Accuracy and Wear Evaluation of the Customized Zirconia Guided Sleeves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Preparation
2.2. Implant Placement
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Cassetta, M.; Altieri, F.; Giansanti, M.; Bellardini, M.; Brandetti, G.; Piccoli, L. Is there a learning curve in static computer-assisted implant surgery? A prospective clinical study. Int. J. Oral Maxillofac. Surg. 2020, 49, 1335–1342. [Google Scholar] [CrossRef]
- Marchack, C.B.; Moy, P.K. Computed tomography-based, template-guided implant placement and immediate loading: An 8-year clinical report. J. Prosthet. Dent. 2014, 112, 1319–1323. [Google Scholar] [CrossRef]
- Deeb, G.R.; Allen, R.K.; Hall, V.P.; Whitley, D., III; Laskin, D.M.; Bencharit, S. How accurate are implant surgical guides produced with desktop stereolithographic 3-dimentional printers? J. Oral Maxillofac. Surg. 2017, 75, 2559.e1–2559.e8. [Google Scholar] [CrossRef]
- Seo, C.; Juodzbalys, G. Accuracy of guided surgery via stereolithographic mucosa-supported surgical guide in implant surgery for edentulous patient: A systematic review. J. Oral Maxillofac. Res. 2018, 9, e1. [Google Scholar] [CrossRef]
- Colombo, M.; Mangano, C.; Mijiritsky, E.; Krebs, M.; Hauschild, U.; Fortin, T. Clinical applications and effectiveness of guided implant surgery: A critical review based on randomized controlled trials. BMC Oral Health 2017, 17, 1–9. [Google Scholar] [CrossRef]
- Sun, T.-M.; Lee, H.-E.; Lan, T.-H. Comparing accuracy of implant installation with a Navigation System (NS), a Laboratory Guide (LG), NS with LG, and Freehand Drilling. Int. J. Environ. Res. Public Health 2020, 17, 2107. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Huang, Z.; Liao, L.; Gu, X.; Zhang, J.; Zhang, X. Factors that influence direction deviation in freehand implant placement. J. Prosthodont. 2019, 28, 511–518. [Google Scholar] [CrossRef]
- Tahmaseb, A.; Wu, V.; Wismeijer, D.; Coucke, W.; Evans, C. The accuracy of static computer-aided implant surgery: A systematic review and meta-analysis. Clin. Oral Implants Res. 2018, 29, 416–435. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, X.; Wang, M.; Jiang, Q.; Mo, A. Accuracy of full-guided and half-guided surgical templates in anterior immediate and delayed implantation: A retrospective study. Materials 2021, 14, 26. [Google Scholar] [CrossRef]
- Azari, A.; Nikzad, S. Computer-assisted implantology: Historical background and potential outcomes—A review. Int. J. Med. Robot. 2008, 4, 95–104. [Google Scholar] [CrossRef]
- D’haese, J.; Ackhurst, J.; Wismeijer, D.; De Bruyn, H.; Tahmaseb, A. Current state of the art of computer-guided implant surgery. Periodontology 2000 2017, 73, 121–133. [Google Scholar] [CrossRef]
- Yeung, M.; Abdulmajeed, A.; Carrico, C.K.; Deeb, G.R.; Bencharit, S. Accuracy and precision of 3D-printed implant surgical guides with different implant systems: An in vitro study. J. Prosthet Dent. 2020, 123, 821–828. [Google Scholar] [CrossRef]
- Tahmaseb, A.; Wismeijer, D.; Coucke, W.; Derksen, W. Computer technology applications in surgical implant dentistry: A systematic review. Int. J. Oral Maxillofac. Implants 2014, 29, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Mandelaris, G.A.; Rosenfeld, A.L.; King, S.D.; Nevins, M.L. Computer-guided implant dentistry for precise implant placement: Combining specialized stereolithographically generated drilling guides and surgical implant instrumentation. Int. J. Periodontics Restor. Dent. 2010, 30, 275–281. [Google Scholar]
- Cassetta, M.; Di Mambro, A.; Giansanti, M.; Stefanelli, L.; Cavallini, C. The intrinsic error of a stereolithographic surgical template in implant guided surgery. Int. J. Oral Maxillofac. Surg. 2013, 42, 264–275. [Google Scholar] [CrossRef]
- El Kholy, K.; Janner, S.F.M.; Schimmel, M.; Buser, D. The influence of guided sleeve height, drilling distance, and drilling key length on the accuracy of static Computer-Assisted Implant Surgery. Clin. Implant Dent. Relat Res. 2019, 21, 101–107. [Google Scholar] [CrossRef] [Green Version]
- Noharet, R.; Pettersson, A.; Bourgeois, D. Accuracy of implant placement in the posterior maxilla as related to 2 types of surgical guides: A pilot study in the human cadaver. J. Prosthet. Dent. 2014, 112, 526–532. [Google Scholar] [CrossRef]
- Schneider, D.; Schober, F.; Grohmann, P.; Hammerle, C.H.; Jung, R.E. In-vitro evaluation of the tolerance of surgical instruments in templates for computer-assisted guided implantology produced by 3-D printing. Clin. Oral Implants Res. 2015, 26, 320–325. [Google Scholar] [CrossRef] [Green Version]
- Vercruyssen, M.; Jacobs, R.; Van Assche, N.; van Steenberghe, D. The use of CT scan based planning for oral rehabilitation by means of implants and its transfer to the surgical field: A critical review on accuracy. J. Oral Rehabil. 2008, 35, 454–474. [Google Scholar] [CrossRef]
- Schneider, D.; Marquardt, P.; Zwahlen, M.; Jung, R.E. A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clin. Oral Implant. Res. 2009, 20, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Liu, Z.; Song, L.; Kuo, C.L.; Shafer, D.M. Clinical factors affecting the accuracy of guided implant surgery-a systematic review and meta-analysis. J. Evid. Based Dent. Pract. 2018, 1, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, S.; Puranik, M.P.; Uma, S.R. Practice perspectives of left-handed clinical dental students in India. J. Clin. Diagn Res. 2016, 10, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Horwitz, J.; Zuabi, O.; Machtei, E.E. Accuracy of a computerized tomography-guided template-assisted implant placement system: An in vitro study. Clin. Oral Implant. Res. 2009, 20, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Cassetta, M.; Di Mambro, A.; Di Giorgio, G.; Stefanelli, L.V.; Barbato, E. The influence of the tolerance between mechanical components on the accuracy of implants inserted with a stereolithographic surgical guide: A retrospective clinical study. Clin. Implant. Dent. Relat Res. 2015, 17, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.G., Jr.; Valderrama, P.; Burbano, M.; Blansett, J.; Levine, R.; Kessler, H.; Rodrigues, D.C. Foreign bodies associated with peri-implantitis human biopsies. J. Periodontol. 2015, 1, 9–15. [Google Scholar] [CrossRef]
- Koop, R.; Vercruyssen, M.; Vermeulen, K.; Quirynen, M. Tolerance within the sleeve inserts of different surgical guides for guided implant surgery. Clin. Oral Implants Res. 2013, 24, 630–634. [Google Scholar] [CrossRef]
- Ozan, O.; Şeker, E.; Çakmak, G.; Guo, X.; Yilmaz, B. Effect of guide sleeve material, region, diameter, and number of times drills were used on the material loss from sleeves and drills used for surgical guides: An in vitro study. J. Prosthet. Dent. 2021. [Google Scholar] [CrossRef]
Maximum Horizontal Deviation (mm) | Maximum Vertical Deviation (mm) | Angulation (°) | ||||
---|---|---|---|---|---|---|
Varies | M ± SD | p | M ± SD | p | M ± SD | p |
Position | <0.001 * | 0.001 * | <0.001 * | |||
16 (n = 15) | 0.48 ± 0.12 a | 0.5 ± 0.32 c | 3.33 ± 2.28 f | |||
26 (n = 15) | 0.14 ± 0.07 b | 0.77 ± 0.51 ce | 1.98 ± 1.52 fh | |||
36 (n = 15) | 0.12 ± 0.08 b | 1.08 ± 0.35 de | 5.61 ± 1.21 g | |||
46 (n = 15) | 0.13 ± 0.07 b | 0.6 ± 0.24 c | 1.44 ± 1.38 h | |||
Distance | 0.603 | 0.145 | 0.046 * | |||
0.01 (n = 20) | 0.21 ± 0.17 | 0.59 ± 0.38 | 2.1 ± 2.15 i | |||
0.02 (n = 20) | 0.21 ± 0.18 | 0.72 ± 0.36 | 3.17 ± 2.45 ij | |||
0.03 (n = 20) | 0.26 ± 0.19 | 0.86 ± 0.51 | 3.92 ± 1.87 j |
Time (s) | Sz (µm) | |||
---|---|---|---|---|
Varies | M ± SD | p | M ± SD | p |
Position | 0.627 | 0.791 | ||
16 (n = 15) | 20.67 ± 2.84 | 8.34 ± 1.64 | ||
26 (n = 15) | 20.86 ± 2.13 | 8.17 ± 1.58 | ||
36 (n = 15) | 20.17 ± 3.11 | 7.81 ± 1.40 | ||
46 (n = 15) | 20.29 ± 2.59 | 8.88 ± 2.62 | ||
Distance | 0.970 | 0.677 | ||
0.01 (n = 20) | 20.46 ± 2.66 | 8.04 ± 1.78 | ||
0.02 (n = 20) | 20.52 ± 2.63 | 8.17 ± 1.46 | ||
0.03 (n = 20) | 20.50 ± 2.75 | 8.70 ± 2.29 | ||
Kruskal–Wallis equality-of-population rank test; p < 0.05 indicates statistical significance. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-F.; Pan, C.-Y.; Chen, Y.-C.; Du, J.-K.; Lan, T.-H. Accuracy and Wear Evaluation of the Customized Zirconia Guided Sleeves. Appl. Sci. 2021, 11, 9035. https://doi.org/10.3390/app11199035
Chen Y-F, Pan C-Y, Chen Y-C, Du J-K, Lan T-H. Accuracy and Wear Evaluation of the Customized Zirconia Guided Sleeves. Applied Sciences. 2021; 11(19):9035. https://doi.org/10.3390/app11199035
Chicago/Turabian StyleChen, Yu-Feng, Chin-Yun Pan, Yung-Chung Chen, Je-Kang Du, and Ting-Hsun Lan. 2021. "Accuracy and Wear Evaluation of the Customized Zirconia Guided Sleeves" Applied Sciences 11, no. 19: 9035. https://doi.org/10.3390/app11199035
APA StyleChen, Y. -F., Pan, C. -Y., Chen, Y. -C., Du, J. -K., & Lan, T. -H. (2021). Accuracy and Wear Evaluation of the Customized Zirconia Guided Sleeves. Applied Sciences, 11(19), 9035. https://doi.org/10.3390/app11199035