Freeze-Drying Ethylcellulose Microparticles Loaded with Etoposide for In Vitro Fast Dissolution and In Vitro Cytotoxicity against Cancer Cell Types, MCF-7 and Caco-2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Microparticle-Loaded Etoposide
2.2.2. Characterization of the Prepared Ethylcellulose Microparticles Loaded with ETO
2.2.3. Determination of ETO Drug Content in the Ethylcellulose Microparticles
2.2.4. Fourier Transform Infrared Spectroscopy (FT-IR)
2.3. Physical Stability
2.4. In Vitro Release Study of the Ethylcellulose Microparticles Loaded with ETO
2.5. Cytotoxicity Assay
2.6. Statistical Analysis
3. Results and Discussion
3.1. Preparation and Characterization of the Prepared Ethylcellulose Microparticles Loaded with ETO
3.2. Determination of ETO Drug Content in the Ethylcellulose Microparticles
3.3. Fourier Transform Infrared Spectroscopy (FT-IR)
3.4. In Vitro Release Study of the Ethylcellulose Microparticles Loaded with ETO
3.5. Cytotoxicity Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ziegler, A.; Simon, S.; Lee, G. Comminution of Carbohydrate and Protein Microparticles on Firing in a Ballistic Powder Injector. J. Pharm. Sci. 2010, 99, 4917–4927. [Google Scholar] [CrossRef] [PubMed]
- Sonner, C.; Maa, Y.; Lee, G. Spray-freeze-drying for protein powder preparation: Particle characterization and a case study with trypsinogen stability. J. Pharm. Sci. 2002, 91, 2122–2139. [Google Scholar] [CrossRef] [PubMed]
- Niwa, T.; Mizutani, D.; Danjo, K. Spray freeze-dried porous microparticles of a poorly water-soluble drug for respiratory delivery. Chem. Pharm. Bull. 2012, 60, 870–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ungaro, F.; Giovino, C.; Coletta, C.; Sorrentino, R.; Miro, A.; Quaglia, F. Engineering gas-foamed large porous particles for efficient local delivery of macromolecules to the lung. Eur. J. Pharm. Sci. 2010, 41, 60–70. [Google Scholar] [CrossRef]
- Moghaddam, S.P.H.; Farhat, S.; Vatanara, A. Porous Microparticles Containing Raloxifene Hydrochloride Tailored by Spray Freeze Drying for Solubility Enhancement. Adv. Pharm. Bull. 2018, 8, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, G.F.; Fakhouri, F.M.; Velasco, J.I.; De Oliveira, R.A. Active Edible Films Based on Arrowroot Starch with Microparticles of Blackberry Pulp Obtained by Freeze-Drying for Food Packaging. Polymers 2019, 11, 1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherng, J.; Van De Wetering, P.; Talsma, H.; Crommelin, D.J.A.; Hennink, W.E. Freeze-drying of poly((2-dimethylamino)ethyl methacrylate)-based gene delivery systems. Pharm. Res. 1997, 14, 1838–1841. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Al-Omar, M.S.; El-Readi, M.Z.; Alhowail, A.H.; Aldubayan, M.A.; Abdellatif, A.A.H. Formulation of Ethyl Cellulose Microparticles Incorporated Pheophytin A Isolated from Suaeda vermiculata for Antioxidant and Cytotoxic Activities. Molecules 2019, 24, 1501. [Google Scholar] [CrossRef] [Green Version]
- Tawfeek, H.M.; Abdellatif, A.A.H.; Dennison, T.J.; Mohammed, A.R.; Sadiq, Y.; Saleem, I.Y. Colonic delivery of indometacin loaded PGA-co-PDL microparticles coated with Eudragit L100-55 from fast disintegrating tablets. Int. J. Pharm. 2017, 531, 80–89. [Google Scholar] [CrossRef]
- Leuner, C. Improving drug solubility for oral delivery using solid dispersions. Eur. J. Pharm. Biopharm. 2000, 50, 47–60. [Google Scholar] [CrossRef]
- Hung, C.-H.; Wiest, L.A.; Singh, B.; Diwan, A.; Valentim, M.J.C.; Christensen, J.M.; Davis, R.C.; Miles, A.J.; Jensen, D.S.; Vail, M.A.; et al. Improved efficiency of reversed-phase carbon/nanodiamond/polymer core-shell particles for HPLC using carbonized poly(divinylbenzene) microspheres as the core materials. J. Sep. Sci. 2013, 36, 3821–3829. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.; Bodmeier, R. Improvement of the Low-Temperature Stability of an Aqueous Colloidal Ethylcellulose Dispersion, Aquacoat® ECD, and Preparation/Characterization of a Redispersible Aquacoat® ECD Powder. Drug Dev. Ind. Pharm. 2003, 29, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.; Lalwani, D.; Gollmer, S.; Injeti, E.; Sari, Y.; Nesamony, J. Development and evaluation of a calcium alginate based oral ceftriaxone sodium formulation. Prog. Biomater. 2016, 5, 117–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdellatif, A.A.H.; Ibrahim, M.A.; Amin, M.A.; Maswadeh, H.; Alwehaibi, M.N.; Al-Harbi, S.N.; Alharbi, Z.A.; Mohammed, H.A.; Mehany, A.B.M.; Saleem, I. Cetuximab Conjugated with Octreotide and Entrapped Calcium Alginate-beads for Targeting Somatostatin Receptors. Sci. Rep. 2020, 10, 4736. [Google Scholar] [CrossRef]
- Aly, U.F.; Aboutaleb, H.A.; Abdellatif, A.A.; Tolba, N.S. Formulation and evaluation of simvastatin polymeric nanoparticles loaded in hydrogel for optimum wound healing purpose. Drug Des. Dev. Ther. 2019, 2019, 1567–1580. [Google Scholar] [CrossRef] [Green Version]
- Tawfeek, H.M.; Roberts, M.; El Hamd, M.A.; Abdellatif, A.A.H.; Younis, M.A. Glibenclamide Mini-tablets with an Enhanced Pharmacokinetic and Pharmacodynamic Performance. AAPS PharmSciTech 2018, 19, 2948–2960. [Google Scholar] [CrossRef]
- Badia, A.; Cuccia, L.; Demers, L.; Morin, F.; Lennox, R.B. Structure and Dynamics in Alkanethiolate Monolayers Self-Assembled on Gold Nanoparticles: A DSC, FT-IR, and Deuterium NMR Study. J. Am. Chem. Soc. 1997, 119, 2682–2692. [Google Scholar] [CrossRef]
- Dassenoy, F.; Philippot, K.; Ely, T.O.; Amiens, C.; Lecante, P.; Snoeck, E.; Mosset, A.; Casanove, M.-J.; Chaudret, B. Platinum nanoparticles stabilized by CO and octanethiol ligands or polymers: FT-IR, NMR, HREM and WAXS studies. New J. Chem. 1998, 22, 703–712. [Google Scholar] [CrossRef]
- Devlin, J.P.; Buch, V. FT-IR Spectra of Nanoparticles: Surface and Adsorbate Modes. Prog. Fourier Transform. Spectrosc. 1997, 57–66. [Google Scholar] [CrossRef]
- Díaz-Visurraga, J.; Daza, C.; Valenzuela, C.P.; Becerra, A.; Cancino, A.G.; von Plessing, C. Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy. Int. J. Nanomed. 2012, 7, 3597–3612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juárez, R.; Parker, S.; Concepción, P.; Corma, A.; García, H. Heterolytic and heterotopic dissociation of hydrogen on ceria-supported gold nanoparticles. Combined inelastic neutron scattering and FT-IR spectroscopic study on the nature and reactivity of surface hydrogen species. Chem. Sci. 2010, 1, 731–738. [Google Scholar] [CrossRef]
- Onuki, Y.; Machida, Y.; Yokawa, T.; Seike, C.; Sakurai, S.; Takayama, K. Magnetic Resonance Imaging Study on the Physical Stability of Menthol and Diphenhydramine Cream for the Treatment of Chronic Kidney Disease-Associated Pruritus. Chem. Pharm. Bull. 2015, 63, 457–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakr, R.B.; Mehany, A.B.M.; Abdellatif, K.R.A. Synthesis, EGFR Inhibition and Anti-cancer Activity of New 3,6-dimethyl-1-phenyl-4-(substituted-methoxy)pyrazolo[3,4-d] pyrimidine Derivatives. Anti-Cancer Agents Med. Chem. 2017, 17, 1389–1400. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, A.A.H.; Zayed, G.; Elbakry, A.; Zaky, A.; Saleem, I.Y.; Tawfeek, H.M. Novel gold nanoparticles coated with somatostatin as a potential delivery system for targeting somatostatin receptors. Drug Dev. Ind. Pharm. 2016, 42, 1782–1791. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, A.A.H.; Abou-Taleb, H.A.; El Ghany, A.A.A.; Lutz, I.; Bouazzaoui, A. Targeting of somatostatin receptors expressed in blood cells using quantum dots coated with vapreotide. Saudi Pharm. J. 2018, 26, 1162–1169. [Google Scholar] [CrossRef]
- Morita, T.; Horikiri, Y.; Yamahara, H.; Suzuki, T.; Yoshino, H. Formation and isolation of spherical fine protein microparticles through lyophilization of protein-poly(ethylene glycol) aqueous mixture. Pharm. Res. 2000, 17, 1367–1373. [Google Scholar] [CrossRef]
- Seyfoddin, A.; Al-Kassas, R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev. Ind. Pharm. 2013, 39, 508–519. [Google Scholar] [CrossRef]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Mehnert, W.; Mäder, K. Solid lipid nanoparticles Production, characterization and applications. Adv. Drug Deliv. Rev. 2001, 47, 165–196. [Google Scholar] [CrossRef]
- Straller, G.; Lee, G. Shrinkage of spray-freeze-dried microparticles of pure protein for ballistic injection by manipulation of freeze-drying cycle. Int. J. Pharm. 2017, 532, 444–449. [Google Scholar] [CrossRef]
- Mastiholimath, V.S.; Dandagi, P.M.; Gadad, A.; Mathews, R.; Kulkarni, A.R. In vitro and in vivo evaluation of ranitidine hydrochloride ethyl cellulose floating microparticles. J. Microencapsul. 2008, 25, 307–314. [Google Scholar] [CrossRef]
- Arici, M.; Topbas, O.; Karavana, S.Y.; Ertan, G.; Sariişik, M.; Öztürk, C. Preparation of naproxen–ethyl cellulose microparticles by spray-drying technique and their application to textile materials. J. Microencapsul. 2014, 31, 654–666. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-L.; Sun, D.-M.; Zhu, R.-R.; Du, X.-L.; Liu, H.; Qian, W.-Y. pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release. Int. J. Nanomed. 2012, 7, 5781–5792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, D.M.; Patel, C.N.; Jani, R.H. Design and evaluation of colon targeted modified pulsincap delivery of 5-fluorouracil according to circadian rhythm. Int. J. Pharm. Investig. 2011, 1, 172–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gowda, D.; Gowrav, M.; Gangadharappa, H.; Khan, M. Preparation and Evaluation of Mixture of Eudragit and Ethylcellulose Microparticles Loaded with Ranolazine for Controlled Release. J. Young-Pharm. 2011, 3, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, T.; Onishi, H.; Machida, Y. Sustained release ketoprofen microparticles with ethylcellulose and carboxymethylethylcellulose. J. Control. Release 2001, 75, 271–282. [Google Scholar] [CrossRef]
- Preskar, M.; Vrbanec, T.; Vrečer, F.; Šket, P.; Plavec, J.; Gašperlin, M. Solubilization of ibuprofen for freeze dried parenteral dosage forms. Acta Pharm. 2019, 69, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Wei, S.; Ma, Y.; Luo, J.; He, X.; Yue, P.; Guan, Z.; Yang, M. Hydroxypropylcellulose as matrix carrier for novel cage-like microparticles prepared by spray-freeze-drying technology. Carbohydr. Polym. 2017, 157, 953–961. [Google Scholar] [CrossRef]
- Elgindy, N.; Elkhodairy, K.; Molokhia, A.; Elzoghby, A. Biopolymeric microparticles combined with lyophilized monophase dispersions for controlled flutamide release. Int. J. Pharm. 2011, 411, 113–120. [Google Scholar] [CrossRef]
- Kim, J.-E.; Cho, H.-J.; Kim, D.-D. Budesonide/cyclodextrin complex-loaded lyophilized microparticles for intranasal application. Drug Dev. Ind. Pharm. 2013, 40, 743–748. [Google Scholar] [CrossRef]
- Li, F.; Liu, D.; Liao, X.; Zhao, Y.; Li, R.; Yang, B. Acid-controlled release complexes of podophyllotoxin and etoposide with acyclic cucurbit[n]urils for low cytotoxicity. Bioorganic Med. Chem. 2019, 27, 525–532. [Google Scholar] [CrossRef]
- Calejo, M.T.; Cardoso, A.; Marques, E.F.; Araújo, M.J.; Kjøniksen, A.-L.; Sande, S.A.; de Lima, M.C.P.; Jurado, A.S.; Nyström, B. In vitro cytotoxicity of a thermoresponsive gel system combining ethyl(hydroxyethyl) cellulose and lysine-based surfactants. Colloids Surf. B Biointerfaces 2013, 102, 682–686. [Google Scholar] [CrossRef]
- Ghalaei, P.M.; Varshosaz, J.; Aliabadi, H.S. Evaluating Cytotoxicity of Hyaluronate Targeted Solid Lipid Nanoparticles of Etoposide on SK-OV-3 Cells. J. Drug Deliv. 2014, 2014, 1–7. [Google Scholar] [CrossRef]
- Saliou, B.; Thomas, O.; Lautram, N.; Clavreul, A.; Hureaux, J.; Urban, T.; Benoit, J.-P.; Lagarce, F. Development and in vitro evaluation of a novel lipid nanocapsule formulation of etoposide. Eur. J. Pharm. Sci. 2013, 50, 172–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamprecht, A.; Benoit, J.-P. Etoposide nanocarriers suppress glioma cell growth by intracellular drug delivery and simultaneous P-glycoprotein inhibition. J. Control. Release 2006, 112, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Lv, Q.; Tang, X.-J.; Hu, Y.-L.; Xu, D.-H.; Li, F.-Z.; Liang, W.-Q.; Gao, J.-Q. Overcoming drug resistance of MCF-7/ADR cells by altering intracellular distribution of doxorubicin via MVP knockdown with a novel siRNA polyamidoamine-hyaluronic acid complex. J. Control. Release 2012, 163, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Asnani, G.P.; Kokare, C.R. In vitro and in vivo evaluation of colon cancer targeted epichlorohydrin crosslinked Portulaca-alginate beads. Biomol. Concepts 2018, 9, 190–199. [Google Scholar] [CrossRef] [PubMed]
Drug to Polymer Ratio (ETO:EC) Microparticles | Size of Dried (Lyophilized) ET–ETO MPs (µm) | Size of Dried (Primary) ET–ETO MPs (µm) |
---|---|---|
blank | 0.086.1 ± 0.01 | 2.3 ± 1.12 |
1:1 | 0.088 ± 0.001 | 163.1 ± 2.3 |
1:3 | 1.77 ± 0.012 | 189.6 ± 0.2 |
1:6 | 6.33 ± 0.0.8 | 222.1 ± 12 |
1:20 | 91.5 ± 0.11 | 234 ± 2.3 |
Ratio of Etoposide/Ethylcellulose | Zero-Order Dissolution Rate Constant | First-Order Dissolution Rate Constant | Higuchi Dissolution Rate Constant | Hixson–Crowell Dissolution Rate Constant | Peppas Constant |
---|---|---|---|---|---|
Free drug | K = 4.76 | K = 0.28 | K = 0.22 | K = 19.8 | 0.25 |
r2 = 0.55 | r2 = 0.85 | r2 = 0.87 | r2 = 0.73 | ||
1:1 | K = 7.23 | K = 0.14 | K = 0.17 | K = 28.9 | 0.57 |
r2 = 0.72 | r2 = 0.82 | r2 = 0.95 | r2 = 0.89 | ||
1:3 | K = 6.43 | K = 0.09 | K = 0.12 | K = 25.5 | 0.65 |
r2 = 0.75 | r2 = 0.69 | r2 = 0.87 | r2 = 0.91 | ||
1:6 | K = 8.30 | K = 0.15 | K = 0.19 | K = 32.4 | 0.72 |
r2 = 0.79 | r2 = 0.88 | r2 = 0.97 | r2 = 0.93 | ||
1:20 | K = 7.91 | K = 0.12 | K = 0.16 | K = 30.2 | 0.80 |
r2 = 0.84 | r2 = 0.90 | r2 = 0.95 | r2 = 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdellatif, A.A.H.; Aldhafeeri, M.A.; Alharbi, W.H.; Alharbi, F.H.; Almutiri, W.; Amin, M.A.; Aldawsari, M.F.; Maswadeh, H.M. Freeze-Drying Ethylcellulose Microparticles Loaded with Etoposide for In Vitro Fast Dissolution and In Vitro Cytotoxicity against Cancer Cell Types, MCF-7 and Caco-2. Appl. Sci. 2021, 11, 9066. https://doi.org/10.3390/app11199066
Abdellatif AAH, Aldhafeeri MA, Alharbi WH, Alharbi FH, Almutiri W, Amin MA, Aldawsari MF, Maswadeh HM. Freeze-Drying Ethylcellulose Microparticles Loaded with Etoposide for In Vitro Fast Dissolution and In Vitro Cytotoxicity against Cancer Cell Types, MCF-7 and Caco-2. Applied Sciences. 2021; 11(19):9066. https://doi.org/10.3390/app11199066
Chicago/Turabian StyleAbdellatif, Ahmed A. H., Mashari A. Aldhafeeri, Waleed H. Alharbi, Fahad H. Alharbi, Waleed Almutiri, Mohammed A. Amin, Mohammed F. Aldawsari, and Hamzah M. Maswadeh. 2021. "Freeze-Drying Ethylcellulose Microparticles Loaded with Etoposide for In Vitro Fast Dissolution and In Vitro Cytotoxicity against Cancer Cell Types, MCF-7 and Caco-2" Applied Sciences 11, no. 19: 9066. https://doi.org/10.3390/app11199066
APA StyleAbdellatif, A. A. H., Aldhafeeri, M. A., Alharbi, W. H., Alharbi, F. H., Almutiri, W., Amin, M. A., Aldawsari, M. F., & Maswadeh, H. M. (2021). Freeze-Drying Ethylcellulose Microparticles Loaded with Etoposide for In Vitro Fast Dissolution and In Vitro Cytotoxicity against Cancer Cell Types, MCF-7 and Caco-2. Applied Sciences, 11(19), 9066. https://doi.org/10.3390/app11199066