hydroxyl radicals (•OH)
from endogenous H2O2 in the tumor. This cancer treatment strategy, consisting of the con-
version of hydrogen peroxide (H2O2) into a hydroxyl radical (OH), is gaining popularity
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in recent times and has been called chemodynamic therapy (CDT). The hydroxyl radical is
the most harmful ROS produced in the Fenton-like reaction, and its high overproduction
induces apoptosis and cell necrosis.
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Ahamed et al. [232] tackled the toxicity of CuO NPs, which is the limitation for
CuO NPs implementation in cancer therapy [233,234]. At the in vitro level, the authors
demonstrated the cytotoxicity in a dose-dependent manner, oxidative stress, and apoptosis
response of CuO NPs on human hepatocellular carcinoma HepG2 [232]. Their study
showed that tumor suppressor gene p53 and apoptotic gene caspase-3 were upregulated
due to exposure to CuO NPs. Similar in vitro studies aimed at apoptosis induction were
performed by Mkandavire et al. [235]. The authors targeted mitochondria with AuNP
conjugated with turbo green fluorescent protein (mitoTGFP) harboring an amino-terminal
mitochondrial localization signal and investigated its apoptosis effects on the human breast
cancer cell line Jimt-1. Fluorescence and transmission electron microscopy revealed that
Au nanoparticle conjugates targeted the mitochondria, causing partial rupture of the outer
mitochondrial membrane and cell death.

Wang et al. [236] published information about metal-oxidase-based nanozymes with
peroxidase-like activity triggering a novel cell death through an ATP-citrate lyase (ACLY)-
dependent rat sarcoma viral oncogene (RAS) signaling mechanism and termed it as nanop-
tosis (a term proposed by authors). They examined 11 representative nanomaterials
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(Cu(OH)2, V2O5, Ag, Fe2O3, ZnO, SiO2, ZnO, TiO2, and Fe3O4 characterized by different
dimensions) at the human HepG2 hepatoma cells treatment study.

Their study revealed that HepG2 cells treated with Fe3O4 nanozymes exhibited the
characteristic morphologic features of swelling and vacuolation of the mitochondria, dis-
rupting the endoplasmic reticulum and chromatin condensation and margination, and
nucleolus disintegration. Furthermore, nanozymes with significant peroxidase activity
(such as Cu(OH)2, V2O5, or Ag NPs) activated cell death exhibiting common morphological
features and nanozymes with little peroxidase activity (such as Fe2O3, SiO2, TiO2, or ZnO)
induced only limited cell death of HepG2. This observation based on transition electron
microscopy showed that Fe3O4 nanozyme induced unique cell lethality distinct from the
currently well-defined apoptosis, necrosis, autophagy, pyroptosis (inflammation-triggered
programmed cell death), and ferroptosis (iron-triggered programmed cell death).

The authors checked the variations of protein profiles and gene expression in Fe3O4
nanozyme-treated HepG2 cells and found that Kirsten rat sarcoma viral oncogene (KRAS)
and ACLY played the central roles in Fe3O4 nanozyme-induced cell death. Moreover, they
join the fact that Fe3O4 nanozyme-induced cell lethality was regulated by ACLY-dependent
RAS signaling because ACLY is a cytosolic enzyme required for RAS farnesylation.

The short review describing the translation of metal and metal oxide nanozymes in
cancer treatment showed that regardless, cancer remains a disease with limited treatment
approaches, researchers are developing more and more complex nanosomes to overcome
these barriers. The cancer treatment can be spiked by combining nanozymes such as
modified MOF with radiosensitizers or metal/metal oxide nanozymes with dual enzyme-
like activity and irradiation or even molecules in newly discovered pathways. The created
new class of nanozymes are candidates for enhancing the efficiency and safety of cancer
diagnosis and therapy. However, more efforts should be taken into pharmacological safety,
toxicological safety, and the illumination of EPR and protein corona (PC) mechanisms in
the human body. Looking forward, the new complex nanozymes will be tailored to target
not only cancer cells but also the TME environment, including the immune system.

9. Nanozymes Combating Pathogens

Bacterial infections continue to be a growing global health problem affecting millions
of people every year [237,238], and the most commonly used treatment regimens are
limited to antibiotics, which increases multidrug resistance. The antimicrobial activity of
nanozymes also offers potential for the development of new antimicrobial agents. Many
reports on such an action can be found in the latest literature, and examples of application
trials are discussed below. The antimicrobial mechanism of nanozymes depends mainly
on the activity of peroxidase and oxidase catalyzing the decomposition of H2O2 to •OH
in order to regulate ROS [239–242]. Through redox activity, nanozymes generate highly
toxic ROS, including free radicals, hydrogen peroxide, superoxide anion, and singlet
oxygen, which can destroy the integrity of cell membranes or damage bacterial DNA
(Figure 10). Nanozymes also catalyze the degradation of a wide variety of molecules,
including polysaccharides, lipids, proteins, and extracellular DNA in the bacterial biofilm
matrix. Again, the changes of the nanoenzyme architecture, metal oxidation states, and
physicochemical parameters determine the enzyme action in a decisive manner. For
example, Fan and Gao [243] designed two kinds of copper/carbon nanozymes, with copper
states tuned from Cu0 to Cu2+. Cu or CuO was deposited on hollow carbon spheres. The
authors demonstrated that the nanozymes exhibited peroxidase-, catalase-, or superoxide
dismutase-like activities dependent on the copper state. Interestingly, results indicated
that the different enzymatic activity modes resulted in different antibacterial modes of
action against bacteria. For the CuO nanozymes, the released Cu2+ ions caused membrane
damage, lipid peroxidation, and DNA degradation of Gram-negative bacteria, whereas
the Cu0-based NP induced the generation of ROS via peroxidase-like catalytic reactions,
determining their effect against both Gram-positive and Gram-negative bacteria [243].
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In terms of nanoparticle architecture, promising effects gave nanozyme defect mod-
ulation, analogous to defect engineering, applied in electronics industrial catalysis and
photocatalysis [245]. In the cited study, Wang, Qu et al. Developed a procedure for obtain-
ing defect-rich adhesive nanozymes which, due to their special surface properties, tend to
trap bacteria and have effective antibacterial properties (Figure 11). The defect-rich, adhe-
sive nanozyme was constructed by using MoS2 nanozymes as nanobuilding blocks and
copper nanowires (Cu NWs) as a support, while resulting in a rough surface for bacteria
trapping and more active defect-rich edge sites which improved peroxidase-mimicking ac-
tivity. These nanozymes showed increased antibacterial activity against both drug-resistant
Gram-negative E. coli and Gram-positive Staphylococcus aureus. Moreover, their use in vitro
and in vivo has been demonstrated, with a strong antibacterial effect and good biocompat-
ibility. Possessed strong near-infrared (NIR) absorbance and outstanding photothermal
effects with a rapid elevating temperature under 808 nm light irradiation, which improved
their therapeutic potential. Due to their excellent bacterial binding capacity and efficient
catalytic activity, defect-rich adhesive nanozymes pave the way for the development of
alternative antibiotics.

Similarly, Ywen, Wang et al. reported that Cu2MoS4 nanoplates showed NIR-II light
enhanced catalytic activity similar to oxidase and peroxidase, which caused an 8 log
reduction in E. coli titer and a 6 log reduction in S. aureus titer after only 10 min in an
in vitro system. Moreover, Cu2MoS4 showed excellent therapeutic efficacy against S. aureus
infection in vivo with negligible toxicity to red blood cells and mice. The recently reported
study on defect-rich MoS2 on reduced graphene oxide heterostructure also displayed a
capacity for bacterial capture, with ROS-induced damage enhanced by local topological
interactions [246].

Under natural, clinical, and industrial circumstances, bacteria tend to attach them-
selves to surfaces and organize into multicellular communities known as biofilms [247].
Nanozymes have proven effective in many applications related to the reduction of bacterial
biofilm formation. One of these promising applications addresses the common problem of
biofilm formation on the surface of the teeth and the epithelium of the oral cavity, resulting
in tooth decay. Dental biofilm (plaque) is very difficult to remove or treat, but antibacterial
drugs can kill the microbes found in the plaque biofilm. Gao et al. discovered that catalytic
Fe3O4-based nanoparticles (CAT-NP) could be used to control plaque [248]. Peroxidase-
mimicking ability of CAT-NP is responsible for this effect, causing the degradation of the
extracellular matrix and killing tooth-decay bacteria. Similarly, Gao et al. [249] extracted
various natural organic sulfides from garlic and transformed them into nano-iron sulfides
with high antibacterial activity. Compared to natural organic sulfides, nano-iron sulfide
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showed a broad spectrum of highly efficient bactericidal activity. Iron nanosulfides kill
bacteria by releasing hydrogen polysulfide. In addition, iron nanosulfide is a nanozyme
having peroxidase and catalase activity that can catalyze the decomposition of hydrogen
peroxide. These enzyme-like catalytic activities can further accelerate the release of hydro-
gen polysulfide, thus enhancing the bactericidal effect. FeS NPs can not only kill various
Gram-negative bacteria but also significantly inhibit the action of Gram-positive bacteria
such as oral Streptococcus mutants, S. aureus, and their drug-resistant strains (MRSA and
MDR). In addition, they can also effectively accelerate the healing of infected wounds.
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Many Au-based NPs have been shown to possess antibacterial properties [250–255],
their design covering topological modifications, natural ligand applications, and size ma-
nipulations. An interesting example of multimodal gold-based nanosystem was reported
very recently by Ren, Qu et al. [256], who demonstrated hybrid nanozymes in defense
against bacterial infections. Integration of AuNPs with ultrathin graphite carbon nitride
(g-C3N4) enhanced peroxidase catalytic activity in catalyzing the decomposition of H2O2
to •OH radicals. This system was bactericidal against S. aureus and E. coli, caused biofilm
degradation, and prevented the formation of new biofilms in vitro. These nanoparticles
were used to create a dressing that accelerated the treatment of bacterial infections and
promoted wound healing in a mouse model.

However, a monomodal antimicrobial agent is often insufficient to effectively eliminate
biofilms; therefore, Qu et al. [257] proposed MOF/Ce-based nanozymes with dual-enzyme-
mimicking activity. The cerium (IV) complexes display DNase-like activity and are capable
of hydrolyzing eDNA in biofilms, while the Au-doped MIL-88B(Fe) with peroxidase-like
activity can kill bacteria exposed in dispersed biofilms in the presence of H2O2. Therefore
the MOF-Au-Ce complexes were prepared, displaying a combination of these enzymatic
activities. Studies showed that this type of bimodal artificial enzyme could penetrate
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biofilms and intensely inhibit their formation. Consequently, in vivo use of MOF-Au-Ce in
the treatment of S. aureus-induced subcutaneous abscess in mice enhanced wound healing
and proved bacteriostatic [257]. The cerium oxide nanoparticle (nanoceria) was shown to
possess high peroxidase activity [257,258]. Provided that high peroxidase activity is more
conducive to promoting the production of ROS, the CeO2-H2O2 system might be regarded
generally a good solution for bacterial disinfection. However, as shown and discussed by
Bing et al. [259], CeO2 nanoparticles show multiple enzyme-like activities depending on
their shapes and sizes [26,260]. Beside the high peroxidase activity, CeO2 also have high
SOD and antioxidant activities and depending on the conditions could as well be used as a
ROS scavengers. In the system investigated by Bing et al. [259], the peroxidase activity of
CeO2 did not contribute to the antibacterial effect; instead, the ROS scavenging capacity of
CeO2 could protect the bacteria from being killed by H2O2.

Recently, the highly photoluminescent glucosamine-derived nitrogen and zinc-doped
carbon dots (N, Zn-CDs) were developed as a fluorescence sensor for the detection of Fe3+

ions. At the same time, the bactericidal properties of the synthesized nanodots against
gram-negative (Escherichia) and gram-positive (S. aureus) pathogens were investigated. It
turned out that these nanodots showed good bactericidal activity against both pathogens
under light conditions, and E. coli, also in the dark. According to the authors, the small size
of the nanodots facilitated their entry into the bacteria, causing the enzymatic imbalance
enhanced by the light energy and, as a result, the accumulation of ROS due to stress. The
mechanism of action in dark conditions was explained by the release of Zn2+ ions and their
interaction with the cytoplasmic content of the bacterial cell, followed by the formation of
ROS [261].

Nanozymes can be effective agents enhancing infection-fighting during wound heal-
ing. A group of researchers from the Xiamen University [262] constructed a nanoplatform
based on Pd@Pt- nanoparticles decorated with a synthetic sonosensitizer, meso-tetra(4-
carboxyphenyl)porphine (T790). The nanoplatform was used for catalysis-enhanced SDT
to treat myositis infected by methicyllin-resistant S. aureus. Due to the covalent bond, the
sonosensitizer showed good stability and did not release from nanoparticles. Pd@Pt-T790
accumulated effectively in a deeply embedded bacterial infection by using the above-
discussed EPR effect, which was a good prerequisite for SDT. T790 anchored on Pd@Pt NPs
could significantly block the CAT-like activity of NPs, whereas, upon US irradiation, the
nanozyme activity was effectively recovered to catalyze the decomposition of endogenous
H2O2 into O2. At the same time, the nanosystem was shown as an attractive medium
for fluorescence imaging, PA, and CT in mice. MRI and PA imaging of oxyhemoglobin
saturation were used to monitor the treatment process in real-time, revealing a complete
eradication of bacterial myositis in mice [262].

It should also be noted that an important issue when designing nanozyme systems is
the carrier which can be e.g., a hydrogel composition [263]. An interesting approach was
presented by Qu, Ren et al. [264]. When neutrophils encounter an invasive pathogenic
microorganism in the human immune system, they typically form branch-like pseudopodia
to surround and trap the bacteria for phagocytosis [265]. In the mentioned work [264], a
construct was used containing iron-based NM-88 MOF as active centers, as a highly efficient
peroxidase mimic, and hierarchical nanocavities produced by the growth of covalent
organic structures (COF) as binding pockets to create an adapted microenvironment of
pores around active sites to enrich and activate substrate molecules, to perform enhanced
bacterial inhibition. The pseudopodia-like surface of the COF allowed the system to
efficiently trap bacteria to enhance further the therapeutic efficacy of the MOF-based
nanozyme [263].

Nanozymes are also regarded as potential antiviral agents. The classical iron ox-
ide (Fe3O4) nanoparticles are well-known double-enzyme-mimics, showing peroxidase
and catalase activities [266]. These nanoparticles are currently used for bioseparation,
biosensing, bioimaging, drug delivery, and hyperthermia therapy, primarily because of
their unique magnetic properties [266]. Recently, Gao et al. used Fe3O4 NPs to catalyze the
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inactivation of the influenza virus by targeting their lipid envelope [267] (Figure 12). In
Gao’s work, the Fe3O4 NPs (IONs), characterized by lipid peroxidation activity, progres-
sively initiated the breakdown of the viral lipid envelope to destroy adjacent proteins (e.g.,
haemagglutinin, neuraminidase, and matrix protein 1) and cause concomitant structural
damage. Thus, IONs impair the various structures and functions of the virus, resulting
in unsuccessful infection of the host cells, ultimately inducing inactivation of influenza
A viruses. In mice (BALB/c) infected withH5N1 virus, bodyweight reduction by over
20% during the 14 day infection period was abolished upon treatment with 4 mg/mL
IONzymes.
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Figure 12. Schematic of viral liperoxidation by IONzymes for virus inactivation. IONzymes directly
contact influenza A virus particles and collapse viral lipid envelope via enhancing the level of lipid
peroxidation, which further produces free radicals to destroy the neighboring proteins, including
hemagglutinin, neuraminidase, and matrix protein 1 and then impair various viral structures and
functions, resulting in a failed infection into host cells. Reprinted from [267], with the permission of
https://www.thno.org/ (accessed on 6 September 2021).

IONs can be also used to develop new catalytic mucosal vaccine adjuvants by exploit-
ing its POD-like activity in acidic lysosomes to direct DC maturation.

Mucosal vaccination to protect against influenza enhanced by a catalytic ION-based
immune adjuvant has recently been elaborated by Gao et al. [268], who designed a new
mucosal vaccine based on the combination of chitosan (CS) functionalized iron oxide
nanozyme and H1N1 whole inactivated virus (WIV). First, CS-IONzyme was synthesized

https://www.thno.org/
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by a solvothermic method in which CS in the reaction system acted as both a ligand
and a surface functionalization factor. CS was shown to cause a positive surface charge
of IONzyme increasing potential antigen delivery. In a mouse model, CS-IONzyme was
shown to have good biosafety. When mice were immunized intranasally with CS-IONzyme
and H1N1 WIV complexes, the amount of the CS-IONzyme-H1N1 WIV complex was about
30-fold increased on the nasal mucosa compared to the H1N1 WIV only formulation after
15 min of incubation. The complex adhered stably to the mucosa surface. Furthermore,
in in vivo study, CS-IONzyme facilitated H1N1 WIV to enhance CCL20-driven submu-
cosal dendritic cell (DC) recruitment and transepithelial dendrite (TED) formation for
viral uptake via the toll-like receptor (TLR) 2/4-dependent pathway. Moreover, IONzyme
catalyzed a ROS-dependent DC maturation, which further enhanced the migration of
H1N1 WIV-loaded DCs into the draining lymph nodes for antigen presentation. In result,
CS-IONzyme-based nasal vaccine triggered an 8.9-fold increase in IgA-mucosal adap-
tive immunity in mice, providing a 100% protection against influenza, while only a 30%
protection by H1N1 WIV alone (Figure 13).
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WIV to nasal mucosa after intranasal immunization of CS-IONzyme-based influenza vaccine in mice.
Next, CS-IONzyme strongly stimulates nasal epithelial cells (ECs) to secrete chemokine CCL20 via
TLR 2/4 pathway, which recruits more DCs into the submucosal regions to form TEDs for H1N1
WIV uptake. After viral capture, DCs gradually reach the phenotypic and functional maturation and
then quickly migrate into draining cervical lymph nodes (CLNs) for antigen presentation. Finally,
the antigen-specific immune response is initiated. Reprinted from [268] with the permission of Wiley
under the Creative Commons license (CC BY 4.0).

Currently, the antiviral effect of many metallic nanoparticles is known [269,270]. The
knowledge on this subject has expanded recently due to numerous studies conducted
in connection with the COVID-19 pandemic [271–273]. For example, the mitochondrial
proteins of the virus can be degraded by the multivalent silver nanozymes [274]. Silver
ions bind to the RNA virus genome to activate antiviral mitochondrial proteins [270]. Gold
nanozymes have the ability to mimic the virus-binding receptor, leading to virus deforma-
tion [275]. Zinc oxide nanozymes are also able to reduce viral infection by enhancing T
cell and antibody responses [276,277]. Overall, nanozymes seem to be an effective alterna-
tive for detecting and targeting viruses, including coronaviruses; however, the catalytic
mechanisms are poorly understood and require research in nanotechnology, computational
engineering, machine learning, artificial intelligence, and computer science.

Nanozymes also offer hope to overcome diseases caused by parasites, although this
field of science is only emerging. Among the few reports on this subject, of special interest
is the work Yan and Fan [278], who constructed a ferritin nanozyme (Fenozyme) composed
of recombinant human ferritin (HFn) protein shells that specifically target blood–brain
barrier endothelial cells (BBB ECs) and the inner Fe3O4 nanozyme core that exhibits ROS-
scavenging CAT-like activity. When administered to mice with experimental cerebral
malaria, Fenozyme significantly increased the survival rate, protecting BBB ECs from
ROS damage and reducing parasitemia by polarizing macrophages to the M1 phenotype.
The Fenozyme colocalized with CD31, an adhesion molecule normally found on BBB
endothelial cells. Moreover, Fenozyme binding to endothelial cells was largely blocked
by an anti-HFn receptor antibody. The accumulation of Fenozyme in the brains of mice
occurred in a time-dependent manner. Fluorescence imaging showed that Fenozyme could
specifically bind to macro- and micro-vasculature in the brain. In summary, the HFn
envelope bound the HFn receptor and directed the fenozyme to BBB endothelial cells in
the mouse brain. Fenozyme localized inside the endosomes, presumably through HFn
receptor-mediated endocytosis to function as a catalase in the endothelial cells. While
50 µM of H2O2 killed approximately 50% of the model endothelial cells, the addition
of Fenozyme almost fully protected the cells from the damage induced by H2O2 at the
concentration of 0.1 mg/mL. In addition, co-administration of Fenozyme and antimalarial
artemether alleviated encephalopathy and memory impairment in mice that survived
the experimental cerebral malaria [278]. These results demonstrated the importance of
ROS-induced stress in parasite-caused inflammation and indicated that the nanozymes
could be used as an adjuvant in parasitic diseases.

10. Conclusions

In recent decades, the range of available metallic catalytic systems has been signifi-
cantly increased due to the introduction of organometallic catalysts that better differentiate
the substrates allowed for further transformations. While the classic man-made constructs
typically recognize and preorganize substrates in the immediate vicinity of the bond being
formed or broken, the active sites of enzymes represent a complex mosaic of amino acids
that recognize substrates based on their more distant characteristics and thus operate
with correspondingly increased selectivity. The presently acquired possibilities of nan-
otechnology to construct complex “artificial active sites” allows controlling the position
of incoming substrates with precision more and more comparable to real enzymes. The
resulting nanozymes offer durability characteristics of nanomaterials and the flexibility of
supramolecular systems. Nevertheless, presently, nanozyme design still struggles with the
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requirements for large-scale application due to the compromise between catalytic activity
and substrate selectivity in combination with the complicated structure and chemistry
required that is still beyond our reach. Still, a high number of herein presented papers
document the constant trials of modern scientists, where a variety of tactics used include
modifications of ligands allowing the change in the surface characteristics of nanozymes,
lipophilic/hydrophilic properties, acceleration of electron transfer, and improving the
affinity and selectivity between nanozymes and substrates.

When designing new artificial enzymes based on nanomaterials, careful consideration
should be given to the overall relationship between structure and activity. The optimization
of nanozymes should be based on the imitation of natural catalytic structures and take into
account the degree of oxidation of metal centers and their geometry, ligand surroundings,
surface strain, and hydrophilicity. Recently, a series of bioinspired nanozymes have been
synthesized by simulating the structural characteristics and action patterns of the core
compounds in natural enzymes, such as cofactors and active centers [279].

Most nanozymes only catalyze redox reactions but lack catalytic activities such as
synthesis and hydrolysis, narrowing the range of possible applications of nanozymes
in industry and medicine. Currently, most bioinspired nanozymes focus on increasing
catalytic activity, and relatively little attention has been paid to improving their substrate
selectivity. This may be due to the aforementioned shortcomings in the current technology,
which do not allow for the precise development of fine nanozyme structures. A field of
nanoscience that is still awaiting development is the enantioselectivity of nanozymes. In
turn, the multicatalytic activity of nanozymes, which now makes them less specific and
less useful, may prove beneficial in the future, provided that good strategies are found to
fine-tune their catalytic activity. Taking inspiration from biology, it is worth noting that
the binding sites and catalytic sites of some natural enzymes are not in the same position.
This observation may provide a clue in the design of future nanozymes. Strategies for
separating binding sites and nanozyme catalytic sites may be adopted to optimize both
substrate selectivity and catalytic activity.

An interesting thesis was put forward in the recent publication by Yan, Fan, and
Zhang [280]. The authors point our attention to the fact, that nanoscopic materials might
have been adapted early in the evolution of organisms, being the first step in the devel-
opment of the perfect and complex structures of contemporary natural enzymes. Some
biomineralized nanomaterials found in organisms, such as magnetosomes [280] and iron
core in ferritin [281,282], have been reported to have peroxidase-like activities. Thus,
nanozymes could have appeared earlier than organic natural enzymes in biology and are
likely to play a role in the process of biological evolution.

Until now, rationally designed, biologically inspired, highly active nanozymes have
become a hot topic in ongoing nanozyme research. With the help of these unique constructs,
we will be able to develop useful new strategies to control the homeostasis of cells, tissues,
and organisms.
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