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Featured Application: This study proposes a new driver fatigue detection system that serves to
evaluate the driver’s driving risk from fatigue and improve driving safety.

Abstract: Driver fatigue is the culprit of most traffic accidents. Visual technology can intuitively
judge whether the driver is in the state of fatigue. A driver fatigue detection system based on the
residual channel attention network (RCAN) and head pose estimation is proposed. In the proposed
system, Retinaface is employed for face location and outputs five face landmarks. Then the RCAN
is proposed to classify the state of eyes and the mouth. The RCAN includes a channel attention
module, which can adaptively extract key feature vectors from the feature map, which significantly
improves the classification accuracy of the RCAN. In the self-built dataset, the classification accuracy
of the eye state of the RCAN reaches 98.962% and that of the mouth state reaches 98.561%, exceeding
other classical convolutional neural networks. The percentage of eyelid closure over the pupil over
time (PERCLOS) and the mouth opening degree (POM) are used for fatigue detection based on the
state of eyes and the mouth. In addition, this article proposes to use a Perspective-n-Point (PnP)
method to estimate the head pose as an essential supplement for driving fatigue detection and
proposes over-angle to evaluate whether the head pose is excessively deflected. On the whole, the
proposed driver fatigue system integrates 3D head pose estimation and fatigue detection based on
deep learning. This system is evaluated by the four datasets and shows success of the proposed
method with their high performance.

Keywords: driver fatigue detection; head pose estimation; automated driving

1. Introduction

According to the statistics of the AAA Foundation for Traffic Safety, road accidents
caused by fatigue driving comprise one-eighth of total accidents. The initial state of fatigue
driving is inattention and transitory hypovigilance. With the deepening of fatigue, the
driver gradually appears drowsy and eventually loses control of the vehicle. Therefore,
fatigue detection of drivers would be of special interest to reduce road accidents and
develop driving assistant systems.

According to the existing research status, the detection methods of driver fatigue are
mainly divided into three categories [1], which are vehicle-based measurements, physio-
logical signals measurements, and visual-based measurements.

Vehicle-based measurements include the assessment of steering wheel movement [2],
driving deviation [3], and vehicle dynamic [4] information. The main cause of fatigue
driving is human rather than vehicular. When the signals of driving performance, such as
vehicle dynamics data and the steering wheel angle, change, the driver may already be in
the fatigue driving stage. Using vehicle-based measurements will lead to delayed warning
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of fatigue driving. In addition, the detection accuracy of this method depends on personal
driving habits and the driving road environment Therefore, this method is not suitable for
real-time detection of driver fatigue.

Physiological signal measurement methods are usually based on the driver’s phys-
iological signals, such as electroencephalogram (EEG [5]), electrooculogram (EOG [6]),
and EMG [7]. The fatigue state can be evaluated by frequency domain analysis and linear
classification based on EEG or EEG. However, this method needs a large number of sensors,
even wearable sensors, to measure the driver’s physiological signal, which may cause
driver discomfort. These constraints make this method difficult to apply to the real driving
environment.

Compared with the other two methods, the visual method has irreplaceable advan-
tages that are real time and non-invasive. Driver fatigue usually leads to a series of
abnormal actions, such as frequent opening and closing of eyes and yawning. A visual
method can help identify these actions consistently. A common visual strategy for fatigue
detection mainly includes three steps: face detection, facial state recognition, and fatigue
assessment. When the head deflects greatly for a long time, it is usually a precursor to
low alertness and fatigue driving and the head deflection reduces the detection accuracy
of the eyes and mouth state at the same time. Therefore, the head pose state should also
be regarded as one of the indicators of driver fatigue. However, this problem was often
ignored in the past. In recent years, this research has begun to garner wide attention [8].

This study proposes a novel driver fatigue detection framework. This framework
consists of three parts: facial state recognition, head pose estimation, and fatigue assessment.
Compared with the traditional visual method, this framework adds head pose estimation
and takes it as an indicator of driver fatigue, which effectively improves the accuracy and
robustness of this framework. The contributions of this study are as follows:

1. In this study, a new fatigue detection system is designed that calculates whether the
driver is in the fatigue driving state based on the facial state and the head posture.
The performance of the system is verified according to the existing and self-built
datasets.

2. In this study, the residual channel attention network (RCAN) is proposed to classify
the states of eyes and the mouth, and a channel attention module is designed to
be embedded in the RCAN. The attention module can adaptively extract the global
semantic information of the image and significantly improve the accuracy of face state
classification. Then PERCLOS and POM are used to evaluate whether the driver is in
a fatigue state.

3. The EPnP method is used to estimate the camera pose and then transform it into Euler
angle of the head. This method only needs five landmark points of the face to estimate
the Euler angle of the head pose. According to the self-built dataset, the rationality of
head pose estimation as a supplement to driver fatigue detection is verified.

4. The rest of this article is as follows. Section 2 introduces the methods related to
driver fatigue detection used in recent years. Section 3 introduces the proposed driver
fatigue detection system in detail. Section 4 declares the experiments and discusses
the results. Section 5 concludes this article.

2. Related Works

Judging driver fatigue based on facial state is basically divided into two steps: face
detection and state detection. The first step of face state recognition is to detect the face in
the image. Before the advent of deep learning technology, Viola et al. [9] introduced what is
termed the “Integral Image” to represent the feature of the image and combined AdaBoost
classifier in a “cascade” way to achieve efficient and fast face detection. In recent years,
deep learning has met with great success in face detection. Zhang et al. [10] proposed
a deep-cascaded multi-task framework (MTCNN) to detect the face. This framework
uses cascaded networks to quickly generate and filter candidate facial windows and then
generate a final facial bounding box and key face points. Retinaface [11] proposed by Deng
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et al. added a self-supervised mesh decoder branch for predicting pixel-wise 3D shape face
information and has surpassed MTCNN in inference efficiency and accuracy. In this study,
Retinaface is used as the face detection method.

Recent theoretical developments have revealed that the methods of facial state recogni-
tion are based on biological vision, traditional machine visual methods, and deep learning.
The main research contents of facial state recognition include the eye state (open/close)
and the mouth state (open/close). In the biological vision method, Benoit et al. [12] used
the bio-inspired vision data to detect face motion. This method calculates the local energy
in the video based on the Magno feature of the given video to determine whether the eyes
are blinking and the mouth is open. In the traditional machine visual methods, Bakheet
et al. [13] improved the HOG feature and used the naive Bayes method to classify the
eye state and achieved 85.62% detection accuracy in the NTHU-DDD dataset. Akrout
et al. [14] used the optical flow method to detect whether the mouth is open and used Haar
wavelets and circular Hough transform to detect the eyes’ opening angle. The robustness
and accuracy of the deep learning method make it superior to biological vision and tradi-
tional machine visual methods. Gu et al. [15] proposed MSP-Net to detect the facial state.
MSP-Net can fit multi-resolution input images captured from variant cameras excellently.
Ji et al. [16] used MTCNN detect face and design ESR-Net and MSR-Net to detect the facial
state. Zhao et al. [17] used the single-shot multi-box detector algorithm to detect the face
region and used VGG-16 to classify the facial state. With the development of deep learning,
the introduction of the channel attention mechanism in the convolutional neural network
has been proved to be effective in improving the accuracy of image classification [18].
Inspired by the above study and the channel attention mechanism, in this study, the RCAN
is designed, which includes a series of stacked channel attention blocks to improve the
accuracy of facial state recognition.

If the driver’s head posture changes too much, the detection accuracy of eyes and the
mouth will be reduced. Therefore, judging whether the driver’s head posture is normal
should be included in the scope of fatigue detection. In this study, the estimation of head
posture is added to the judgment of the fatigue state. Ruiz et al. [19] trained a multi-loss
CNN to predict intrinsic Euler angles. Abate et al. [20] proposed a regression model to
estimate the head pose. This method uses a web-shaped model algorithm to encode the
head posture and uses a regression algorithm to estimate the Euler angle. In the latest study,
Abate et al. [21] combined the fractal image compression characteristics and regression
analysis to predict the Euler angle and show its excellent performance in the BIWI dataset
and the AFLW2000 dataset. The above methods all use the regression method to solve
the head pose problem, which needs more facial landmark input and even extra training.
Therefore, this paper uses the Perspective-n-Point (PNP) method to solve the camera pose
and then solves the Euler angle of the head according to the camera pose. Given a general
3D head model and more than four 2D points, the Euler angle of the head on the image can
be estimated by direct linear transform (DLT) or the Levenberg–Marquardt (LM) algorithm.
The goal of DLT is not to minimize the projection error, which leads to inaccurate results.
The results of the LM algorithm solved by iteration are not necessarily a positive solution.
Lepetit et al. [22] proposed EPnP to estimate the pose of a calibrated camera from 3D-to-2D
point correspondences, where time complexity is O(n). Therefore, this paper uses EPnP to
estimate the camera pose and then transforms it into the Euler angle of the head.

The existing fatigue assessment methods include PERCLOS [23] and POM. According
to research, when PERCLOS exceeds 0.8 or POM is greater than 0.5, the driver will enter
the fatigue state. Compared with other fatigue detection methods, head pose estimation is
added to the method proposed in this study. Therefore, the head posture change is also
included in the fatigue detection parameter.

3. Materials and Methods

This study mainly contains three aspects: facial state recognition, head pose estimation,
and fatigue assessment. Firstly, this study uses Retinaface to detect face and mark the facial
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bounding box, eye regions, and the mouth region. Then the eye regions and the mouth are
sent to judge the state by the RCAN. Next, this study uses the facial landmark generated
by Retinaface and then uses the EPnP algorithm to estimate the head pose. Finally, fatigue
is judged by PERCLOS and POM and the head pose parameter. The overall structure of
this paper is shown in Figure 1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 20 
 

3. Materials and Methods 
This study mainly contains three aspects: facial state recognition, head pose estima-

tion, and fatigue assessment. Firstly, this study uses Retinaface to detect face and mark 
the facial bounding box, eye regions, and the mouth region. Then the eye regions and the 
mouth are sent to judge the state by the RCAN. Next, this study uses the facial landmark 
generated by Retinaface and then uses the EPnP algorithm to estimate the head pose. Fi-
nally, fatigue is judged by PERCLOS and POM and the head pose parameter. The overall 
structure of this paper is shown in Figure 1. 

 
Figure 1. The overall structure of driver fatigue state detection. 

3.1. Facial State Recognition 
Retinaface has good robustness in complex situations and can accurately output the 

landmarks of the face: the left and right mouth corners, the center of the nose, and the 
centers of the left and right eyes. Retinaface performs pixel-wise face localization on faces 
of various scales by taking advantages of joint extra-supervised and self-supervised multi-
task learning. Therefore, Retinaface can also accurately locate the five landmarks of hu-
man face when the camera is far away from the driver. Figure 2 depicts the results of face 
detection using Retinaface. According to the five landmarks given by Retinaface, the eye 
region and the mouth region can be obtained. Section 3.2 shows how to obtain these re-
gions. 

 
Figure 2. Detection results of Retinaface. 

After obtaining the regions of eyes and the mouth, these regions will be uniformly 
scaled to 56 × 56 and input to the RCAN to judge the state. In this study, the RCAN is 
proposed to extract the features of the eyes and mouth. The RCAN is composed of three 

Figure 1. The overall structure of driver fatigue state detection.

3.1. Facial State Recognition

Retinaface has good robustness in complex situations and can accurately output the
landmarks of the face: the left and right mouth corners, the center of the nose, and the
centers of the left and right eyes. Retinaface performs pixel-wise face localization on
faces of various scales by taking advantages of joint extra-supervised and self-supervised
multi-task learning. Therefore, Retinaface can also accurately locate the five landmarks of
human face when the camera is far away from the driver. Figure 2 depicts the results of
face detection using Retinaface. According to the five landmarks given by Retinaface, the
eye region and the mouth region can be obtained. Section 3.2 shows how to obtain these
regions.
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After obtaining the regions of eyes and the mouth, these regions will be uniformly
scaled to 56 × 56 and input to the RCAN to judge the state. In this study, the RCAN is
proposed to extract the features of the eyes and mouth. The RCAN is composed of three
residual channel attention blocks (RCABs) that have the same structure in series, in which
channel attention module is integrated. EfficientNet [24] and MobileNet [25] also have a
similar structure. In the block of the RCAN, we uniformly use a 3 × 3 convolution kernel
to extract features and stack multiple 3 × 3 convolution kernels to expand the receptive
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field in every RCAB. The RCAN finally achieves the last feature layer, the size of which is
7 × 7. Then this layer will be sent to the fully connected layer for feature aggregation. The
complete structure of the RCAN is shown in Table 1.

Table 1. The structure of the RCAN.

Layer Kernel Size Filters Stride Output

- 1 × 1 16 1 56 × 56 × 16
- 1 × 1 16 1 56 × 56 × 16

RCAB1 1 × 1, 3 × 3 32 1 56 × 56 × 32
Max-Pooling 2 × 2 - 2 28 × 28 × 32

RCAB2 1 × 1, 3 × 3 64 1 28 × 28 × 64
Max-Pooling 2 × 2 - 2 14 × 14 × 64

RCAB3 1 × 1, 3 × 3 128 1 14 × 14 × 128
Max-Pooling 2 × 2 - 2 7 × 7 × 128

FC Layer1 512 FC - 512
FC Layer2 512 FC - 2
Softmax 2 Softmax - 2

In an RCAB, the channel attention module is used for feature re-extraction of the
current feature layer. As every channel of a feature map is regarded as a feature detector [26],
the channel attention module focuses on what is meaningful given a feature map. The
significance of the channel attention module is to suppress a useless channel of the feature
map and enhance the role of the useful channel of the feature map. Therefore, the channel
attention module can suppress the unnecessary background area, which can help the
RCAN know “what to look for”.

Figure 3 shows the structure of an RCAB and its channel attention module. This
module extracts information by squeezing each channel of a feature map so that the feature
layer with stronger semantic information has a higher weight. The ways of squeezing
include global average-pooling (GAP) and global max-pooling (GMP). Ref. [26] demon-
strated that it is effective to use GAP or GMP for squeezing the feature layer. GAP and
GMP have different representation abilities. GMP focuses on the most significant region in
the image to compensate the global region that GAP focuses on. Therefore, GAP and GMP
have different effects on the compression feature layer. However, the convolutional block
attention module (CBAM) proposed in [26] can be regarded as adding GAP to GMP directly
for feature extraction, which causes the channel attention module input to be unbalanced.
For this reason, the proposed channel attention module multiplies GAP and GMP by a
trainable weight in the input stage and then adds them and sends them to a multi-layer
perceptron (MLP) with a hidden layer to extract information. A residual connection is
included between the input and output of the channel attention module, which makes it
easy to converge when training the RCAN.

The specific operations of the proposed channel attention module are as follows: Set
Minput as the input of the channel attention module in the current RCAB. C is the total
channels of Minput. First, Minput is squeezed into the GAP layer Fgap ∈ R C×1×1 and the
GMP layer Fgmp ∈ R C×1×1. Then a trainable parameter α, which is greater than 0 and no
more than 1, is set as the weight of GAP. Relatively, the weight of the GMP layer is 1 −
α. Section 4.2 describes how to train α. The proposed module can ensure the weight of
GAP and GMP is positive. Then αFgmp and (1 − α)Fgap are added and sent to an MLP
to extract features. The MLP has only one hidden layer. The proposed module sets the
parameter of reduction rate k according to [26]. The hidden layer of the MLP contains
C/k neurons. Next, the sigmoid function is used to activate the output of the MLP to get
the final channel weight FCA. FCA and Minput are multiplied element-wise to get the final
channel attention feature map of the current RCAB. Minput and Moutput contain a residual
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connection. The calculation process of the channel attention module can be simplified as
the following equations:

FCA = sigmoid(MLP(αFgap + (1 − α)Fgmp)) (1)

Moutput =
(
FCA ⊗Minput

)
+ Minput (2)

where ⊗ denotes element-wise multiplication. MLP represents the send feature vector
(αFgap + (1 − α)Fgmp) to generate the corresponding feature vector.
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After extracting the features of three RCABs in the RCAN, the feature vectors of
the original image are aggregated into a fully connected layer. The last layer of the fully
connected layer is the output of the RCAN. The eye and mouth states are classified by
the RCAN. Therefore, the output contains two neurons: open/close eye or open/close
mouth. Softmax classifier is used to get the probability of the output. The Softmax classifier
equation is as follows:

Pi =
exp(γi)

2
∑

i=1
exp(γi)

(3)

where γi represents the output of the RCAN, while P(γi) represents the probability of the
classification result.

To verify the effectiveness of RCAN, this study compares the RCAN with ResNetXt [27],
InceptionV4 [28], EfficientNet [24], and added ablation experiments to verify the effective-
ness of the channel attention module.

3.2. Head Pose Estimation

The inattention that occurs when a driver is unable to maintain their head posture is a
precursor to fatigue driving. In the case of excessive face rotation, head pose estimation
can be used as a supplementary signal for driver fatigue detection. Therefore, this section
proposes to use the EPnP method for head pose estimation, which is based on the identifi-
cation of five 2D landmarks on a face by Retinaface. The 3D point distribution in the world
coordinate system can usually be mapped to the point distribution of 2D images. This
mapping relationship can be reflected by the rotation matrix of the camera. The rotation
matrix based on the camera pose can transform into the Euler angle of the head pose (pitch,
yaw, roll), which directly displays the head pose. Retinaface outputs the 2D positions of the
left/right eye, the left/right mouth corner, and the nose. These five points are not coplanar
in 3D space. Therefore, this study uses EPnP to determine the position, orientation, and
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rotation matrix of the camera. Figure 4 shows the results of head pose estimation by EPnP
in a natural scene.
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This study assumes that the camera extrinsic parameters and the 3D coordinates of
the human face model in the world coordinate system are known. The internal parameters
were calibrated by the checkerboard plane calibration method. The 3D coordinates in the
world coordinate system are Pw

i , i = 1, ···, 5, and the 3D coordinates in the camera coordinate
system are Pc

i , i = 1, ···, 5. EPnP requires each 3D point to be a weighted sum of four control
points. The coordinates of the four control points in the world coordinate system are cw

j ,
j = 1, ···, 4. The coordinates of the four control points in the camera coordinate system are
cc

j , j = 1, ···, 4. Therefore, Pw
i and Pc

i can be represented by the following equation:

Pw
i =

4

∑
j=1

aijcw
j , Pc

i =
4

∑
j=1

aijcc
j , with

4

∑
j=1

aij = 1 (4)

where aij are homogenous barycentric coordinates of control. Ref. [21] gives a specific
method to determine the control points. In the world coordinate system, select the centroid
of the 3D point as the first control point:

cw
1 =

1
n

n

∑
1

Pw
i , with n = 5 (5)

Then the matrix A is obtained and can calculate the eigenvalue λw,i, i = 1, 2, 3 of AT A.
The eigenvector of AT A is (vw,i, i = 1, 2, 3). A is shown in Equation (6), and the remain
three control points can be determined by Equation (7).

A =

[
PwT

1 cwT
1· · ·

PwT
5 cwT

1

]
(6)

cw
j = cw

1 + λ
1
2
w,j−1vw,j−1, j = 2, 3, 4 (7)

Therefore, the weight of the four control points can be calculated by the following
equation: 

ai1
ai2
ai3
ai4

 =

[
cw

1
1

cw
2
1

cw
3
1

cw
4
1

]−1[ Pw
i
1

]−1

(8)
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This study assumes a camera with internal parameters calibrated. The calculation
equation of Pc

i can be rewritten as:

zc
j

 ui
vi
1

 =

 fu 0 u
0 fv v
0 0 1

 4

∑
j=1

aij

 xc
j

yc
j

zc
j

 (9)

where
[

xc
j , yc

j , zc
j

]T
represents cc

i and ui and vi represent the 2D point of face landmark.
fu and fv are the focal lengths of camera. u and v are the optical centers of the camera.
Continue to simplify Equation (10) to generate a linear equation by concatenating all the
unknowns.

M
[
ccT

1 , ccT

2 , ccT

3 , ccT

4

]T
= 0, where

[
ccT

1 , ccT

2 , ccT

3 , ccT

4

]T
is 12 × 1 (10)

The 3D coordinate values of the control points in the camera coordinate system can be
obtained by solving Equation (11). The specific solution process is described in [21] and is
not the focus of this article. The position and orientation of the camera can be calculated by
getting all the control points. According to Equation (4), in this study, the 3D coordinates
of five 2D landmarks in the camera coordinate system can be calculated. Next, the rotation
matrix of the camera is calculated by the following steps:

1. Calculate the centroid of 3D points (cw
0 ) in the world coordinate system and the

centroid of 3D points (cc
0) in the camera coordinate system.

2. Set matrix A and matrix B and calculate them. The equation is as follows:

A =

PwT
1 cwT

0· · ·
PwT

5 c
wT

0

,B =

[
PcT

1 ccT
0· · ·

PcT
5 ccT

0

]
(11)

3. Set matrix H, which is decomposed by SVD. The equation is as follows:

H = BT A = U ∑ VT (12)

4. Calculate rotation matrix R. The equation is as follows:

R = UVT =

 fu 0 u
0 fv v
0 0 1

 (13)

Finally, the head pose can be obtained by transforming the rotation matrix into the
Euler angle. The equations are as follows:

θx = arctan(r32,r33),θy = arctan(−r31,
√

r322 + r332),θz = arctan(r21,r11) (14)

where θx, θy, and θz represent the pitch, yaw, and roll of the head pose, respectively.

3.3. Driver Fatigue Detection

When a driver enters the fatigue state, several physiological reactions will occur, such
as blinking and yawning. Frequent change of head posture or excessive head angle change
also reflects the driver’s inattention, which is a precursor to fatigue driving. The RCAN
proposed in Section 3.1 can detect the state of eyes and the mouth. The head angle can be
estimated by EPnP (Section 3.2). Therefore, this study uses PERCLOS, POM, and the head
pose angle to estimate the state of driver fatigue.
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3.3.1. PERCLOS

PERCLOS represents the eye closing time percentage in the total time per unit time.
The equation is as follows:

PERCLOS =
neye

Neye
× 100% (15)

where neye represents the total number of frames with eyes closed per unit time and Neye
represents the total frames per unit time. [29] indicated that when PERCLOS is higher than
0.15, the driver enters a fatigue state. Other studies, such as [30] and [23], set the threshold
of PERCLOS to 0.25 and 0.4. Therefore, in this study, the threshold of PERCLOS is obtained
by experiments.

3.3.2. POM

POM is similar to PERCLOS and represents the mouth opening time percentage in the
total time per unit time. The equation is as follows:

POM =
nmouth
Nmouth

× 100% (16)

where nmouth represents the total number of frames with the mouth open per unit time and
Nmouth represents total frames per unit time. Greater values of POM and PERCLOS suggest
higher degrees of driver fatigue.

3.3.3. Head Pose Angle

In this study, the 3D landmark in the world coordinate system is a fixed value. The
reason is that we only need to estimate whether the head deviates too much from the
normal posture rather than the specific deflection angle. Therefore, it is necessary to
determine the angle of excessive head pose deflection (over-angle). The over-angle can be
determined by experiment, and experiment shows that pitch, yaw, and roll have different
over-angles.

3.3.4. Driver Fatigue Detection

The proposed driver fatigue detection system can run in real time, and the steps are
as follows. Firstly, Retinaface captures the face and five landmarks of the face and extracts
the eyes and mouth regions. Secondly, the RCAN detects the eye and mouth states of the
current frame. At the same time, EPnP is used to output the head pose angle of the current
frame and then judge whether it exceeds the over-angle. The queue mechanism is used
to save the outputs of the RCAN. After that, the length of the queue remains unchanged.
The first value of the queue is deleted and a new value is added every frame. Finally, the
PERCLOS and POM of each frame are calculated and compared with the threshold. If
PERCLOS and POM values exceed the threshold values, it is determined that the driver is
entering a fatigue state. If the Euler angle of the driver’s head exceeds the over-angles, the
driver shall be warned.

4. Experiments and Results
4.1. Dataset

This paper uses four datasets for training the RCAN and evaluating its performance.
Table 2 shows all the datasets used in this study. The first dataset is CEW [31]. The authors
of the CEW dataset collected 4846 eye images, which included 2384 open eye images and
2462 closed eye images. The size of these images is 24 × 24. Therefore, the images need to
be scaled to 56 × 56 to adapt to the input size of the RCAN. This dataset has no image data
of the mouth (open/close).

The second dataset is DROZY [32]. The DROZY dataset includes 36 video sequences
in which volunteers are in the state of drowsiness. We transformed these video sequences
into 6210 images as a dataset that includes the eye and mouth states.
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The third dataset is YawDD [33]. The authors of the YawDD dataset collected a total of
351 video sequences that simulated various characteristics of fatigue driving. These video
sequences contain the real-time states of eyes and the mouth. Therefore, we transformed
these video sequences into images frame by frame and collected 5510 eye state images and
4925 mouth state images. Then we annotated the obtained dataset. The eye state dataset
has 3009 open eye images and 2501 closed eye images. The mouth state dataset has 2874
open mouth images and 2051 closed mouth images.

Table 2. All datasets used in this study.

Dataset Train
(Eyes) Test (Eyes) Total Train

(Mouth)
Test

(Mouth) Total

CEW 3877 969 4846 × × ×
Open 1907 477 2384 × × ×
Close 1970 492 2462 × × ×

YawDD 4408 1102 5510 3940 985 4925
Open 2408 601 3009 2299 575 2874
Close 2000 501 2501 1641 410 2051

DROZY 3128 782 3910 1840 460 2300
open 1560 390 1950 898 224 1122
Close 1568 392 1960 942 236 1178

SDF 14,567 3642 18,209 7818 1954 9772
Open 7821 1956 9777 4123 1031 5154
Close 6746 1686 8432 3695 923 4618

The last dataset is a self-built dataset named simulated driver fatigue (SDF). We
gathered 20 volunteers to simulate fatigue driving in a real driving environment. Each
person simulated three driving fatigue states: yawning, blinking frequently, and closing
the eyes for a long time. The SDF dataset obtained 18,209 annotated eye images and 9772
annotated mouth images by clipping the video frames in the dataset. In addition, SDF
contains 10 one-min videos simulating the change of the driver’s head posture. The video
annotated the frame when the Euler angle of the driver’s head deflected too much and
annotated it as over-angle. This study selects the over-angle according to the SDF dataset.
Figure 5 shows examples of all datasets this study used.
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4.2. Implementation Details

The experimental platform of our works is an industrial computer equipped with
a NIVIDA GeForce RTX2080 graphics board. The CPU of the industrial computer is i7-
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9800x. The training and detection platform of the RCAN depends on Pytorch, and the
implementation of head pose estimation depends on the OpenCV library.

In the training process of the RCAN, this study used the cross-entropy loss function.
The batch size is 32, and the epoch of training is 100. During training, the method of
optimizer is Adam [34]. Adam parameters are as follows: according to [34], the initial
learning rate is 0.001, the first estimated exponential decay rate is 0.9, and the second
estimated exponential decay rate is 0.999.

In the channel attention module, we assume that GAP and GMP have the same impact
on the classification effect of the RCAN in the initial training state. The initial value of α is
0.5. In more detail, we set α = 1/(1 + ez), which leads to α between 0 and 1. The reduction
rate k of the channel attention module is uniformly set to 8 in our works. Section 4.3 shows
the improvement of the channel attention module on the classification performance.

4.3. Performance of the RCAN

To prove the superiority of the RCAN in driving fatigue detection, we compared the
RCA α N with other classical CNN structures, i.e., ResNetXt-50 [27], InceptionV4 [28], and
EffcientNet [24], in four datasets. The results are shown in Table 3.

Table 3. Classification accuracy of the RCAN and different classical CNN structures on four datasets.

Dataset Training Object Test Data Method Accuracy (%)

SDF

Eyes 3642 ResNetXt-50 97.968
InceptionV4 97.831
EfficientNet 98.325
RCAN(no attention) 96.541
RCAN (CBAM) 98.465
RCAN 98.962

Mouth 1954 ResNetXt-50 97.595
InceptionV4 97.697
EfficientNet 98.464
RCAN (no attention) 94.417
RCAN(CBAM) 98.327
RCAN 98.516

DROZY

Eyes 782 ResNetXt-50 98.593
InceptionV4 98.977
EfficientNet 98.721
RCAN (no attention) 98.082
RCAN (CBAM) 98.593
RCAN 99.233

Mouth 460 ResNetXt-50 97.609
InceptionV4 97.391
EfficientNet 98.043
RCAN (no attention) 96.304
RCAN (CBAM) 98.261
RCAN 98.478

YawDD

Eyes 1102 ResNetXt-50 98.457
InceptionV4 98.276
EfficientNet 98.548
RCAN (no attention) 95.531
RCAN (CBAM) 98.557
RCAN 99.002

Mouth 985 ResNetXt-50 98.172
InceptionV4 98.477
EfficientNet 98.782
RCAN (no attention) 94.188
RCAN(CBAM) 98.438
RCAN 98.678

CEW

Eyes 969 ResNetXt-50 98.555
Inception 98.967
EfficientNet 98.762
RCAN (no attention) 97.751
RCAN(CBAM) 98.967
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In the CEW and DROZY datasets, the classification results of the RCAN and other
CNNs are relatively close. Most human eye images of the CEW dataset are taken in the
forward direction, which caused the data dispersion to be low and easy to classify. In
SDF and YawDD, the classification accuracy of the RCAN is higher than that of other
CNNs. More deeply, we use Precision (p), Recall (R), and F-score to evaluate the classification
performance of the RCAN. The equations of the above evaluation indicators are as follows:

Precision =
TP

TP + FP
(17)

Recall =
TP

TP + FN
(18)

F-score =
2× Precision× Recall

Precision + Recall
(19)

where TP is the number of closed eye/mouth images that are predicted to be correct by
the model. In contrast, FP is the number of closed eye/mouth images that are predicted
to be false. FN is the number of the actual open eye/mouth images mistakenly classified
as closed eye/mouth images. F-score is the harmonic average of precision and recall. The
higher the F-score, the better the performance of the classification model. The performance
of the RCAN in TP, FP, and F-score in each dataset is shown in Table 4.

Table 4. Classification results of the RCAN in each dataset.

Dataset Type P (%) R (%) F-Score (%) Accuracy (%)

CEW 99.278
Eye data Open eyes 99.370 99.161 99.265

Closed eyes 99.189 99.39 99.289

DROZY (eyes) 99.233
Eye data Open eyes 99.458 98.974 99.229

Closed eyes 98.985 99.490 99.237
DROZY (mouth) 98.478

Mouth data Open mouth 98.655 98.214 98.434
Closed mouth 98.312 98.729 98.520

YawDD (eyes) 99.002
Eye data Open eyes 99.167 99.002 99.084

Closed eyes 98.805 99.002 98.903
YawDD (mouth) 98.678

Mouth data Open mouth 98.780 98.953 98.867
Closed mouth 98.533 98.293 98.413

SDF (eyes) 98.962
Eye data Open eyes 99.084 98.983 99.034

Closed eyes 98.820 98.937 98.878
SDF (mouth) 98.516
Mouth data Open mouth 98.735 98.448 98.592

Closed mouth 98.272 98.592 98.432

Figure 6 shows the PR curves of the RCAN under four datasets. The larger the area
wrapped by the PR curve, the better the classification performance. The experimental
results demonstrate that the classification performance of the proposed RCAN on the eye
state is better than on the mouth state. In the SDF dataset, the accuracy of the RCAN can
reach 98.962% for eye state classification. Similarly, the accuracy of the RCAN can reach
98.516% in the classification of the mouth state.

The RCAN also includes the channel attention module. To verify the effectiveness the
channel attention module, we adopted the ablation strategy for experiment. We compared
the original RCAN with the RCAN that deleted the channel attention module and the
RCAN that fixed α as 0.5. The RCAN that fixed α as 0.5 is equivalent to the channel
attention submodule of the CBAM [26]. Therefore, this study names this network structure
as the RCAN (CBAM). Table 3 shows that the accuracy of the original RCAN is higher
than that of the RCAN (CBAM) and the RCAN (no attention). We used Grad-CAM [35] to
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show the difference between the original RCAN and the RCAN (CBAM) and the RCAN
(no attention). Grad-CAM can not only locate the position of eyes and the mouth in the
image but also show what details the network has learned. Figure 7 shows that the RCAN
with the channel attention module (original RCAN) can learn more details about the eye,
such as the outline of the eye and the shape of the pupil. Therefore, the above experiments
show that the channel attention module in the RCAN is effective.
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4.4. Selection of the Over-Angle

The objective of this section is to determine whether the head pose is in an over-
deflection state through the pitch, yaw, and roll of the head. In reality, we cannot directly
obtain the Euler angle of the head and we just need to know whether the head is too
deflected. In Section 3.1, this article constructed 10 one-min videos simulating the change
of the driver’s head posture and marked each frame. If the head Euler angle is too deflected,
it is annotated as 1, and if the head Euler angle is in a normal state, it is annotated as −1.
Therefore, the purpose of this section is to obtain the angle (over-angle) at which the head
posture is too deflected. When the Euler angle output by EPnP exceeds this angle, it is
considered that the head posture is too deflected.

According to [14], the normal state of the head Euler angle is [−20◦, 20◦]. This value
is related to the different methods used by different researchers. Therefore, this paper
dynamically tests the situation of over-angles 16 to 25. The test results are shown in
Figure 8.
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The middle image is of the yaw over-angle. The right image is of the roll over-angle.

Figure 8 shows missed detection or wrong detection under different over-angles. It
can be seen that when the pitch over-angle is 20◦, missed detection and wrong detection
is the least. Therefore, the pitch over-angle should be set to 21◦. That is, when the pitch
angle is between [−21◦, 21◦], the head pitch angle is normal. Similarly, the yaw over-angle
should be set to 20◦ and the roll over-angle should be set to 20.5◦. Figure 9 shows the
results of using this set of over-angles to analyze one of the 1-min videos.

There are six graphs, from top to bottom, in Figure 9. The red curve of the first graph
is the pitch output by EPnP. The blue line segment is binarized using the pitch over-angle.
If it exceeds the over-angle, the pitch is too deflected. The second graph is the ground truth
of the pitch angle. This line segment is the result of manual annotation. Other graphs are
the test results of yaw and roll.
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4.5. Fatigue State Recognition

After the over-angle is determined, the thresholds of PERCLOS and POM need to be
determined. We followed the method of [36]. This experiment converted the video of the
SDF dataset into 60 frame sequences and converted them into images for recognition. Then
we calculated the PERCLOS and POM of each video sequence. The results are shown in
Figure 10.

The test results show that when PERCLOS reaches 0.32 or POM reaches 0.37, the
driver enters the fatigue driving state. The greater the PERCLOS and POM, the deeper the
driver’s fatigue. Synthesizing the results of this section and Section 4.4, it can be concluded
that when PERCLOS is greater than 0.32 or POM is greater than 0.37, the driver is already
in the fatigue driving stage. When the yaw angle is greater than 20◦, the pitch angle is
greater than 21◦, and the roll angle is greater than 20.5◦, the driver’s head posture has
deviated excessively and a safety warning shall be given to the driver.
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5. Conclusions

This study proposes a driver fatigue detection system based on the RCAN and head
pose estimation. First, we use Retinaface to locate the face and eye/mouth regions. Then,
the RCAN is used to classify the states of eyes and the mouth. Experiments show the
superiority of the RCAN in classifying eye and mouth states. Meanwhile, we use EPnP to
estimate the head pose based on five landmarks output by Retinaface. Then we compare
the Euler angle output by EPnP with the over-angle of the head pose to judge whether it is
in the state of over-deflection of the head. We use PERCLOS and POM to judge whether
the driver is in a state of drowsiness. The experimental results show that if PERCLOS is
greater than 0.32 or POM is greater than 0.37, the driver has already entered the state of
fatigue driving and should stop driving in time, and if the yaw angle is greater than 20◦,
the pitch angle is greater than 21◦, and the roll angle is greater than 20.5◦, the driver’s head
posture has deviated excessively and a safety warning shall be given to the driver. This
driver fatigue detection system has high detection accuracy and robustness.

There are still some limitations of this framework. The position of the camera affects
head pose estimation. Ideally, the camera is facing the driver. We have envisaged a solution,
such as using the Euler angle gradient, to judge whether the driver’s head pose has changed
suddenly. However, the discrimination conditions based on the gradient are too complex
to design, Therefore, the future improvement of the framework may involve calibrating
the initial pose of the camera based on other references in the vehicle, so as to optimize the
accuracy of head pose estimation.

This framework has been tested for fatigue detection in a real driving environment.
There are three future directions: 1. Continue to optimize the head pose estimation module.
2. Further increase the test data in the real driving environment. 3. Study how this
framework applies to drivers with conversational or acquired disabilities.
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