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Featured Application: Microfluidic device for high-throughput drug screening in a complex mi-
croenvironment of tumor tissue that allows rapid development of new antineoplastic agents.

Abstract: The aim of our research was to develop a numerical model of microflows occurring in
the culture chambers (CC) of a microfluidic device of our construction for high-throughput drug
screening. The incompressible fluid flow model is based on the lattice-Boltzmann equation, with
an external body force term approximated by the He-Shan-Doolen scheme and the Bhatnagar-
Gross-Krook approximation of the collision operator. The model accuracy was validated by the
algebraic solution of the Navier–Stokes equation (NSE) for a fully developed duct flow, as well as
experimentally. The mean velocity prediction error for the middle-length cross-section of CC was
1.0%, comparing to the NSE algebraic solution. The mean error of volumetric flow rate prediction
was 6.1%, comparing to the experimental results. The analysis of flow hydrodynamics showed that
the discrepancies from the plug-flow-like velocity profile are observed close to the inlets only, and do
not influence cell cultures in the working area of CC. Within its workspace area, the biochip provides
stable and homogeneous fully developed laminar flow conditions, which make the procedures of
gradient generation, cell seeding, and cell-staining repeatable and uniform across CC, and weakly
dependent on perturbations.

Keywords: LBM; microfluidics; HTS; flow hydrodynamics; lab-on-a-chip; cell culture; tumor-on-a-
chip

1. Introduction

Flows in microsystems, to a large degree, are influenced by boundaries, much more
than macro-flows. It is not only because of a large surface-to-volume ratio, but also due
to high-velocity gradients that can be easily achieved through microchannels, even in
the Stokes flow regime (Re� 1) at low mean fluid velocities (u < 1 · 10−3 m/s) [1]. The
phenomena are the basis of inertial microfluidic platforms. Additionally, in the intermediate
range of laminar flow (~1 < Re < ~100), nonlinear and irreversible motions of fluid and
particles [2,3] are observed. Moreover, in the laminar flow regime, geometry-induced flow
patterns are commonly observed and employed, e.g., secondary flow in curved channels
(Dean flow) for fluid mixing [4] and particle separation [5], or lateral flow, serpentine flow,
pinched flow, multi-orifice flow, etc., for cell sorting [6]. The channels’ inlets and outlets
can also play a significant role in forming the flow structure, especially in short and wide
channels such as cell culture chambers (CC), but there is a lack of analysis in the literature
of such effects.

As in our invented microdevice, the advective flow of medium in CC is responsible
for gradient generation and can influence cytotoxicity, mortality, and morphology cells [7],
we will precisely analyze the hydrodynamics of fluid flow in CC using our computational
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fluid dynamics (CFD) tool Microflow 3D, that is a lattice-Boltzmann method (LBM) solver
designed for flow simulations in microsystems and circulatory systems. Recently, the LBM
method has been successfully applied for analysis of the transport of particles and fluids
through multichannel microfluidic networks [8] or droplets’ formation and manipulation
in lab-on-a-chip microfluidic systems [9,10], and also to analyze the particle inertia and vol-
ume fraction effects on colliding particle-pairs in turbulent microflows [11]. The superiority
of LBM over other CFD methods lies in the locality of the algorithm. Interactions between
nodes are entirely linear, while the method’s non-linearity enters a local collision process
within each node [12]. This property makes the LBM very amenable to high-performance
computing on parallel architectures, including GPUs [13,14]. The key advantage of LBM
from the viewpoint of microfluidics is the adequacy for simulation of mesoscopic physics
and multi-scale effects, which are hard to describe macroscopically.

Lab-on-a-chip devices, in particular biochips, have become a powerful analytical tool
that brings together multiple disciplines for biomedical research and has the advantages of
miniaturization, automation, integration, and portability [15]. They are natural candidates
for a future replacement of standard laboratory equipment and protocols in drug develop-
ment pipelines. Currently, in vivo animal models are commonly used for preclinical drug
validation, but only 8% of successful animal trials for cancer drugs translate to successful
human clinical trials due to specific differences in physiology and cell biology [16]. Due to
ethical issues, high costs, and inconvenience of animals’ breeding, there has been increasing
research in mimicking in vivo conditions with micro-physiological systems (MPS), such as
tissue-on-a-chip and organ-on-a-chip [17,18]. MPS models are able to recapitulate the func-
tion of human organs and tissues with so far unreachable accuracy, which offers a chance
of reduction of present high failure rates in drug development pipelines [19]. Recently, we
have developed a simple construction biochip for high-throughput drug screening (HTS).
The chip mimics a complex microenvironment of tumor tissue with greater accuracy than
standard multi-well-plate cultures, offering at the same time even higher throughput with
the same ease of use. The biochip with a developed gradient of dyes is presented in Figure
1. The main structural elements of the microsystem are three identical cell culture chambers
with dimensions of 59/4.1/0.13 mm (L/W/H). A detailed discussion of chip design as well
as analytical and cell culture procedures was presented in the previous publication [20].
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The principle of operation of the device is based on the fast-convective generation of a 
linear concentration gradient of an active substance along the CC by a simple alternating 

Figure 1. Microfluidic device for cell culture in a gradient of the active substance: (a) Photography of microdevice with
developed counter-current gradients of two dyes in CC. (b) 3D drawing of the microdevice.

The device’s simple operation protocols do not require specialized equipment (actua-
tors, pumps, control valves) or costly automated equipment, such as a pipetting robot. The
principle of operation of the device is based on the fast-convective generation of a linear
concentration gradient of an active substance along the CC by a simple alternating tilting
of the chip. It makes this solution an attractive alternative for standard multi-well-plate
cultures broadly used in routine drug screening tests. However, before the device can
be put on the market, it is necessary to verify if it meets all the important factors that
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have been identified by the U.S. Food and Drug Administration (FDA) for devices and
procedures used in drug discovery pipelines. One of them is robustness. The robustness
of an analytical procedure is a measure of its capacity to remain unaffected by small but
deliberate variations in method parameters, and provides an indication of its reliability
during normal usage [21,22]. It means that we have to know whether the small perturba-
tions in device operation could significantly affect the analysis precision and test procedure
performance. To get it right, we have to analyze and understand the principles of device
operation—the hydrodynamics of flow in CC, which is responsible for convective gradient
generation, uniformity of cell seeding, and their correct staining.

In this study, we will analyze the hydrodynamics of fluid flow in the device’s CC
by performing CFD simulations based on the lattice-Boltzmann model of incompressible
flow with an external force term. The simulation results will be validated experimentally
and compared to the algebraic solution of the Navier–Stokes equation (NSE) for a fully
developed duct flow. The simulation results, along with experimental data, will allow us
to thoroughly analyze the flow parameters of our device.

2. Description of Model and Simulation Parameters

Microflow 3D (MF3D) is open-source, distributed under a permissive free software
license, and is written in C++ code for transient flow simulations in complex sparse geome-
tries. We developed and distributed it at the Wroclaw University of Science and Technology.
The current version, MF3D 1.1, is available for download from http://www.microflow.
pwr.edu.pl (accessed on 10 September 2021). The code was validated, and solution accu-
racy was proven for the microchannel flow test case. Depending on convergence criteria,
the mean relative velocity distribution and pressure drop errors for the test case (square
duct) are between 0.06–0.14% and about 0.35%, respectively [23]. These error levels result
from the accuracy of the mapping of geometry and are readily acceptable for engineering
simulations.

Preparing a new case for CFD simulations begins with geometry definition and
meshing. The geometry of one channel was prepared in OpenSCAD and written in stl file
format, surface mesh (Supplementary File S1). The volumetric structured Cartesian grid
was automatically generated in MF3D based on the loaded surface mesh and was written
in vti format for further visualization and analysis in ParaView. The numerical grid used
in simulations is presented in Figure 2, where the distributions of nodes with distinction to
their type are presented. Grid statistics: total number of computational nodes 24,693,507,
number of fluid (type 1) nodes 20,752,599, number of full-way bounce-back (type 61) nodes
86,458, number of “velocity 0” (type 40) nodes 3,698,909, and number of pressure (type 30)
nodes 155,541. The ratio of boundary nodes to the total number of computational nodes
(%) = 15.96. The height and width of the CC in lattice units (lu) were 10 and 342 (11 and
343 computational nodes), respectively. A personal computer equipped with Intel Core
i9-9900K CPU 3.60 GHz × 8, 32 Gb of DDR4 3000 MT/s, working under the control of
Linux Mint 19 Tara, was used for solving the model. The converged solution was obtained
after 54,000 steps (9.5 h of computation), with the mean computations’ performance of 38.5
MLUPS (Million Lattice Updates per Second).

http://www.microflow.pwr.edu.pl
http://www.microflow.pwr.edu.pl
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For a description of the fluid flow phenomena in microchannels, we used the dis-
cretized in momentum R3 space on the D3Q19 lattice form of the Boltzmann transport
equation, called the lattice-Boltzmann equation (LBE) (Equation (1)). It can be seen as a
kind of advection equation of the probability distribution function of fictitious particles, f
(t, x, c), with an external body force term, that can be written for each i of Qm directions
(lattice linkages) in velocity space as follows:

∂ fi
∂t

+ ci · ∇x fi +
F
ρ
· ∇c fi = Ωi (1)

where x [xx, xy, xz] is a spatial point coordinate vector, ci [cx, cy, cz] is the lattice velocity
vector: ci =

δx
δt

ei, where ei is the unit vector along the i lattice direction, δx
δt

is the lattice
speed = 1 as δx and δt, that are respectively the lattice spacing and the lattice time step,
and both equal 1, t represents time, F [Fx, Fy, Fz] is an external body force vector, Ω is the
collision operator—a source term, which represents the local redistribution of f due to
collisions, and ρ is a LB mass density:

ρ =
i=m

∑
i=0

fi (2)

u [ux,uy,uz] for incompressible fluid can be calculated from:

u =
i=m

∑
i=0

fici +
1
2

F (3)

where ∇x :=
[

∂
∂xx

, ∂
∂xy

, ∂
∂xz

]
and ∇c :=

[
∂

∂cx
, ∂

∂cy
, ∂

∂cz

]
.
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The collision operator, Ωi, was approximated with the most popular Bhatnagar-Gross-
Krook model [24]:

Ωi = −
1
τ

[
fi − f eq

i

]
(4)

and the external body force term in Equation (1) with the He-Shan-Doolen scheme (HSD) [25]:

F
ρ
· ∇c fi =

F
ρ · (ci − u)

c2
s

f eq
i (5)

where τ is the LB relaxation time related to the lattice fluid viscosity: ν = 1/3(τ − 1/2),
and f eq

i is the equilibrium distribution function along the i lattice direction given by the
following formula for incompressible fluid [26]:

f eq
i = ωi

[
ρ +

ci · u
c2

s
+

(ci · u)2

2c4
s
− u2

2c2
s

]
(6)

where cs is the lattice constant: cs =
1√
3

, u is the macroscopic fluid velocity vector, and ωi is
a weighting scalar for the i lattice direction.

In MF3D, all solution parameters are collected in case_params.cfg and thread_params.cfg
(Supplementary Files S2 and S3). The flow simulations were performed for spontaneous
gravitationally induced fluid flow in CC. The force density vector was calculated for the
microsystem sloped at an angle of 30◦: F = ρ × g = 1000 × 9.81 = 9810 (N/m3) (Fx = 4905,
Fy = 0, Fz = −8495.7), and its constant value was fixed for the whole region. A free solution
parameter—the relaxation time, τ—was set to 1.0. The solution termination criteria were
set for scaled velocity residue to 1.0 × 10−7 and 0.1% for the mass flow balance error.
The MF3D configuration files necessary to run the simulation are available in additional
resources of the article (Supplementary File S4).

Algebraic Solution of Navier–Stokes Equation for a Duct Flow

Spiga and Morini proposed an algebraic solution of the NSE for the fully developed
laminar flow of Newtonian fluids in the rectangular duct, that was derived using the finite
Fourier transform [27]:

v(x, y) =
16β 2

π4

∞

∑
iodd

∞

∑
jodd

sin
(

iπ ξ
a

)
sin
(

jπ η
b
)

ij(β 2i2 + j2)
(7)

The dimensionless coordinates are x = ξ/a (0 ≤ x ≤ l) and y = η/a (0 ≤ y ≤ β, where β
is the aspect ratio b/a). The dimensionless velocity is v(x,y) = u(x,y)/P, where:

P =
a2

µ

(
−dp
dζ

+ ρgζ

)
(8)

and a and b are the total channel width and height respectively, along the ξ and η axes,
while pressure drop, dp, is along the ζ axis. µ is the fluid dynamic viscosity. All calculations
were performed in Matlab. The calculation script is available in additional resources of the
article (Supplementary File S5).

3. Results and Discussion
3.1. Model Validation

We have analyzed the liquid flow hydrodynamics in the device’s CC, performing
numerical simulations of the LBM/CFD method for the same geometry and conditions
as present in the device’s standard operation protocols [20]. The simulation results were
compared with the experimentally determined overall volumetric flow rates of the fluid in
CC. The average value of predicted velocity magnitude for the cross-section A (Figure 2)
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was 5.79 × 10−3 m/s, and its maximal value was observed in the channels’ axis as 8.93 ×
10−3 m/s, which gives the value of mean volumetric flow rate in CC as 2.85 × 10−9 m3/s.
This value is in good agreement with the experimentally determined volumetric flow
rate, V, of cell culture medium in the microdevice’s CC, sloped at an angle of 30◦. The
median value of V for three different microsystems (CI–CIII), and the three repeats of
experiments (1–3) for each device with five repetitions of measurement (45 points), was
slightly higher, at 3.036 × 10−9 m3/s, with the standard deviation (SD) of 3.8% (Figure 3).
Thus, the relative error of volumetric flow rate prediction was 6.1%, and it does not go
beyond the acceptable ranges for engineering calculations. Looking at Figure 3, we can see
that the determined values of flow fluctuations in CC are quite large (2.8–3.3 × 10−9 m3/s).
The flow fluctuations are a well-known issue and source of errors in continuous-flow
microsystems, where the very small flow rates have to be controlled and stabilized in time
(at the level of microliters per second). Fortunately, this is not a problem for the proper
operation of our solution, because the volumetric flow rate deviations do not affect changes
of the shape of the velocity profile in CC as long as flows are laminar, and consequently
do not have an impact on the proper development of a gradient. The median value of
the Reynolds number calculated from experimentally determined flow rates is Re = 1.44,
which confirms the deep laminar regime of the chip operation.
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In Figure 4, simulated velocity profiles are compared with an algebraic solution
of the NSE for the rectangular duct (Equation (7)). The Poiseuille number, Po = 23.09,
for the rectangular duct was calculated according to the formula provided by Shah and
London [28]. The mean and median values of the relative velocity prediction error for the
CC cross-section A (Figure 2) were 1.0% and 0.93%, respectively. Its maximal value reached
16.8%, but the minimal observed fluid velocity prediction error was only about 0.03%. The
distribution of the relative error of the simulation is presented in Figure 5.
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culture chamber.

The largest difference between the simulation results and the algebraic solution of
the NSE is noticed in the first row of nodes adjacent to the shortest edge of the duct (the
height of the channel). For the axial lines C and D (Figure 2), the mean relative velocity
prediction errors were 0.85% and 0.95%, respectively. The obtained fluid velocity profiles
in CC are parabolic in the Z direction (C axial line) (Figure 6a), while in the Y direction (D
axial line), they are nearly flat and correspond to the plug-flow profile (Figure 6b). The
plug-flow-like profile is responsible for the even distribution of species across the CC, while
the parabolic profile allows the development of the linear gradients along the CC during
fluid reciprocating flow.

The lattice-Boltzmann model of liquid flow in culture chambers of the microdevice
predicts fluid velocity distributions with high accuracy. In regions where we could expect
the almost fully developed velocity profile, the prediction error is less than 1%, compared
to the analytical solution of NSE. This gives us the opportunity to investigate the effects
of the chamber’s inlets and outlets on fluid velocity distributions and the shear stress
distribution in CC in the next step. At the channels’ inlets/outlets, we cannot assume
the fully developed velocity profiles, and the numerical solution of NS is the only way to
correctly predict flow hydrodynamics.
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3.2. Inlet and Outlet Effects

It is highly desired to have a flat velocity profile along the whole CC, as was shown in
Figure 6b, since it allows for maintaining homogeneous conditions of cell culture across the
chamber in the same cross-section, allowing to grow cells in the same microenvironment.
Inlets and outlets disturb velocity profiles, but the small height of the channel promotes
the development of a plug-flow-like profile in a short distance from inlets/outlets. It is
interesting to distinguish how long the development regions are. As the flow enters a
duct, the velocity profile begins to develop along its length, ultimately reaching the fully
developed velocity profile. Almost all the analyses available in the literature neglected
the inlet/outlet effects, but the relatively short length of the CC may mean that such
disturbances may affect the culture microenvironment and consequently influence the
results of tests performed on a chip.

In Figure 7, the distributions of magnitudes of the Z-direction velocity gradient, Vz,
the dynamic pressure, PD, and the shear stress, τ, at the bottom surface of the CC are
presented, where the cells adhere. Since shear stress, shear time, and pressure changes can
severely affect cell viability, phenotype, and function [29,30], it is interesting to determine
the ranges of the variability of these parameters under standard chip operating conditions.
The distributions of such parameters in the working area of CC (between two vertical lines)
are uniform in the Y direction, and vary only slightly in the X direction (Vz: 258–290 (1/s),
PD: 0.4–5.2 (Pa), τ: 0.258–0.29 (Pa)). Bearing in mind that the flow exerts on cells only for a
very short period of time, when gradients in CC are generated, we can definitely say that
its influence on cells is negligible in standard operating conditions.

In Figure 8, the velocity distributions at the inlet of CC are presented. Velocity vectors
that point out from the fluid reservoir indicate that fluid may pour out of the tank, but
the surface tension prevents fluid from escaping the grove. Near the inlets, the parabolic
velocity profile in the culture chamber with the near-wall flatness was observed. This is
caused by the circular shape of the reservoirs and the uneven outflow of liquid from the
reservoirs to the chambers.
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Similar observations have been made during experiments and are presented in
Figure 9a,b, where we can see dynamic profiles of the dye introduced to the inlets of
CC from the reservoirs. In Figure 9b,d, normalized profiles of the dye in a dimensionless
coordinate system are presented, obtained from the microscopic photos. The dashed line
represents the shape of the reservoir edge. In each CC, the observed dye profile is of the
same tongue-like shape, with a near-wall flatness. The discrepancy of the dye contour
from the circular shape of the reservoir outlet edge evidenced the flow unevenness in this
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region. As the dye moves deeper into the chamber, the profiles become flat, as can be seen
in Figure 9c,d.
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(c) photo from a stereoscopic microscope taken in the middle of the CC length, and (d) normalized middle-length profiles
determined from the photo. X, Y—dimensionless distances.

As we can see from Figure 10, the simulations predict that the discrepancies from the
uniform distributions of flow parameters are observed close to the inlets only, and do not
affect cell cultures in the CC working zone. The simulated velocity profiles flatten out when
the fluid approaches the edge of the chip’s workspace (line 6 in Figure 10b,c). The effect of
velocity profile formation in the inlet region of CC is clearly visualized in Figure 10c. The
inlet/outlet regions are less than 10 mm long, and are marked with red dashed lines in
Figure 10a. Within the working space of CC, the velocity magnitude along the axis placed
in the middle of the height of CC changes by only about 10%, tending asymptotically to
the value of 0.0086 m/s (dashed blue line in Figure 10a).
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4. Summary and Conclusions

The aim of our research was to develop a numerical model of microflows occurring
in the culture chambers of the microfluidic device of our construction, that is dedicated
to high-throughput drug screening. The model describing incompressible fluid flow is
based on the lattice-Boltzmann equation with an external body force term approximated
by the HSD scheme and the BGK approximation of the collision operator. The solution
of the model was performed in the open-source Microflow 3D solver for the full 3D
culture chamber geometry on the Cartesian D3Q19 lattice, comprising over 24.5 million
computational nodes. The model and code were validated using the analytical solution
of NSE for 3D duct flow and using experimental data of volumetric flow rates of culture
medium in CC. The mean errors were 1.0% and 6.1% respectively, in comparison to the
NSE solution and experimental data. However, we should be aware that the deviation
of simulation results from the reference values was influenced to a large degree by the
experimental data deviation (SD = 3.8%). The obtained accuracy of the model is sufficient
to conduct engineering calculations, and we used our model to perform an analysis of the
inlet/outlet effects of flow in CC.

The biochips’ cell culture chambers’ construction promotes stable and homogeneous
laminar plug-flow-like conditions within their workspace area, along the whole CC. The
plug-flow-like velocity profile is responsible for the even distribution of species across the
CC, while the parabolic profile developed across the CC (along the shortest edge of the CC)
allows the development of the linear gradients of species during fluid reciprocating flow.
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The fluid reciprocating flow is invoked by alternately tilting the microsystem several times,
and is prone to human operation errors, e.g., inclination angle. This can cause discrepancies
in the volumetric flow rates of culture media. However, as the channel surface-to-volume
ratio is high, the flow perturbations at the inlet/outlet of the CC are rapidly suppressed
and do not influence species’ distributions within the working space of the CC, making
test procedures robust and repeatable. If the lengths of the inlet and outlet sections are
set to 10 mm, the change in fluid velocity along the axis of the chamber, within its entire
length, does not exceed 10%.

The conclusions drawn from the simulation results are consistent with the observations
made previously during the practical tests of the device [20]. In a further article, we intend
to present an in-depth analysis of research results on the formation of active substance
concentration profiles in CC and their stability over time.

5. Patents

(1) Szafran Roman, Kazimierz Gąsiorowski, Katarzyna Gębczak, Benita Wiatrak, Mi-
crofluidic device for cell culture in gradient of bioactive substance, WO2018106132
(A1), 2018.

(2) Szafran Roman, Kazimierz Gąsiorowski, Katarzyna Gębczak, Benita Wiatrak, Mi-
crofluidal device for growing cell culture in a gradient of bioactive PL237365B1, 2021.

(3) Szafran Roman, Method for manufacturing micro-fluidized bed device for growing
cell culture in a gradient of bioactive substance, PL238206B1, 2021.

(4) Szafran Roman, Kazimierz Gąsiorowski, Katarzyna Gębczak, Benita Wiatrak, Method
for producing stable active substance concentration gradient in the cell culture mi-
crosystems, PL419813 (A1), 2016.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11199140/s1, File S1: A surface grid of CC geometry in stl format, File S2: Case configura-
tion file of MF3D case_params.cfg, File S3: Thread configuration file of MF3D thread_params.cfg,
File S4: The MF3D case configuration files, File S5: The Matlab script used for calculation of a fully
developed velocity profile from Equation (7).
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