Hybrid Harmony Search Algorithm Applied to the Optimal Coordination of Overcurrent Relays in Distribution Networks with Distributed Generation
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Objective Function
2.2. Characteristic Curve
2.3. Coordination Criterion and Operation Time
2.4. Limits on TSM and Pick Up Currents
2.5. Constraints Regarding PSM
3. Methodology
3.1. Particle Swarm Optimization (PSO)
3.2. Harmony Search
- Every decision variable is analogous to a musical instrument;
- An iteration of the HS is equivalent to the musicians improvising for new harmonies;
- The objective function corresponds to the listeners’ appreciation;
- The optimal or quasi-optimal solution is analogous to the perfect harmony achieved among the musicians of the group.
3.3. Hybrid HS-SA Algorithm
Algorithm 1: Hybrid HS-SA algorithm. |
1 Let: be the proposed objective function 2 Initialize parameters: , , , , 3 Initialize harmony memory (HM) 4 Set: 5 while (stopping criteria is not reached) do 6 Find the current worst harmonic and the best harmony in HM 7 for to D do 8 if () then 9 where 10 if () then 11 where 12 end if 13 else 14 Generate within the allowed bounds (randomly) 15 end if 16 end for 17 18 if ( or ) then 19 Update HM by replacing the worst harmony by H 20 end if 21 Set 22 end while 23 Save the best harmony as the solution |
4. Results
4.1. Results for Scenario 1
4.2. Results for Scenario 2
4.3. Results for Scenario 3
4.4. Results for Scenario 4
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bui, D.M.; Chen, S.L. Fault protection solutions appropriately proposed for ungrounded low-voltage AC microgrids: Review and proposals. Renew. Sustain. Energy Rev. 2017, 75, 1156–1174. [Google Scholar] [CrossRef]
- Sortomme, E.; Mapes, G.; Foster, B.; Venkata, S. Fault analysis and protection of a microgrid. In Proceedings of the 2008 40th North American Power Symposium, Calgary, AB, Canada, 28–30 September 2008; pp. 1–6. [Google Scholar]
- Dewadasa, J.M.D. Protection of Distributed Generation Interfaced Networks. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2010. [Google Scholar]
- Norshahrani, M.; Mokhlis, H.; Abu Bakar, A.; Jamian, J.; Sukumar, S. Progress on Protection Strategies to Mitigate the Impact of Renewable Distributed Generation on Distribution Systems. Energies 2017, 10, 1864. [Google Scholar] [CrossRef] [Green Version]
- Hosseini, S.A.; Abyaneh, H.A.; Sadeghi, S.H.H.; Razavi, F.; Nasiri, A. An overview of microgrid protection methods and the factors involved. Renew. Sustain. Energy Rev. 2016, 64, 174–186. [Google Scholar] [CrossRef]
- Telukunta, V.; Pradhan, J.; Agrawal, A.; Singh, M.; Srivani, S.G. Protection challenges under bulk penetration of renewable energy resources in power systems: A review. CSEE J. Power Energy Syst. 2017, 3, 365–379. [Google Scholar] [CrossRef]
- Katyara, S.; Staszewski, L.; Leonowicz, Z. Protection Coordination of Properly Sized and Placed Distributed Generations–Methods, Applications and Future Scope. Energies 2018, 11, 2672. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo-Serna, J.d.J.; López-Lezama, J.M. Alternative Methodology to Calculate the Directional Characteristic Settings of Directional Overcurrent Relays in Transmission and Distribution Networks. Energies 2019, 12, 3779. [Google Scholar] [CrossRef] [Green Version]
- De Souza, A.C.Z.; Castilla, M. Microgrids Design and Implementation; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Saad, S.M.; El-Naily, N.; Mohamed, F.A. A new constraint considering maximum PSM of industrial over-current relays to enhance the performance of the optimization techniques for microgrid protection schemes. Sustain. Cities Soc. 2019, 44, 445–457. [Google Scholar] [CrossRef]
- El-Naily, N.; Saad, S.M.; Hussein, T.; Mohamed, F.A. A novel constraint and non-standard characteristics for optimal over-current relays coordination to enhance microgrid protection scheme. IET Gener. Transm. Distrib. 2019, 13, 780–793. [Google Scholar] [CrossRef]
- Zeineldin, H.H.; Mohamed, Y.A.R.I.; Khadkikar, V.; Pandi, V.R. A protection coordination index for evaluating distributed generation impacts on protection for meshed distribution systems. IEEE Trans. Smart Grid 2013, 4, 1523–1532. [Google Scholar] [CrossRef]
- Ehrenberger, J.; Švec, J. Directional Overcurrent Relays Coordination Problems in Distributed Generation Systems. Energies 2017, 10, 1452. [Google Scholar] [CrossRef] [Green Version]
- Saleh, K.A.; Zeineldin, H.H.; El-Saadany, E.F. Optimal Protection Coordination for Microgrids Considering N -1 Contingency. IEEE Trans. Ind. Inform. 2017, 13, 2270–2278. [Google Scholar] [CrossRef]
- Baghaee, H.R.; Mirsalim, M.; Gharehpetian, G.B.; Talebi, H.A. MOPSO/FDMT-based Pareto-optimal solution for coordination of overcurrent relays in interconnected networks and multi-DER microgrids. IET Gener. Transm. Distrib. 2018, 12, 2871–2886. [Google Scholar] [CrossRef]
- Alam, M.N. Adaptive protection coordination scheme using numerical directional overcurrent relays. IEEE Trans. Ind. Inform. 2018, 15, 64–73. [Google Scholar] [CrossRef]
- Lin, H.; Sun, K.; Tan, Z.H.; Liu, C.; Guerrero, J.M.; Vasquez, J.C. Adaptive protection combined with machine learning for microgrids. IET Gener. Transm. Distrib. 2019, 13, 770–779. [Google Scholar] [CrossRef]
- Ustun, T.S.; Ozansoy, C.; Zayegh, A. Modeling of a Centralized Microgrid Protection System and Distributed Energy Resources According to IEC 61850-7-420. IEEE Trans. Power Syst. 2012, 27, 1560–1567. [Google Scholar] [CrossRef]
- Kiliçkiran, H.C.; Şengör, İ.; Akdemir, H.; Kekezoğlu, B.; Erdinç, O.; Paterakis, N.G. Power system protection with digital overcurrent relays: A review of non-standard characteristics. Electr. Power Syst. Res. 2018, 164, 89–102. [Google Scholar] [CrossRef]
- Fani, B.; Bisheh, H.; Sadeghkhani, I. Protection coordination scheme for distribution networks with high penetration of photovoltaic generators. IET Gener. Transm. Distrib. 2017, 12, 1802–1814. [Google Scholar] [CrossRef]
- Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Optimal Coordination of Overcurrent Relays in Microgrids Considering a Non-Standard Characteristic. Energies 2020, 13, 922. [Google Scholar] [CrossRef] [Green Version]
- Assad, A.; Deep, K. A Hybrid Harmony search and Simulated Annealing algorithm for continuous optimization. Inf. Sci. 2018, 450, 246–266. [Google Scholar] [CrossRef]
- Srinivasa Rao, R.; Narasimham, S.V.L.; Ramalinga Raju, M.; Srinivasa Rao, A. Optimal Network Reconfiguration of Large-Scale Distribution System Using Harmony Search Algorithm. IEEE Trans. Power Syst. 2011, 26, 1080–1088. [Google Scholar] [CrossRef]
- Xin, Y.; Yi, J.; Zhang, K.; Chen, C.; Xiong, J. Offline Selective Harmonic Elimination With (2N+1) Output Voltage Levels in Modular Multilevel Converter Using a Differential Harmony Search Algorithm. IEEE Access 2020, 8, 121596–121610. [Google Scholar] [CrossRef]
- Sheikh, K.H.; Ahmed, S.; Mukhopadhyay, K.; Singh, P.K.; Yoon, J.H.; Geem, Z.W.; Sarkar, R. EHHM: Electrical Harmony Based Hybrid Meta-Heuristic for Feature Selection. IEEE Access 2020, 8, 158125–158141. [Google Scholar] [CrossRef]
- Elattar, E.E.; Elsayed, S.K.; Farrag, T.A. Hybrid Local General Regression Neural Network and Harmony Search Algorithm for Electricity Price Forecasting. IEEE Access 2021, 9, 2044–2054. [Google Scholar] [CrossRef]
- Peng, J.; Liu, M.; Zhang, X.; Ling, L. Hybrid heuristic algorithm for multi-objective scheduling problem. J. Syst. Eng. Electron. 2019, 30, 327–342. [Google Scholar] [CrossRef]
- Gao, M.; Zhu, Y.; Cao, C.; Zhu, Y. A Hybrid Cultural Harmony Search Algorithm for Constrained Optimization Problem of Diesel Blending. IEEE Access 2020, 8, 6673–6690. [Google Scholar] [CrossRef]
- Barzegari, M.; Bathaee, S.; Alizadeh, M. Optimal coordination of directional overcurrent relays using harmony search algorithm. In Proceedings of the 2010 9th International Conference on Environment and Electrical Engineering, Prague, Czech Republic, 16–19 May 2010; pp. 321–324. [Google Scholar] [CrossRef]
- Rajput, V.N.; Pandya, K.S. Coordination of directional overcurrent relays in the interconnected power systems using effective tuning of harmony search algorithm. Sustain. Comput. Inform. Syst. 2017, 15, 1–15. [Google Scholar] [CrossRef]
- ElSayed, S.K.; Elattar, E.E. Hybrid Harris hawks optimization with sequential quadratic programming for optimal coordination of directional overcurrent relays incorporating distributed generation. Alex. Eng. J. 2021, 60, 2421–2433. [Google Scholar] [CrossRef]
- Gutiérrez, D.; Villa, W.M.; López-Lezama, J.M. Flujo Óptimo Reactivo mediante Optimización por Enjambre de Partículas. Inf. Tecnol. 2017, 28, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Li, H.Q.; Li, L. A Novel Hybrid Particle Swarm Optimization Algorithm Combined with Harmony Search for High Dimensional Optimization Problems. In Proceedings of the 2007 International Conference on Intelligent Pervasive Computing (IPC 2007), Jeju Island, Korea, 11–13 October 2007; pp. 94–97. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G. A New Heuristic Optimization Algorithm: Harmony Search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933. [Google Scholar] [CrossRef]
- Yassen, E.; Ayob, M.; Nazr, M.; Ahmad, Z. Harmony Search Algorithm for Vehicle Routing Problem with Time Windows. J. Appl. Sci. 2013, 13, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Geem, Z.W. Optimal cost design of water distribution networks using harmony search. Eng. Optim. 2006, 38, 259–277. [Google Scholar] [CrossRef]
- Al-Omoush, A.A.; Alsewari, A.A.; Alamri, H.S.; Zamli, K.Z. Comprehensive Review of the Development of the Harmony Search Algorithm and its Applications. IEEE Access 2019, 7, 14233–14245. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef]
- Kar, S.; Samantaray, S.R.; Zadeh, M.D. Data-Mining Model Based Intelligent Differential Microgrid Protection Scheme. IEEE Syst. J. 2017, 11, 1161–1169. [Google Scholar] [CrossRef]
- Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Adaptive protection coordination scheme in microgrids using directional over-current relays with non-standard characteristics. Heliyon 2021, 7, e06665. [Google Scholar] [CrossRef]
- Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Optimal coordination of over-current relays in microgrids considering multiple characteristic curves. Alex. Eng. J. 2021, 60, 2093–2113. [Google Scholar] [CrossRef]
Scenario | Main Grid | DG1 | DG2 | DG3 | DG4 |
---|---|---|---|---|---|
1 | ON | OFF | OFF | OFF | OFF |
2 | ON | ON | ON | ON | ON |
3 | ON | ON | ON | OFF | OFF |
4 | OFF | ON | ON | ON | ON |
Scenarios | [10] | [11] | [GA [21]] | [PSO] | [HS] | [PSO-HS] | [HS-SA] |
---|---|---|---|---|---|---|---|
1 | 7.53 | 6.64 | 4.99 | 5.20 | 5.20 | 5.2 | 4.68 |
2 | 19.18 | 17.48 | 13.66 | 13.66 | 13.73 | 13.66 | 13.56 |
3 | 14.04 | 12.67 | 10.71 | 10.92 | 10.92 | 10.92 | 10.31 |
4 | 15.56 | 15.56 | 12.63 | 12.63 | 12.89 | 12.63 | 12.49 |
Relay | ||
---|---|---|
R1 | ||
R2 | 0.05 | 100 |
R3 | ||
R4 | 0.1689 | 100 |
R5 | ||
R6 | 0.3055 | 100 |
R7 | 0.1892 | 5 |
R8 | ||
R9 | ||
R10 | 0.05 | 100 |
R11 | ||
R12 | 0.05 | 99.55 |
R13 | ||
R14 | ||
R15 |
Fault | Operating Times of OCRs (s) | ||
---|---|---|---|
Main | Backup | ||
Fault 1 | R1 | R13 | |
R2 | R4 | ||
0.1 | 0.4 | ||
Fault 2 | R3 | R1 | |
R4 | R6 | R15 | |
0.35 | 0.65 | ||
Fault 3 | R5 | R15 | |
R6 | R7 | R8 | |
0.5 | 0.8 | ||
Fault 4 | R8 | R11 | |
R12 | R5 | R7 | |
0.10 | 0.89 | ||
Fault 5 | R9 | R14 | |
R10 | R6 | R15 | |
0.11 | 0.71 |
Relay | ||
---|---|---|
R1 | 0.1371 | 11.49 |
R2 | 0.05 | 67.73 |
R3 | 0.05 | 100 |
R4 | 0.1919 | 55.61 |
R5 | 0.1085 | 100 |
R6 | 0.3055 | 65.28 |
R7 | 0.245 | 99.55 |
R8 | 0.1892 | 44.99 |
R9 | 0.05 | 15.09 |
R10 | 0.05 | 32.03 |
R11 | 0.2208 | 100 |
R12 | 0.05 | 100 |
R13 | 0.1689 | 100 |
R14 | 0.0998 | 100 |
R15 | 0.1359 | 51.6 |
Fault | Operating Times of OCRs (s) | ||
---|---|---|---|
Main | Backup | ||
Fault 1 | R1 | R13 | |
0.44 | 0.75 | ||
R2 | R4 | ||
0.10 | 0.40 | ||
Fault 2 | R3 | R1 | |
0.17 | 0.47 | ||
R4 | R6 | R15 | |
0.30 | 0.60 | 0.6 | |
Fault 3 | R5 | R15 | |
0.28 | 0.77 | ||
R6 | R7 | R8 | |
0.53 | 0.8 | 0.8 | |
Fault 4 | R8 | R11 | |
0.81 | 1.1 | ||
R12 | R5 | R7 | |
0.09 | 0.37 | 1.2 | |
Fault 5 | R9 | R14 | |
0.20 | 0.50 | ||
R10 | R6 | R15 | |
0.10 | 0.73 | 0.97 |
Relay | ||
---|---|---|
R1 | ||
R2 | 0.05 | 36.71 |
R3 | ||
R4 | 0.1656 | 58.16 |
R5 | 0.0609 | 33.54 |
R6 | 0.2971 | 65.59 |
R7 | 0.1855 | 5 |
R8 | 0.1925 | 42.95 |
R9 | 0.6266 | 33.02 |
R10 | 0.05 | 60.47 |
R11 | 0.2186 | 71.96 |
R12 | 0.05 | 87.84 |
R13 | ||
R14 | ||
R15 | 0.1374 | 51.85 |
Fault | Operating Times of OCRs (s) | ||
---|---|---|---|
Main | Backup | ||
Fault 1 | R1 | R13 | |
R2 | R4 | ||
0.10 | 0.40 | ||
Fault 2 | R3 | R1 | |
R4 | R6 | R15 | |
0.32 | 0.62 | 0.62 | |
Fault 3 | R5 | R15 | |
0.28 | 0.69 | ||
R6 | R7 | R8 | |
0.52 | 0.82 | 0.83 | |
Fault 4 | R8 | R11 | |
0.82 | 1.10 | ||
R12 | R5 | R7 | |
0.10 | 0.40 | 0.9 | |
Fault 5 | R9 | R14 | |
R10 | R6 | R15 | |
0.11 | 0.69 | 0.90 |
Relay | ||
---|---|---|
R1 | 0.1511 | 76.23 |
R2 | 0.05 | 49.59 |
R3 | 0.05 | 47.71 |
R4 | 0.1552 | 56 |
R5 | 0.1571 | 90.12 |
R6 | 0.1477 | 42.65 |
R7 | ||
R8 | 0.2176 | 40.8 |
R9 | 0.05 | 32.32 |
R10 | 0.05 | 53.89 |
R11 | 0.2396 | 58.28 |
R12 | 0.05 | 57.41 |
R13 | 0.1669 | 95.87 |
R14 | 0.0998 | 83.93 |
R15 | 0.1371 | 61.34 |
Fault | Operating Times of OCRs (s) | ||
---|---|---|---|
Main | Backup | ||
Fault 1 | R1 | R13 | |
0.44 | 0.74 | ||
R2 | R4 | ||
0.12 | 0.42 | ||
Fault 2 | R3 | R1 | |
0.17 | 0.47 | ||
R4 | R6 | R15 | |
0.42 | 0.72 | 0.72 | |
Fault 3 | R5 | R15 | |
0.41 | 0.78 | ||
R6 | R7 | R8 | |
0.69 | 1.00 | ||
Fault 4 | R8 | R11 | |
0.95 | 1.28 | ||
R12 | R5 | R7 | |
0.13 | 0.43 | ||
Fault 5 | R9 | R14 | |
0.21 | 0.51 | ||
R10 | R6 | R15 | |
0.12 | 0.88 | 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldarriaga-Zuluaga, S.D.; López-Lezama, J.M.; Muñoz-Galeano, N. Hybrid Harmony Search Algorithm Applied to the Optimal Coordination of Overcurrent Relays in Distribution Networks with Distributed Generation. Appl. Sci. 2021, 11, 9207. https://doi.org/10.3390/app11199207
Saldarriaga-Zuluaga SD, López-Lezama JM, Muñoz-Galeano N. Hybrid Harmony Search Algorithm Applied to the Optimal Coordination of Overcurrent Relays in Distribution Networks with Distributed Generation. Applied Sciences. 2021; 11(19):9207. https://doi.org/10.3390/app11199207
Chicago/Turabian StyleSaldarriaga-Zuluaga, Sergio D., Jesús M. López-Lezama, and Nicolás Muñoz-Galeano. 2021. "Hybrid Harmony Search Algorithm Applied to the Optimal Coordination of Overcurrent Relays in Distribution Networks with Distributed Generation" Applied Sciences 11, no. 19: 9207. https://doi.org/10.3390/app11199207
APA StyleSaldarriaga-Zuluaga, S. D., López-Lezama, J. M., & Muñoz-Galeano, N. (2021). Hybrid Harmony Search Algorithm Applied to the Optimal Coordination of Overcurrent Relays in Distribution Networks with Distributed Generation. Applied Sciences, 11(19), 9207. https://doi.org/10.3390/app11199207