On-Device Object Detection for More Efficient and Privacy-Compliant Visual Perception in Context-Aware Systems
Abstract
:1. Introduction
2. On-Device Object Detection for Context Awareness in Ambient Intelligence Systems
3. Compact and Efficient Vision-Based Detection Frameworks
3.1. Architectures
3.2. Challenges and Explored Approaches
3.2.1. Design of Novel Lightweight CNN-Based Architectures
3.2.2. Model Compression and Acceleration
3.2.3. Improved Ad Hoc Datasets
3.2.4. Hyperparameter Tuning
4. Study and Evaluation
4.1. Hardware Platforms
4.2. Evaluation Metrics
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Zheng, L.; Liu, Y.; Li, Y.; Wang, S. Towards Real-Time Multi-Object Tracking. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 107–122. [Google Scholar]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 172–186. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.B.; Zhang, Y.X.; Zhong, B.; Lei, Q.; Yang, L.; Du, J.X.; Chen, D.S. A comprehensive survey of vision-based human action recognition methods. Sensors 2019, 19, 1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Dunne, R.; Morris, T.; Harper, S. A Survey of Ambient Intelligence. ACM Comput. Surv. 2021, 54, 1–27. [Google Scholar] [CrossRef]
- Sadri, F. Ambient intelligence: A survey. ACM Comput. Surv. 2011, 43, 1–66. [Google Scholar] [CrossRef]
- Remagnino, P.; Foresti, G.L. Ambient Intelligence: A New Multidisciplinary Paradigm. IEEE Trans. Syst. Man Cybern. —Part A Syst. Hum. 2005, 35, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Gandodhar, P.S.; Chaware, S.M. Context Aware Computing Systems: A survey. In Proceedings of the 2018 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 2018 2nd International Conference on. Palladam, India, 30–31 August 2018; pp. 605–608. [Google Scholar]
- Augusto, J.; Aztiria, A.; Kramer, D.; Alegre, U. A Survey on the Evolution of the Notion of Context-Awareness. Appl. Artif. Intell. 2017, 31, 613–642. [Google Scholar] [CrossRef]
- Cook, D.J.; Augusto, J.C.; Jakkula, V.R. Review: Ambient intelligence: Technologies, applications, and opportunities. Pervasive Mob. Comput. 2009, 5, 277–298. [Google Scholar] [CrossRef] [Green Version]
- Mawela, T. Ambient Intelligence Systems for the Elderly: A Privacy Perspective. In Proceedings of the Computational Science and Its Applications—ICCSA 2020, Cagliari, Italy, 1–4 July 2020; Springer: Cham, Switzerland, 2020; pp. 875–888. [Google Scholar]
- Friedewald, M.; Vildjiounaite, E.; Punie, Y.; Wright, D. The Brave New World of Ambient Intelligence: An Analysis of Scenarios Regarding Privacy, Identity and Security Issues. In Proceedings of the Security in Pervasive Computing, York, UK, 18–21 April 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 119–133. [Google Scholar]
- Theoharidou, M.; Marias, G.; Dritsas, S.; Gritzalis, D. The ambient intelligence paradigm A review of security and privacy strategies in leading economies. In Proceedings of the 2006 2nd IET International Conference on Intelligent Environments—IE 06, Athens, Greece, 5–6 July 2006; IET.: London, UK, 2006; pp. 213–219. [Google Scholar]
- Caire, P.; Moawad, A.; Efthymiou, V.; Bikakis, A.; Le Traon, Y. Privacy challenges in Ambient Intelligence systems. J. Ambient. Intell. Smart Environ. 2016, 8, 619–644. [Google Scholar] [CrossRef]
- Gomez, C.; Chessa, S.; Fleury, A.; Roussos, G.; Preuveneers, D. Internet of Things for enabling smart environments: A technology-centric perspective. J. Ambient. Intell. Smart Environ. 2019, 11, 23–43. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Genovese, A.; Piuri, V.; Scotti, F.; Siegel, M. IoT-based Architectures for Sensing and Local Data Processing in Ambient Intelligence: Research and Industrial Trends. In Proceedings of the 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Auckland, New Zealand, 20–23 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–6. [Google Scholar]
- Streitz, N.; Charitos, D.; Kaptein, M.; Böhlen, M. Grand challenges for ambient intelligence and implications for design contexts and smart societies. J. Ambient. Intell. Smart Environ. 2019, 11, 87–107. [Google Scholar] [CrossRef] [Green Version]
- Abhari, M.; Abhari, K. Ambient Intelligence Applications in Architecture: Factors Affecting Adoption Decisions. In Proceedings of the Advances in Information and Communication, Cham, Switzerland; 2020; pp. 235–250. [Google Scholar]
- Röcker, C. Perceived Usefulness and Perceived Ease-of-Use of Ambient Intelligence Applications in Office Environments. In Proceedings of the Human Centered Design, San Diego, CA, USA, 19–24 July 2009; Springer: Berlin/Heidelberg, Germany; pp. 1052–1061. [Google Scholar]
- Hasanov, A.; Laine, T.H.; Chung, T.-S. A survey of adaptive context-aware learning environments. J. Ambient. Intell. Smart Environ. 2019, 11, 403–428. [Google Scholar] [CrossRef] [Green Version]
- Kanagarajan, S.; Ramakrishnan, S. Ubiquitous and Ambient Intelligence Assisted Learning Environment Infrastructures Development—A review. Educ. Inf. Technol. 2018, 23, 569–598. [Google Scholar] [CrossRef]
- Karthick, G.S.; Pankajavalli, P.B. Ambient Intelligence for Patient-Centric Healthcare Delivery: Technologies, Framework, and Applications. In Design Frameworks for Wireless Networks; Das, S.K., Samanta, S., Dey, N., Kumar, R., Eds.; Springer: Singapore, 2020; pp. 223–254. [Google Scholar]
- Haque, A.; Milstein, A.; Fei-Fei, L. Illuminating the dark spaces of healthcare with ambient intelligence. Nature 2020, 585, 193–202. [Google Scholar] [CrossRef]
- Uddin, M.Z.; Khaksar, W.; Torresen, J. Ambient Sensors for Elderly Care and Independent Living: A Survey. Sensors 2018, 18, 2027. [Google Scholar] [CrossRef] [Green Version]
- El murabet, A.; Abtoy, A.; Touhafi, A.; Tahiri, A. Ambient Assisted living system’s models and architectures: A survey of the state of the art. J. King Saud Univ. —Comput. Inf. Sci. 2020, 32, 1–10. [Google Scholar] [CrossRef]
- Ramkumar, M.; Catharin, S.S.; Nivetha, D. Survey of Cognitive Assisted Living Ambient System Using Ambient intelligence as a Companion. In Proceedings of the 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 29–30 March 2019; pp. 1–5. [Google Scholar]
- Calvaresi, D.; Cesarini, D.; Sernani, P.; Marinoni, M.; Dragoni, A.F.; Sturm, A. Exploring the ambient assisted living domain: A systematic review. J. Ambient. Intell. Humaniz. Comput. 2017, 8, 239–257. [Google Scholar] [CrossRef]
- Salih, A.S.M. A Review of Ambient Intelligence Assisted Healthcare Monitoring. Int. J. Comput. Inf. Syst. Ind. Manag. 2014, 5, 741–750. [Google Scholar]
- Dhar, S.; Guo, J.; Liu, J.; Tripathi, S.; Kurup, U.; Shah, M. On-Device Machine Learning: An Algorithms and Learning Theory Perspective. arXiv 2019, arXiv:1911.00623. [Google Scholar]
- Guo, K.; Zeng, S.; Yu, J.; Wang, Y.; Yang, H. A Survey of FPGA-Based Neural Network Accelerator. arXiv 2017, arXiv:1712.08934. [Google Scholar]
- Deng, L.; Li, G.; Han, S.; Shi, L.; Xie, Y. Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey. Proc. IEEE 2020, 108, 485–532. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, P.; Li, G.; Hu, Q.; Lu, H. Recent Advances in Efficient Computation of Deep Convolutional Neural Networks. Front. Inf. Technol. Electron. Eng. 2018, 19, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Qin, H.; Gong, R.; Liu, X.; Bai, X.; Song, J.; Sebe, N. Binary neural networks: A survey. Pattern Recognit. 2020. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Sahoo, D.; Hoi, S.C.H. Recent advances in deep learning for object detection. Neurocomputing 2020, 396, 39–64. [Google Scholar] [CrossRef] [Green Version]
- Chahal, K.; Dey, K. A Survey of Modern Object Detection Literature using Deep Learning. arXiv 2018, arXiv:1808.07256. [Google Scholar]
- Zhao, Z.; Zheng, P.; Xu, S.; Wu, X. Object Detection With Deep Learning: A Review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A survey of deep learning-based object detection. IEEE Access 2019, 7, 128837–128868. [Google Scholar] [CrossRef]
- Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.; Chen, J.; Liu, X.; Pietikäinen, M.; Wang, X.; Fieguth, P.; Chen, J.; et al. Deep Learning for Generic Object Detection: A Survey. Int. J. Comput. Vis. 2020, 128, 261–318. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Sohail, A.; Zahoora, U.; Qureshi, A.S. A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 2020. [Google Scholar] [CrossRef] [Green Version]
- Sultana, F.; Sufian, A.; Dutta, P. A review of object detection models based on convolutional neural network. Adv. Intell. Syst. Comput. 2020, 1157, 1–16. [Google Scholar] [CrossRef]
- Gams, M.; Gu, I.Y.-H.; Härmä, A.; Muñoz, A.; Tam, V. Artificial intelligence and ambient intelligence. J. Ambient. Intell. Smart Environ. 2019, 11, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Ramos, C. Ambient Intelligence—A State of the Art from Artificial Intelligence Perspective. In Proceedings of the Progress in Artificial Intelligence, Guimarães, Portugal, 3–7 December 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 285–295. [Google Scholar]
- Patel, A.; Shah, J. Sensor-based activity recognition in the context of ambient assisted living systems: A review. J. Ambient. Intell. Smart Environ. 2019, 11, 301–322. [Google Scholar] [CrossRef]
- Bansal, A.; Ahirwar, M.K.; Shukla, P.K. A Survey on Classification Algorithms Used in Healthcare Environment of the Internet of Things. Int. J. Comput. Sci. Eng. 2018, 6, 883–887. [Google Scholar] [CrossRef]
- Augusto, J.C.; Callaghan, V.; Cook, D.; Kameas, A.; Satoh, I. "Intelligent Environments: A manifesto". Hum. -Cent. Comput. Inf. Sci. 2013, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Tripathi, S.; Dane, G.; Kang, B.; Bhaskaran, V.; Nguyen, T. LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 411–420. [Google Scholar]
- Azimi, S.M. ShuffleDet: Real-Time Vehicle Detection Network in On-Board Embedded UAV Imagery. arXiv 2019, 88–99. [Google Scholar]
- Keeffe, S.O.; Villing, R. Evaluating pruned object detection networks for real-time robot vision. In Proceedings of the 2018 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Torres Vedras, Portugal, 25–27 April 2018; pp. 91–96. [Google Scholar]
- Gao, H.; Tao, W.; Wen, D.; Liu, J.; Chen, T.; Osa, K.; Kato, M. DupNet: Towards Very Tiny Quantized CNN With Improved Accuracy for Face Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 168–177. [Google Scholar]
- Ünel, F.Ö.; Özkalayci, B.O.; Çiğla, C. The Power of Tiling for Small Object Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 582–591. [Google Scholar]
- Deng, J.; Shi, Z.; Zhuo, C. Energy-Efficient Real-Time UAV Object Detection on Embedded Platforms. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2020, 39, 3123–3127. [Google Scholar] [CrossRef]
- Ringwald, T.; Sommer, L.; Schumann, A.; Beyerer, J.; Stiefelhagen, R. UAV-Net: A Fast Aerial Vehicle Detector for Mobile Platforms. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, CA, USA, 16–17 June 2019; pp. 544–552. [Google Scholar]
- Zhang, P.; Zhong, Y.; Li, X. SlimYOLOv3: Narrower, faster and better for real-time UAV applications. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Korea, 27–28 October 2019; pp. 37–45. [Google Scholar]
- Liu, Y.; Cao, S.; Lasang, P.; Shen, S. Modular Lightweight Network for Road Object Detection Using a Feature Fusion Approach. IEEE Transaction on Systems, Man, and Cybernetics: Systems 2019, 51, 4716–4728. [Google Scholar] [CrossRef]
- Vaddi, S.; Kumar, C.; Jannesari, A. Efficient Object Detection Model for Real-Time UAV Applications. arXiv 2019, arXiv:1906.00786. [Google Scholar]
- Yang, Z.; Xu, W.; Wang, Z.; He, X.; Yang, F.; Yin, Z. Combining Yolov3-tiny Model with Dropblock for Tiny-face Detection. In Proceedings of the 2019 IEEE 19th International Conference on Communication Technology (ICCT), Xi’an, China, 16–19 October 2019; pp. 1673–1677. [Google Scholar]
- Han, S.; Kwon, J.; Kwon, S. Real-time Small Object Detection Model in the Bird-view UAV Imagery. In Proceedings of the 3rd International Conference on Vision, Image and Signal Processing, Vancouver, BC, Canada, 26–28 August 2019. Article 47. [Google Scholar]
- Zhao, X.; Liang, X.; Zhao, C.; Tang, M.; Wang, J. Real-Time Multi-Scale Face Detector on Embedded Devices. Sensors 2019, 19, 2158. [Google Scholar] [CrossRef] [Green Version]
- Yoo, Y.J.; Han, D.; Yun, S. EXTD: Extremely tiny face detector via iterative filter reuse. arXiv 2019, arXiv:1906.06579. [Google Scholar]
- Qi, S.; Yang, J.; Song, X.; Jiang, C. Multi-Task FaceBoxes: A Lightweight Face Detector Based on Channel Attention and Context Information. KSII Trans. Internet Inf. Syst. 2020, 14, 4080–4097. [Google Scholar] [CrossRef]
- Li, X.; Tian, Y.; Zhang, F.; Quan, S.; Xu, Y. Object detection in the context of mobile augmented reality. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Porto de Galinhas, Brazil, 9–13 November 2020. [Google Scholar]
- Zhao, Y.; Wang, L.; Hou, L.; Gan, C.; Huang, Z.; Hu, X.; Shen, H.; Ye, J. Real Time Object Detection for Traffic Based on Knowledge Distillation: 3rd Place Solution to Pair Competition. In Proceedings of the 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Barba-Guaman, L.; Eugenio Naranjo, J.; Ortiz, A. Deep Learning Framework for Vehicle and Pedestrian Detection in Rural Roads on an Embedded GPU. Electronics 2020, 9, 589. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Ding, X.; Du, W. Continuous, Real-Time Object Detection on Mobile Devices without Offloading. In Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore, 29 November–1 December 2020; pp. 976–986. [Google Scholar]
- Nikouei, S.Y.; Chen, Y.; Song, S.; Xu, R.; Choi, B.; Faughnan, T. Smart Surveillance as an Edge Network Service: From Harr-Cascade, SVM to a Lightweight CNN. In Proceedings of the 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC), Philadelphia, PA, USA, 18–20 October 2018; pp. 256–265. [Google Scholar]
- Nguyen, P.H.; Arsalan, M.; Koo, J.H.; Naqvi, R.A.; Truong, N.Q.; Park, K.R. LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous UAV Landing by Visible Light Camera Sensor on Drone. Sensors 2018, 18, 1703. [Google Scholar] [CrossRef] [Green Version]
- Kyrkou, C.; Plastiras, G.; Theocharides, T.; Venieris, S.I.; Bouganis, C. DroNet: Efficient convolutional neural network detector for real-time UAV applications. In Proceedings of the 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 967–972. [Google Scholar]
- Mithun, N.C.; Munir, S.; Guo, K.; Shelton, C. ODDS: Real-Time Object Detection Using Depth Sensors on Embedded GPUs. In Proceedings of the 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Porto, Portugal, 11–13 April 2018; pp. 230–241. [Google Scholar]
- Ghazi, P.; Happonen, A.P.; Boutellier, J.; Huttunen, H. Embedded Implementation of a Deep Learning Smile Detector. In Proceedings of the 2018 7th European Workshop on Visual Information Processing (EUVIP), Tampere, Finland, 26–28 November 2018. [Google Scholar]
- Melinte, D.O.; Dumitriu, D.; Mărgăritescu, M.; Ancuţa, P.-N. Deep Learning Computer Vision for Sorting and Size Determination of Municipal Waste. In Proceedings of the International Conference of Mechatronics and Cyber-MixMechatronics—2019, Cham, Switzerland; 2020; pp. 142–152. [Google Scholar]
- Yang, A.; Bakhtari, N.; Langdon-Embry, L.; Redwood, E.; Grandjean Lapierre, S.; Rakotomanga, P.; Rafalimanantsoa, A.; De Dios Santos, J.; Vigan-Womas, I.; Knoblauch, A.M.; et al. Kankanet: An artificial neural network-based object detection smartphone application and mobile microscope as a point-of-care diagnostic aid for soil-transmitted helminthiases. PLoS Negl Trop Dis. 2019, 13, e0007577. [Google Scholar] [CrossRef] [Green Version]
- Pang, S.; Wang, S.; Rodriguez-Paton, A.; Li, P.; Wang, X.; Rodríguez-Patón, A.; Li, P.; Wang, X. An artificial intelligent diagnostic system on mobile Android terminals for cholelithiasis by lightweight convolutional neural network. PLoS ONE 2019, 14, e0221720. [Google Scholar] [CrossRef] [Green Version]
- Lage, E.S.; Santos, R.L.; Junior, S.M.T.; Andreotti, F. Low-Cost IoT Surveillance System Using Hardware-Acceleration and Convolutional Neural Networks. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 931–936. [Google Scholar]
- Bresilla, K.; Perulli, G.D.; Boini, A.; Morandi, B.; Corelli Grappadelli, L.; Manfrini, L. Single-Shot Convolution Neural Networks for Real-Time Fruit Detection Within the Tree. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Q.; Lin, J.; Yue, W.; Liu, S.; Liu, Y.; Ding, C. A Deep Learning Approach to Driver Distraction Detection of Using Mobile Phone. In Proceedings of the 2019 IEEE Vehicle Power and Propulsion Conference (VPPC), Hanoi, Vietnam, 14–17 October 2019; pp. 1–5. [Google Scholar]
- Shakeel, M.F.; Bajwa, N.A.; Anwaar, A.M.; Sohail, A.; Khan, A.; Haroon-ur-Rashid. Detecting Driver Drowsiness in Real Time Through Deep Learning Based Object Detection. In Proceedings of the International Work-Conference on Artificial Neural Networks, Gran Canaria, Spain, 12–14 June 2019; Springer: Cham, Switzerland, 2019; pp. 283–296. [Google Scholar]
- Xiao, D.; Li, H.; Liu, C.; He, Q.; Alonso-Betanzos, A. Large-Truck Safety Warning System Based on Lightweight SSD Model. Intell. Neurosci. 2019, 2019, 10. [Google Scholar] [CrossRef]
- Ramcharan, A.; McCloskey, P.; Baranowski, K.; Mbilinyi, N.; Mrisho, L.; Ndalahwa, M.; Legg, J.; Hughes, D.P. A Mobile-Based Deep Learning Model for Cassava Disease Diagnosis. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Tan, J.T.C. Improving Deep Learning Based Object Detection of Mobile Robot Vision by HSI Preprocessing Method and CycleGAN Method Under Inconsistent Illumination Conditions in Real Environment. In Proceedings of the 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Hong Kong, China, 8–12 July 2019; pp. 583–588. [Google Scholar]
- Chen, P.; Hsieh, J.; Gochoo, M.; Wang, C.; Liao, H.M. Smaller Object Detection for Real-Time Embedded Traffic Flow Estimation Using Fish-Eye Cameras. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2956–2960. [Google Scholar]
- Zhao, H.; Zhang, W.; Sun, H.; Xue, B. Embedded Deep Learning for Ship Detection and Recognition. Future Internet 2019, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Ding, S.; Long, F.; Fan, H.; Liu, L.; Wang, Y. A novel YOLOv3-tiny network for unmanned airship obstacle detection. In Proceedings of the Proceedings of 2019 IEEE 8th Data Driven Control and Learning Systems Conference, DDCLS 2019; Dali, China, 24–27 May 2019, pp. 277–281.
- Putro, M.D.; Nguyen, D.L.; Jo, K.H. Fast Eye Detector Using CPU Based Lightweight Convolutional Neural Network. In Proceedings of the 2020 20th International Conference on Control, Automation and Systems (ICCAS), Busan, Korea, 13–16 October 2020; pp. 12–16. [Google Scholar]
- Long, Z.; Suyuan, W.; Zhongma, C.; Jiaqi, F.; Xiaoting, Y.; Wei, D. Lira-YOLO: A lightweight model for ship detection in radar images. J. Syst. Eng. Electron. 2020, 31, 950–956. [Google Scholar] [CrossRef]
- Zhou, Z.; Song, Z.; Fu, L.; Gao, F.; Li, R.; Cui, Y. Real-time kiwifruit detection in orchard using deep learning on Android™ smartphones for yield estimation. Comput. Electron. Agric. 2020, 179, 105856. [Google Scholar] [CrossRef]
- Khaled, N.; Mohsen, S.; El-Din, K.E.; Akram, S.; Metawie, H.; Mohamed, A. In-Door Assistant Mobile Application Using CNN and TensorFlow. In Proceedings of the 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), Istanbul, Turkey, 12–13 June 2020; pp. 1–6. [Google Scholar]
- Ji, H.; Zeng, X.; Li, H.; Ding, W.; Nie, X.; Zhang, Y.; Xiao, Z. Human abnormal behavior detection method based on T-TINY-YOLO. In Proceedings of the 5th International Conference on Multimedia and Image Processing, Nanjing, China, 10–12 January 2020; pp. 1–5. [Google Scholar]
- Han, C.; Zhu, J.; Li, F.; Wan, S.; Chen, H. Design of lightweight pedestrian detection network in railway scenes. J. Phys. Conf. Ser. 2020, 1544, 012053. [Google Scholar] [CrossRef]
- Pinto de Aguiar, A.S.; Neves dos Santos, F.B.; Feliz dos Santos, L.C.; de Jesus Filipe, V.M.; Miranda de Sousa, A.J. Vineyard trunk detection using deep learning—An experimental device benchmark. Comput. Electron. Agric. 2020, 175, 105535. [Google Scholar] [CrossRef]
- Choi, J.; Chun, D.; Lee, H.; Kim, H. Uncertainty-based Object Detector for Autonomous Driving Embedded Platforms. In Proceedings of the 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Genova, Italy, 31 August–2 September 2020; pp. 16–20. [Google Scholar]
- Seo, J.; Ahn, H.; Kim, D.; Lee, S.; Chung, Y.; Park, D. EmbeddedPigDet—Fast and Accurate Pig Detection for Embedded Board Implementations. Appl. Sci. 2020, 10, 2878. [Google Scholar] [CrossRef]
- Ai, Y.B.; Rui, T.; Yang, X.Q.; He, J.L.; Fu, L.; Li, J.B.; Lu, M. Visual SLAM in dynamic environments based on object detection. Def. Technol. 2020. [Google Scholar] [CrossRef]
- Guo, Q.; Liu, Q.; Wang, W.; Zhang, Y.; Kang, Q. A fast occluded passenger detector based on MetroNet and Tiny MetroNet. Inf. Sci. 2020, 534, 16–26. [Google Scholar] [CrossRef]
- Gong, J.; Zhao, J.; Li, F.; Zhang, H. Vehicle detection in thermal images with an improved yolov3-tiny. In Proceedings of the 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 28–30 July 2020; pp. 253–256. [Google Scholar]
- Anisuzzaman, D.M.; Patel, Y.; Niezgoda, J.; Gopalakrishnan, S.; Yu, Z. A Mobile App for Wound Localization using Deep Learning. arXiv 2020, arXiv:2009.07133. [Google Scholar]
- Sun, H.; Yang, J.; Shen, J.; Liang, D.; Ning-Zhong, L.; Zhou, H. TIB-Net: Drone Detection Network with Tiny Iterative Backbone. IEEE Access 2020, 8, 130697–130707. [Google Scholar] [CrossRef]
- Jia, J.; Zhai, G.; Ren, P.; Zhang, J.; Gao, Z.; Min, X.; Yang, X. Tiny-BDN: An Efficient and Compact Barcode Detection Network. IEEE J. Sel. Top. Signal Process. 2020, 14, 688–699. [Google Scholar] [CrossRef]
- Melinte, D.O.; Travediu, A.-M.; Dumitriu, D.N. Deep Convolutional Neural Networks Object Detector for Real-Time Waste Identification. Appl. Sci. 2020, 10, 7301. [Google Scholar] [CrossRef]
- Zhang, S.; Wu, Y.; Men, C.; Ren, N.; Li, X. Channel Compression Optimization Oriented Bus Passenger Object Detection. Math. Probl. Eng. 2020, 2020. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Cao, J.; Wang, Y. Data-Driven Based Tiny-YOLOv3 Method for Front Vehicle Detection Inducing SPP-Net. IEEE Access 2020, 8, 110227–110236. [Google Scholar] [CrossRef]
- Mazzia, V.; Khaliq, A.; Salvetti, F.; Chiaberge, M. Real-Time Apple Detection System Using Embedded Systems With Hardware Accelerators: An Edge AI Application. IEEE Access 2020, 8, 9102–9114. [Google Scholar] [CrossRef]
- Mishra, B.; Garg, D.; Narang, P.; Mishra, V. Drone-surveillance for search and rescue in natural disaster. Comput. Commun. 2020, 156, 1–10. [Google Scholar] [CrossRef]
- Oh, S.; You, J.-H.; Kim, Y.-K. FRDet: Balanced and Lightweight Object Detector based on Fire-Residual Modules for Embedded Processor of Autonomous Driving. arXiv 2020, arXiv:2011.08061. [Google Scholar]
- Etxeberria-Garcia, M.; Ezaguirre, F.; Plazaola, J.; Muñoz, U.; Zamalloa, M. Embedded object detection applying Deep Neural Networks in railway domain. In Proceedings of the 2020 23rd Euromicro Conference on Digital System Design (DSD), Kranj, Slovenia, 26–28 August 2020; pp. 565–569. [Google Scholar]
- Liu, J.; Wang, X. Early recognition of tomato gray leaf spot disease based on MobileNetv2-YOLOv3 model. Plant Methods 2020, 16, 83. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Y.; Xiao, G.; Feng, B.; Chen, W. A Real-Time Garbage Truck Supervision and Data Statistics Method Based on Object Detection. Wirel. Commun. Mob. Comput. 2020, 2020. [Google Scholar] [CrossRef]
- Roy, B.; Nandy, S.; Ghosh, D.; Dutta, D.; Biswas, P.; Das, T. MOXA: A Deep Learning Based Unmanned Approach For Real-Time Monitoring of People Wearing Medical Masks. Trans. Indian Natl. Acad. Eng. 2020, 5, 509–518. [Google Scholar] [CrossRef]
- von Atzigen, M.; Liebmann, F.; Hoch, A.; Bauer, D.E.; Snedeker, J.G.; Farshad, M.; Fürnstahl, P. HoloYolo: A proof-of-concept study for marker-less surgical navigation of spinal rod implants with augmented reality and on-device machine learning. Int. J. Med Robot. Comput. Assist. Surg. 2021, 17, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, F.M.; Samadi, S.; Poorreza, H.R.; Akbarzadeh-T, M.R. Vehicle recognition using curvelet transform and SVM. In Proceedings of the International Conference on Information Technology-New Generations, ITNG 2007, Las Vegas, NV, USA, 2–4 April 2007; pp. 516–521. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Nagahashi, H. Parameterized adaboost: Introducing a parameter to speed up the training of real adaboost. IEEE Signal Process. Lett. 2014, 21, 687–691. [Google Scholar] [CrossRef]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; 9905 LNCS. pp. 21–37. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the Proceedings—30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition; Las Vegas, NV, USA, 27–30 June 2016, pp. 779–788.
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv 2016, arXiv:1603.04467. [Google Scholar]
- Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.; DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; Lerer, A. Automatic differentiation in pytorch. In Proceedings of the NIPS 2017 The Thirty-first Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In Proceedings of the European conference on computer vision, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Wen, L.; Du, D.; Bian, X.; Hu, Q.; Ling, H. Vision Meets Drones: Past, Present and Future. arXiv 2020, arXiv:2001.06303. [Google Scholar]
- Yang, S.; Luo, P.; Loy, C.C.; Tang, X. WIDER FACE: A face detection benchmark. In Proceedings of the Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; Las Vegas, NV, USA, 27–30 June 2016, pp. 5525–5533.
- Kukreja, V.; Kumar, D.; Kaur, A.; Geetanjali; Sakshi. GAN-based synthetic data augmentation for increased CNN performance in Vehicle Number Plate Recognition. In Proceedings of the 2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 5–7 November 2020; pp. 1190–1195. [Google Scholar]
- Bhattarai, B.; Baek, S.; Bodur, R.; Kim, T.K. Sampling Strategies for GAN Synthetic Data. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 2303–2307. [Google Scholar]
- Qiu, W.; Yuille, A. UnrealCV: Connecting Computer Vision to Unreal Engine. In Proceedings of the Computer Vision—ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10, 15–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 909–916. [Google Scholar]
- Pérez-Rúa, J.M.; Zhu, X.; Hospedales, T.M.; Xiang, T. Incremental Few-Shot Object Detection. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 13843–13852. [Google Scholar]
- Fan, Q.; Zhuo, W.; Tang, C.K.; Tai, Y.W. Few-Shot Object Detection With Attention-RPN and Multi-Relation Detector. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 4012–4021. [Google Scholar]
Work | Year | Application | Domain | Vision Task It Supports | High-Level Requirements |
---|---|---|---|---|---|
[48] | 2017 | Face detection | Generic | – | ∙ Deployment in resource-limited devices |
[67] | 2018 | Human detection | Surveillance | – | ∙ Real-time execution |
[68] | 2018 | Landing marker detection from UAV | Intelligent transportation | – | ∙ Small target detection |
[69] | 2018 | Vehicle detection from UAV | Intelligent transportation | – | ∙ Real-time execution ∙ Energy efficiency |
[70] | 2018 | Object detection using depth imaging | Surveillance | – | ∙ Real-time execution ∙ Privacy awareness |
[71] | 2018 | Smile detection | Human emotion recognition | – | ∙ Real-time execution ∙ Deployment in resource-limited devices |
[72] | 2019 | Waste detection | Smart cities | ∙ Distance to target estimation ∙ Target size estimation | – |
[49] | 2019 | Vehicle detection from UAV | Generic | – | ∙ Real-time execution |
[50] | 2019 | Generic object detection | Generic | – | ∙ Real-time execution |
[51] | 2019 | Face detection | Generic | – | ∙ Trade-off between accuracy and model size |
[52] | 2019 | Vehicle and pedestrian detection from UAV | Generic | – | ∙ Real-time execution ∙ High accuracy |
[53] | 2019 | Object detection from UAV | Generic | – | ∙ Energy efficiency |
[54] | 2019 | Vehicle detection from UAV | Generic | – | ∙ Higher execution speed |
[55] | 2019 | Object detection from UAV | Generic | – | ∙ Deployment in resource-limited devices |
[73] | 2019 | Disease symptoms detection | Healthcare | – | ∙ Deployment in highly portable devices |
[74] | 2019 | Disease symptoms detection | Healthcare | – | – |
[56] | 2019 | Vehicle and pedestrian detection | Generic | – | ∙ Real-time execution ∙ High accuracy |
[57] | 2019 | Object detection in UAV imagery | Generic | – | ∙ Real-time execution ∙ High accuracy |
[75] | 2019 | Human detection | Surveillance | – | ∙ Low-cost infrastructure |
[76] | 2019 | Fruit detection | Smart farming | ∙ Crop-load estimation | ∙ Real-time execution |
[77] | 2019 | Face detection + Mobile phone detection | Intelligent transportation | ∙ Driver distraction detection | ∙ Robustness |
[58] | 2019 | Face detection | Generic | – | ∙ Better model generalization |
[78] | 2019 | Open and closed eyes detection | Intelligent transportation | ∙ Driver drowsiness detection | ∙ Real-time execution∙ High accuracy |
[79] | 2019 | Vehicle and pedestrian detection from large trucks | Intelligent transportation | – | ∙ Real-time execution∙ Robustness |
[80] | 2019 | Plant disease detection | Smart farming | – | – |
[59] | 2019 | Object detection in UAV imagery | Generic | – | ∙ High accuracy |
[81] | 2019 | Object detection in indoor environment | Robotics | – | ∙ Robustness |
[82] | 2019 | Vehicle detection | Intelligent transportation | ∙ Traffic flow estimation | ∙ Trade-off between accuracy and execution speed |
[60] | 2019 | Face detection | Generic | ∙ Video face analysis | ∙ Trade-off between accuracy and execution speed |
[83] | 2019 | Ship parts detection | Smart logistics | ∙ Ship’s identity classification | ∙ Robustness |
[61] | 2019 | Face detection | Generic | – | ∙ Trade-off between accuracy and model size |
[84] | 2019 | Obstacle detection in unmanned airships | Defense | – | ∙ Trade-off between accuracy and execution speed |
[62] | 2020 | Face detection | Generic | – | ∙ High accuracy |
[63] | 2020 | Ordinary object detection | Generic | – | ∙ High accuracy |
[85] | 2020 | Eye detection | Intelligent transportation | ∙ Driver drowsiness detection | ∙ Real-time execution |
[86] | 2020 | Ship detection in radar images | Defense | – | ∙ Deployment in resource-limited devices |
[87] | 2020 | Fruit detection | Smart farming | ∙ Crop-load estimation | ∙ Real-time execution |
[88] | 2020 | Obstacle and object detection | Healthcare | ∙ Distance to target computation∙ Navigation assistance | ∙ – |
[89] | 2020 | Human activity recognition | Surveillance | – | ∙ Real-time execution |
[90] | 2020 | Human detection | Surveillance | – | ∙ – |
[91] | 2020 | Vineyard trunks detection | Smart farming | – | ∙ Real-time execution |
[92] | 2020 | Vehicle and pedestrian detection | Intelligent transportation | – | ∙ Real-time execution ∙ High accuracy |
[64] | 2020 | Vehicle and pedestrian detection | Generic | – | ∙ Real-time execution |
[93] | 2020 | Livestock (pigs) monitoring | Smart farming | ∙ Livestock counting ∙ Abnormalities detection | ∙ Trade-off between accuracy and model size ∙ Low-cost infrastructure |
[94] | 2020 | Dynamic targets detection | Robotics | ∙ Visual SLAM | ∙ Real-time execution |
[95] | 2020 | Human detection | Surveillance | – | ∙ Trade-off between accuracy and model size |
[96] | 2020 | Vehicle detection | Intelligent transportation | – | ∙ Real-time execution |
[97] | 2020 | Wound localization | Healthcare | ∙ Wound segmentation ∙ Wound classification | ∙ – |
[98] | 2020 | Drone detection | Surveillance | – | ∙ Trade-off between accuracy and model size |
[99] | 2020 | Barcode detection | Smart logistics | ∙ Barcode scanning | ∙ Energy efficiency ∙ High accuracy |
[100] | 2020 | Waste detection | Smart cities | – | ∙ High accuracy |
[101] | 2020 | Bus passenger detection | Smart cities | ∙ Passenger counting | ∙ Real-time execution |
[65] | 2020 | Vehicle and pedestrian detection | Generic | – | ∙ Real-time execution ∙ High accuracy |
[102] | 2020 | Vehicle detection | Intelligent transportation | – | ∙ Real-time execution ∙ High accuracy |
[103] | 2020 | Fruit detection | Smart farming | ∙ Crop-load estimation | ∙ Real-time execution |
[104] | 2020 | Human action detection from autonomous drones | Surveillance | – | ∙ – |
[105] | 2020 | Vehicle and pedestrian detection | Intelligent transportation | – | ∙ Real-time execution ∙ High accuracy |
[106] | 2020 | Traffic sign recognition | Intelligent transportation | – | ∙ Real-time execution |
[107] | 2020 | Plant disease detection | Smart farming | – | ∙ Real-time execution ∙ High accuracy |
[108] | 2020 | Garbage truck supervision | Smart cities | – | ∙ Real-time execution |
[66] | 2020 | Calibration of object tracking systems | Generic | ∙ Object tracking | ∙ Real-time execution |
[109] | 2020 | Face mask monitoring | Surveillance | – | ∙ Real-time execution |
[110] | 2021 | Navigation in open surgeries | Healthcare | ∙ 3D object localization | ∙ Real-time execution ∙ High accuracy |
Detector’s Name | Framework Type | Baseline | Backbone | Pre-Training | Enhancement Emphasis | Used in |
---|---|---|---|---|---|---|
– | One-stage | Tiny YOLOv2 | Darknet-19 | – | – | [110] |
– | One-stage | Tiny YOLOv3 | Darknet-19 | Detector | ∙ Higher robustness ∙ Higher accuracy | [58,96,97,103,108,109] |
– | One-stage | YOLOv3 | Darknet-53 | Backbone | – | [66,77,106] |
– | One-stage | YOLOv3 | MobileNetV2 | Detector | ∙ Lower memory overhead | [107] |
FRDet | One-stage | YOLOv3 | Custom | – | ∙ Higher robustness ∙ Higher accuracy ∙ Lower memory overhead | [105] |
– | One-stage | SSD | MobileNetV1 | Detector | ∙ Higher robustness ∙ Higher accuracy | [63,65,72,75,78,80,88,91] |
PPt-YOLOv3 | One-stage | Tiny YOLOv3 | Darknet-19 | – | ∙ Higher robustness ∙ Higher accuracy | [102] |
– | One-stage | SSD | MobileNetV2 | Detector | – | [65,87,100] |
M7 | One-stage | Tiny YOLO | – | – | ∙ Lower overhead ∙ Lower memory overhead | [101] |
Tiny-BDN | Two-stage | Faster-RCNN | VGG | – | ∙ Lower overhead ∙ Lower memory overhead | [99] |
TIB-Net | One-stage | Extremely Tiny Face Detector | – | – | ∙ Higher robustness ∙ Higher accuracy | [98] |
Tiny MetroNet | Two-stage | MetroNet | SqueezeNet | Backbone | ∙ Lower overhead ∙ Lower memory overhead | [95] |
– | One-stage | YOLOv4 | – | – | – | [94] |
EmbeddedPigYOLO | One-stage | Tiny YOLO | – | ∙ Higher robustness | [93] | |
– | One-stage | SSDLite | MobileNetV3 Small | – | ∙ Higher accuracy | [64] |
Tiny Gaussian YOLOv3 | One-stage | Tiny YOLOv3 | Darknet-19 | – | ∙ Higher accuracy | [92] |
YOLOv3-PDN | One-stage | YOLOv3 | Darknet-53 | – | ∙ Lower overhead ∙ Lower memory overhead | [90] |
T-TINY-YOLO | One-stage | Tiny YOLO | – | – | ∙ Lower overhead ∙ Lower memory overhead | [89] |
Lira-YOLO | One-stage | YOLO | LiraNet | – | ∙ Lower overhead | [86] |
Fast Eye-CPU | One-stage | – | – | – | ∙ Lower overhead | [85] |
Multi-Task FaceBoxes | One-stage | FaceBoxes | – | – | ∙ Higher robustness ∙ Higher accuracy | [62] |
NYOLO-tiny | One-stage | Tiny YOLOv3 | Darknet-19 | – | ∙ Higher robustness ∙ Higher accuracy | [84] |
Extremely Tiny Face Detector | One-stage | – | – | – | ∙ Higher accuracy | [61] |
DCNet | Two-stage | – | – | – | ∙ Higher robustness | [83] |
EagleEye | One-stage | – | VGG | – | – | [60] |
Concatenated Feature Pyramid Network | One-stage | YOLOv3 | – | Detector | ∙ Higher robustness ∙ Lower overhead | [82] |
– | One-stage | YOLOv2 | Darknet-19 | Detector | ∙ Higher robustness | [81] |
– | One-stage | SSD | – | Detector | ∙ Lower overhead ∙ Lower memory overhead | [79] |
M3 | One-stage | YOLO9000 | – | Detector | ∙ Higher accuracy | [76] |
Modular Feature Fusion Detector | One-stage | – | – | – | – | [56] |
– | One-stage | SSDLite | MobileNetV2 | – | ∙ Lower overhead ∙ Lower memory overhead | [74] |
Kankanet | One-stage | SSD | MobileNetV1 | – | – | [73] |
SlimYOLOv3-SPP3 | One-stage | YOLOv3 | – | Detector | ∙ Lower overhead ∙ Lower memory overhead | [55] |
UAV-Net | One-stage | SSD | ZynqNet | – | ∙ Higher robustness | [54] |
– | One-stage | SSD | PeleeNet | – | ∙ Higher robustness | [52] |
DupNet-Tinier-YOLO | One-stage | IFQ-Tinier-YOLO | – | – | ∙ Higher accuracy | [51] |
– | One-stage | Tiny YOLO | – | Backbone | ∙ Lower overhead ∙ Lower memory overhead | [50] |
ShuffleDet | One-stage | SSD | ShuffleNet | Backbone | ∙ Higher robustness | [49] |
– | One-stage | SSD | VGG | Detector | ∙ Lower overhead ∙ Lower memory overhead | [70] |
DroNet | One-stage | TinyYOLO | – | – | – | [69] |
LCDet | One-stage | YOLO | – | Detector | – | [48] |
D-RFBNet300 | One-stage | RFBNet300 | MobileNetV1 | Backbone | ∙ Higher accuracy | [59] |
– | One-stage | – | MobileNetV1 | Backbone | – | [71] |
LightDenseYOLO | One-stage | YOLOv2 | LightDenseNet | Backbone | – | [68] |
Model Size | Computational Burden | Accuracy | Environment Variation | Scale Variation | Intra-Class Variation | Data Scarcity | Low Quality Data | |
---|---|---|---|---|---|---|---|---|
Lighter backbone | [49] | [49] | – | – | – | – | – | – |
More efficient operations | [60,67,101] | [49,60,67,82,101] | – | – | – | – | – | – |
Smaller conv kernel size | [95] | [95] | – | – | – | – | – | – |
Multiple conv kernel sizes | – | – | – | – | [95] | – | – | – |
More efficient modules | [95,105] | [95,105] | – | – | – | – | – | – |
FC layers replaced with conv layers | [95] | [95] | – | – | – | – | – | – |
Smaller input size | [50,90] | [50,90] | – | – | – | – | – | – |
Larger input size | – | – | [69,102] | – | [102] | – | – | – |
Fewer channels | [53,86,90] | [53,86,90] | – | – | – | – | – | – |
Higher # channels | – | – | [102] | – | – | – | – | – |
Fewer kernels | [50,69,89,95] | [50,69,89,95] | – | – | – | – | – | – |
Shallower network | [76,79,82] | [76,79,82] | – | – | – | – | – | – |
Deeper network | – | – | [84,96,107] | – | – | – | – | – |
Early downsampling | [60] | [60] | – | – | – | – | – | – |
Late downsampling | – | – | [56] | – | – | – | – | – |
Residual connections | – | [86] | [49,105] | – | – | – | – | – |
Feature fusion | – | – | [98] | – | [53,56,57,62,64,68,82,98,102,103,104,105] | – | – | – |
Attention mechanisms | – | – | [62,98] | – | [98] | – | – | – |
Larger receptive field | – | – | [60,79] | – | [79] | – | – | – |
Various receptive field sizes | – | – | – | – | [55,59] | – | – | – |
Pruning | – | [50,54,55,70,90,93,99,101] | – | – | – | – | – | – |
Quantization | [48,87,99] | [48,87,99] | – | – | – | – | – | – |
Knowledge distillation | – | [64] | – | – | – | – | – | – |
Ad hoc dataset | – | – | – | [50,64,68,77,78,79,80,84,86,91,95,98,100,103,109] | – | [50,64,68,77,78,79,80,84,86,91,95,98,100,103,109] | – | – |
Data augmentation | – | – | – | – | – | – | [48,50,52,53,57,60,61,64,70,71,73,74,76,81,84,85,87,97,98,100,106] | [64] |
Anchor box filtering | – | [79] | – | – | – | – | – | – |
Anchor box sizing strategy | – | – | – | – | [60,95] | [95] | – | – |
Loss function formulation | – | – | [92,105,107] | – | – | – | – | [53,60,64] |
Work | Test Device | Hardware Acceleration | Accuracy | Speed | Model Size | Computational Complexity | Real Time |
---|---|---|---|---|---|---|---|
[48] | – | ∙ DSP | ∙ TPR | ∙ FPS | ∙ Weight | FLOPS | Yes |
[67] | ∙ RSPB 3 B | No | ∙ FPR ∙ FNR | ∙ FPS | ∙ Weight | – | No |
[68] | ∙ ANDRD | – | ∙ P ∙ R | – | – | – | Yes |
[69] | ∙ XU4 ∙ RSPB 3 B | No | ∙ TPR ∙ P | ∙ FPS | – | – | No |
[70] | ∙ NVD TX1 | ∙ GPU | ∙ mAP | ∙ FPS | ∙ Params ∙ Weight | – | No |
[71] | ∙ NVD TX2 | ∙ GPU | ∙ ACC ∙ AUC-ROC | ∙ FPS | ∙ Params | FLOPS | Yes |
[72] | ∙ RSPB | – | – | – | – | – | – |
[49] | ∙ NVD TX2 | ∙ GPU | – | ∙ FPS | – | FLOPS | Yes |
[50] | ∙ NAO | No | ∙ mAP | – | – | FLOPS | – |
[51] | – | – | ∙ DR | – | ∙ Weight | FLOPS | – |
[52] | ∙ NVD TX1 | ∙ GPU | ∙ mAP | ∙ FPS | – | – | No |
[53] | ∙ NVD TX2 | ∙ GPU | ∙ mIoU | ∙ FPS | ∙ Params | FLOPS | Yes |
[54] | ∙ NVD TX2 | ∙ GPU | ∙ mAP | ∙ FPS | ∙ Params ∙ Weight | – | Yes |
[55] | – | ∙ Desktop GPU | ∙ P ∙ R ∙ F1-S ∙ mAP | ∙ FPS ∙ IT | ∙ Params ∙ Weight | FLOPS | Yes |
[73] | ∙ ANDRD | – | – | – | – | – | – |
[74] | ∙ ANDRD | No | ∙ mAP | ∙ IT | ∙ Params | MAdds | No |
[56] | ∙ NVD TX2 | ∙ GPU | ∙ mAP | ∙ IT | ∙ Weight | – | No |
[57] | ∙ NVD TX2 | ∙ GPU | ∙ mAP | ∙ FPS | – | – | Yes |
[75] | ∙ RSPB 3 ∙ UP2 | ∙ VPU (NCS) ∙ FPGA | ∙ mAP | ∙ FPS | – | – | No |
[76] | ∙ NVD TX2 | ∙ GPU | ∙ F1-S | ∙ FPS | – | – | Yes |
[77] | ∙ NVD TX2 | ∙ GPU | ∙ ACC ∙ FP | ∙ IT | – | – | Yes |
[58] | ∙ DSKTP | – | ∙ mAP | – | – | – | – |
[78] | ∙ RSPB 3∙ ANDRD | No | ∙ mAP | ∙ FPS | – | – | No |
[79] | ∙ DSKTP | – | ∙ mAP | ∙ FPS | – | – | Yes |
[80] | ∙ ANDRD | – | ∙ mAP ∙ F1-S | – | – | – | – |
[59] | ∙ DSKTP | ∙ GPU | ∙ AP | ∙ IT | – | – | Yes |
[81] | – | – | – | – | – | – | – |
[82] | ∙ NVD TX2 | ∙ GPU | ∙ mAP | ∙ FPS | – | – | Yes |
[60] | ∙ RSPB 3 B+ | No | ∙ mAP | ∙ FPS | ∙ Params ∙ Weight ∙ Memory Footprint | FLOPS | Yes |
[83] | ∙ NVD TX2 | GPU | ∙ mAP | ∙ FPS | – | – | Yes |
[61] | ∙ DSKTP | GPU | ∙ mAP | ∙ FPS | ∙ Params | MAdds | – |
[84] | – | – | ∙ mAP | ∙ FPS | – | – | Yes |
[62] | ∙ DSKTP | No | ∙ AP | ∙ FPS | ∙ Params | – | Yes |
[63] | ∙ ANDRD | – | ∙ AP | – | – | – | No |
[85] | ∙ DSKTP | No | ∙ AP | ∙ FPS | ∙ Params | FLOPS | Yes |
[86] | ∙ DSKTP | ∙ GPU | ∙ mAP | – | ∙ Weight | FLOPS | – |
[87] | ∙ ANDRD | No | ∙ TPR ∙ FNR ∙ FDR | ∙ IT | ∙ Weight | – | No |
[88] | – | – | – | – | – | – | – |
[89] | ∙ NVD TX2 | ∙ GPU | ∙ mAP ∙ R ∙ P | – | – | – | Yes |
[90] | – | – | ∙ AP | ∙ IT | ∙ Params | FLOPS | No |
[91] | ∙ NVD NN ∙ DSKTP | – | ∙ AP ∙ F1-S | ∙ IT | – | – | Yes |
[92] | ∙ NVD AGX | ∙ GPU | ∙ mAP | ∙ FPS | – | FLOPS | Yes |
[64] | – | – | ∙ mAP | ∙ IT | ∙ Weight | FLOPS | Yes |
[93] | ∙ NVD TX2 ∙ NVD NN | ∙ GPU | ∙ AP | ∙ FPS | – | – | Yes |
[94] | ∙ NVD TX2 | ∙ GPU | – | – | – | – | – |
[95] | ∙ RK3399 | ∙ GPU | ∙ FNR | ∙ IT | ∙ Params | – | Yes |
[96] | – | – | ∙ P ∙ R ∙ F1-S ∙ mAP | ∙ IT | – | – | No |
[97] | – | – | ∙ P ∙ R ∙ F1-S ∙ mAP | – | – | – | – |
[98] | – | – | ∙ mAP | ∙ IT | ∙ Weight | – | No |
[99] | ∙ IOS | No | ∙ P ∙ R ∙ mAE | – | ∙ Params | – | No |
[100] | ∙ RSPB 3 B+ | ∙ VPU (NCS V2) | ∙ AP | ∙ IT ∙ FPS | ∙ Params ∙ Weight | – | No |
[101] | – | – | ∙ AP | ∙ IT ∙ FPS | ∙ Weight | – | No |
[65] | ∙ NVD NN | ∙ GPU | ∙ P ∙ R ∙ ACC | ∙ IT | – | – | No |
[102] | – | – | ∙ P ∙ R ∙ mAP | ∙ FPS | ∙ Weight | – | Yes |
[103] | ∙ RSPB 3 B+ ∙ NVD NN ∙ NVD AGX | ∙ VPU (NCS V1/V2) ∙ GPU | ∙ P ∙ R ∙ mAP | ∙ FPS | – | – | Yes |
[104] | – | – | ∙ mAP | – | – | – | – |
[105] | ∙ NVD AGX | ∙ GPU | ∙ mAP | ∙ FPS | ∙ Weight | FLOPS | Yes |
[106] | ∙ NVD AGX | ∙ GPU | ∙ P ∙ R | ∙ FPS | – | – | Yes |
[107] | – | – | ∙ F1-S ∙ mAP | ∙ FPS | ∙ Weight | – | Yes |
[108] | ∙ RK3399 pro | ∙ NPU | – | – | – | – | Yes |
[66] | ∙ NVD TX2 | ∙ GPU | ∙ F1-S | ∙ IT | – | – | No |
[109] | ∙ DSKTP | – | ∙ P ∙ R ∙ F1-S ∙ mAP | ∙ FPS | ∙ Params ∙ Weight | FLOPS | Yes |
[110] | ∙ MS HLENS | No | ∙ AP | – | – | – | No |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Conde, I.; Campos, C.; Fdez-Riverola, F. On-Device Object Detection for More Efficient and Privacy-Compliant Visual Perception in Context-Aware Systems. Appl. Sci. 2021, 11, 9173. https://doi.org/10.3390/app11199173
Rodriguez-Conde I, Campos C, Fdez-Riverola F. On-Device Object Detection for More Efficient and Privacy-Compliant Visual Perception in Context-Aware Systems. Applied Sciences. 2021; 11(19):9173. https://doi.org/10.3390/app11199173
Chicago/Turabian StyleRodriguez-Conde, Ivan, Celso Campos, and Florentino Fdez-Riverola. 2021. "On-Device Object Detection for More Efficient and Privacy-Compliant Visual Perception in Context-Aware Systems" Applied Sciences 11, no. 19: 9173. https://doi.org/10.3390/app11199173
APA StyleRodriguez-Conde, I., Campos, C., & Fdez-Riverola, F. (2021). On-Device Object Detection for More Efficient and Privacy-Compliant Visual Perception in Context-Aware Systems. Applied Sciences, 11(19), 9173. https://doi.org/10.3390/app11199173