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Abstract: In this study a cobalt(II) complex of quercetin was synthetized in the solid state with the
general formula Co(C15H9O7)2·2H2O. The FT-IR, elemental analysis, and UV/Vis methods were used
to study the composition of the complex in a solid state and in a water solution. The anti-/pro-oxidant
activity of quercetin and the Co(II) complex was studied by means of spectrophotometric DPPH (2,2-
diphenyl-1-picrylhydrazyl), FRAP (ferric reducing antioxidant activity) and Trolox oxidation assays.
The cytotoxicity of quercetin and Co(II)-quercetin complex in HaCat cell lines was then established.
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1. Introduction

Flavonoids are a category of plant hydroxylated phenolic compounds with an aromatic
ring structure and include quercetin [1–3]. The highest concentrations of quercetin were
reported in unsweetened cocoa powder (20.10 mg/100 g); fruits such as apples (with
skin 4.42 mg/100 g) and raw cranberries (14.00 mg/100 g); and vegetables such as raw
onions (13.27 mg/100 g), raw broccoli (3.21 mg/100 g), and raw spinach (4.86 mg/100 g).
The concentration of quercetin in beverages such as green tea (2.69 mg/100 g), black tea
(1.99 mg/100 g), and red wine (0.84 mg/100 g) was also determined [4].

Quercetin possesses a variety of biological properties (Figure 1), but low water solu-
bility and bioavailability limits its use as a drug or food supplement [5–9]. However, new
formulations of quercetin, such as metal complexes of quercetin, may be able to overcome
these limitations.
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According to the literature, quercetin has a protective effect against oxidant damage
(lipid peroxidation, DNA and protein damage). Oxidant damage can contribute to the
development of many of civilization’s diseases such as diabetes, coronary artery disease,
Alzheimer’s disease, Parkinson’s disease or even cancer [10,11]. Quercetin is probably
the most powerful scavenger of reactive oxygen species and reactive nitrogen species [12].
In certain cases, it is more powerful than vitamin C, due to the 3-OH and 3 ′, 4′-catechol
groups, proving to be ten times stronger for peroxynitrite than the known peroxynitrite
scavenger, ebselen [13]. The mechanism of action for quercetin can include increasing
antioxidant defense and the inhibition of enzymes involved in the generation of reactive
oxygen species (ROS) or scavenging ROS [14]. Recently, there have been many reports
in the literature regarding the high antioxidant properties of metal ion complexes with
quercetin, e.g., copper(II), iron(II) [15,16], cobalt(II), cadmium(II) [17], magnesium(II) [18],
and nickel(II)–quercetin complexes [19]. Cu(II), Fe(II), Co(II) and Cd(II) complexes of
quercetin showed higher antioxidant properties than ligands alone [15,16,19–21], whereas
for Pb(II) and Sb(II)–quercetin complexes, the opposite effect was reported [22,23]. The type
of metal coordination by quercetin may explain the different antioxidant properties of these
complexes compared to ligand.

Quercetin is one of the most widely investigated polyphenols with well-known an-
ticancer properties. Its anti-proliferative mechanisms include, modulating apoptosis-
inducing factors, and surviving signaling pathways. The conjugation of quercetin and
transition metal ions promotes its anticancer activity due to the favorable geometric spatial
orientation of the active site, with the addition of the metal ion [24]. Tan and others [24]
described the anticancer activity of a Ni(II)-quercetin complex, suggesting that its mecha-
nism of action relies on DNA intercalation. Lee and Tuyet [25] investigated the activity of
a Zn(II)-quercetin complex in relation to human bladder cancer cells (BFTC-905), where
the concentration of ≥12.5 µM effectively inhibited their invasiveness. In another study,
a Ge(IV)-quercetin complex showed cytotoxicity in SPC-A-1, EC9706, HeLa and PC-3
cancer cell lines [26]. As reported in [24], the DNA intercalation of metal-quercetin com-
plexes is probably the main mechanism of their anticancer properties. The heterobimetallic
complexes, in the potential cytotoxic therapy, are noteworthy, and include Cu(II)/Sn2(IV)-
quercetin and Zn(II)/Sn2(IV)-quercetin. Their unique mechanism of action is a dual
mode of binding to DNA and presents cleavage properties. High DNA binding affinity is
achieved via: (a) electrostatic interactions of Sn(IV) ions coordinating the oxygen atoms of
the phosphate backbone and (b) covalent binding of Cu(II)/Zn(II) to N-3/N-7 nucleobase
positions [26]. Both of the complexes worked actively against PC-3, HL-60, HCT-15, HeLa,
Hop62, U373MG and A2780 human cancer cell lines [27]. The results obtained by Zhou and
others [28] confirm that Zn(II) and Cu(II) complexes were more cytotoxic than quercetin
alone in PC3, Skor3, BGC-823, Bel-7402, KB and HL-60 cell lines. Moreover, recent findings
propose that quercetin is able to trigger apoptosis in several tumor cells via its pro-oxidant
properties, due to its generation of reactive oxygen species [29]. Therefore, both anti- and
pro-oxidant activities of quercetin should be considered in relation to its tumoricidal effects.

Because quercetin possesses good chelating properties many papers describe the
synthesis of transition metal complexes with quercetin and their interesting biological
properties, as well as their possible application in pharmacy, medicine, food technology
and biotechnology [30]. Cobalt(II) stimulates the antioxidant defense and supports anti-
inflammatory processes [31]. Moreover, many of the Co(II) complexes revealed interesting
biological properties, including antibacterial, antiviral and antioxidant properties [32].
Although it is an essential microelement in animals, for health, e.g., as a component of
Vitamin B12, an excess of cobalt ions is well-known for its toxicity [33]. For example,
the exposure of rats to cobalt chloride leads to oxidative stress, observed through a
significant increase of malondialdehyde (MDA) and hydrogen peroxide (H2O2) levels,
and conversely, reduced nitric oxide (NO) levels. Stress is also observed through the
reduced activity of glutathione peroxidase (GPx) and reduced glutathione (GSH) content
in heart and kidney tissues [34]. However, it has been noted that treatment with quercetin
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and/or vitamin C reverses the effects of cobalt chloride on MDA, H2O2 and NO (where
a synergistic effect of Q and vitamin C was observed) and strengthens the antioxidant
defense system. In addition, the treatment of rats with a combination of quercetin and
vitamin C resulted in a significant (p < 0.05) decrease in systolic, diastolic and the mean
blood pressure in rats compared to those exposed to cobalt chloride alone [34]. Therefore,
the study of metal-transition–quercetin complexes are very important, in order to establish
whether the physico-chemical and biological properties (e.g., solubility, bioavailability,
antioxidant) of a parent ligand can be changed through its complexation with metal ions.
The reported metal-quercetin complexes possessed different metal:ligand ratios of 1:1,
1:2, 2:1, and 3:2 depending on the pH of the solution and the number of reagents [27–33].
In this study the cobalt(II) complex of quercetin was synthesized in pH = 7.4. The FT-IR,
elemental analysis, and the UV/Vis methods were applied to study the composition in its
solid state and solution. The anti-/pro-oxidant activity of the Co(II)-quercetin complex was
studied by means of DPPH, FRAP and Trolox oxidation assays and then compared with the
antioxidant properties of ligand alone. The HaCaT human immortalized keratinocyte cell
line has been chosen for the cellular toxicity test in mammalian cell culture.The antioxidant
and cytotoxic properties of the Co(II)-quercetin complex and quercetin were compared and
discussed in terms of their potential application.

2. Materials and Methods
2.1. Materials

All chemicals were analytically pure and were used without further purification.
Quercetin, cobalt chloride (CoCl2·6H2O), sodium hydroxide (NaOH), DPPH (2,2-diphenyl-1-
picrylhydrazyl), iron(II), sulfate (FeSO4·7H2O), Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid), hydrogen peroxide (H2O2), phosphate buffer pH = 7, and horseradish
peroxide (HRP) were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). Methanol
was sourced from Merck (Darmstadt, Germany). The fetal bovine serum was purchased
from Gibco (Thermo Fisher Scientific, Inc., Waltham, MA, USA).

The HaCaT cells obtained from CLS Cell Lines Service GmbH (Eppelheim, Ger-
many)) were cultured in a DMEM medium supplemented with 4.5 g/L glucose, 2 mM
L-glutamine, and fetal bovine serum, 10%. An assay based on the neutral red’s (3-amino-7-
dimethylamino-2-methylphenynosine hydrochloride) absorption capacity was selected [35]
was selected for the cytotoxicity assessment of the tested compounds. The neutral red
(N4638, Sigma Aldrich, Darmstadt, Germany) sterile solution in PBS (5 mg/mL) was added
to the cell culture medium for a final concentration of 50 µg/mL and kept overnight at
37 ◦C before it was added to the cell culture.

2.2. Synthesis

Quercetin was dissolved in methanol and mixed with an aqueous solution of CoCl2
(0.1M), with a stoichiometric molar ratio of 1:2 (metal ion:ligand). The pH was adjusted
to 7.4 through the addition of NaOH (0.1 M). The precipitate occurred immediately.
It was filtered, washed several times with distilled water and dried at room tempera-
ture. The results of the elementary analysis for the cobalt(II) complex of quercetin gave the
formula Co(C15H9O7)2·2H2O: %C = 50.75 (calc. %C = 51.66), %H = 3.21 (calc. %H = 3.32).
The yield of reaction was 42%.

2.3. Spectral Studies

The FT-IR spectra of the solid samples as KBr pellets were recorded on an Alfa Bruker
spectrometer (Bremen, Germany) in the spectral range of 400–4000 cm−1. UV/VIS spectra
were recorded in the range of 200–500 nm using the UV/VIS/NIR Agilent Carry 5000
spectrophotometer (Santa Clara, CA, USA). The mole-ratio method was used for the
determination of the metal–ligand stoichiometry. 1 mL of quercetin solution (1 mM in
Tris-HCl, pH = 7.4) and an increasing amount of aqueous solution of CoCl2 (10 mM; from 0
to 1 mL) were added to twelve volumetric flasks and diluted with Tris-HCl (pH = 7.4) to a
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total volume 10 mL. The UV/Vis spectra of these solutions were registered in the range
of 200–500 nm. All measurement were carried out at room temperature and taken in five
repetitions for three independent experiments.

2.4. Anti-/Pro-Oxidant Studies

The DPPH assay was carried out according to the spectroscopic method described
in [36]. The methanolic solution of quercetin or Co(II)-quercetin complex (0.1 mM)
and 2 mL of methanolic solution of DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical (60 µM),
were mixed and incubated in the dark, at room temperature for 1 h. The final concen-
trations of tested substances were in the range 0.5–20 µM. The absorbance of the sam-
ples was measured by the use of UV/VIS Agilent Cary 5000 spectrophotometer (Santa
Clara, CA, USA) at a 516 nm wavelength against methanol as blank. The percentage (%I)
of DPPH• radical scavenging activities in the tested substances was calculated using the
following formula:

%I =
( Acontrol − Asample

Acontrol

)
× 100% (1)

where %I is the percent of inhibition of DPPH• radical; Acontrol is the absorbance of the
control sample; and Asample is the absorbance of the tested substance. The concentrations
of the tested compounds were plotted against the percentages of inhibition, and the IC50
values were determined using a linear regression analysis.

The FRAP assay shows the ferric-reducing antioxidant activity of the substance [37].
0.3 M acetate buffer (pH 3.6), 10 mM of 2,4,6-tripyridyl-s-triazine (TPTZ; in 40 mM HCl)
and 20 mM of FeCl3 (in water) were mixed in a volumetric ratio of 10:1:1. Next, 3 mL of the
FRAP mixture and 0.4 mL of the tested substance (50 µM) were mixed. Aftere 7 min the
absorbance was measured at 595 nm against blank. The blank was 3 mL of FRAP mixture
and 0.4 mL of methanol. The antioxidant activity was expressed as a FRAP value (Fe2+

equivalents) (µM) using the calibration curve prepared for FeSO4 (y = 3.296.9x − 0.0331;
R2 = 0.9997).

The pro-oxidant activity was measured as the rate of oxidation of Trolox [38]. The following
solutions were mixed in test tubes: 0.5 mL of Trolox (C = 100 µM), 0.5 mL of H2O2
(C = 50 µM), 0.5 mL of horseradish peroxide (C = 0.01 µM) in phosphate buffer (pH = 7),
0.05 mL of the tested substance (µM), and 0.495 mL of distilled. The absorbance mea-
surements against the phosphate buffer were made every 10 min for 50 min (at 272 nm).
The control sample contained 0.05 mL of pure methanol instead of the tested substance.

All anti-/pro-oxidant assays were taken in five repetitions for three independent
experiments. The results were expressed as the mean of the values obtained for the
replications. The averages, standard deviation calculations, and graphs were performed
calculated with Microsoft Excel 2019.

2.5. Cell Viability Test

A day before the experiment, HaCaT cells were seeded in 96-well plates at a density
of 10000 cells per well, in 100 µL of DMEM medium. Quercetin (Q) and its cobalt complex
(Co-Q) were dissolved in DMSO, to the highest concentrations possible (10 mg Q ad
200 µL, 6 mg Co-Q ad 2000 µL). Next, the obtained DMSO solutions were mixed with a cell
culture medium in the proportion of 1:100, to obtain the highest working drug solutions.
The DMSO content in the cell culture medium did not exceed 1%. These solutions were
further diluted by a factor of 2 to obtain the decreasing concentration of the compounds.
Then, the cell medium from the 96-well plate cultures was replaced with the working
solutions of Q or Co-Q, and the cells were incubated for 24 h. After this time period,
the medium was removed, and cells were incubated for 4 h in a medium containing
50 µg/mL of neutral red (NR). The NR-containing medium was removed and the cultures
were rinsed twice with phosphate buffered saline (PBS). Cells were treated with a solution
of 50% alcohol and 1% acetic acid in water to lyse the cells and dissolve the absorbed dye.
The preparations were mixed in a shaker for 10 min and the fluorescence was measured
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in excitation and emission wavelengths of 530 nm and 645 nm, respectively. Experiments
were performed in 4–6 repetitions. As a negative control (background), cell-culture-free
wells were measured. As a positive control, wells containing untreated cell cultures were
measured. The average, standard deviation calculation, and graphs were completed using
Microsoft Excel 2019.

3. Results
3.1. Spectral Analysis

The assignment of selected bands, from the FT-IR spectra of the quercetin and the
Co(II) complex of quercetin, are gathered in Table 1 and shown in Figure 2. The strong
broad-band derived from the stretching vibrations of the -OH groups were located in the
spectral range of 3426–3250 cm−1. The strong band assigned to the stretches of the C=O in
the quercetin molecule (1672 cm−1) was slightly shifted towards a lower wavenumber in the
spectra of the Co(II) complex. The stretching ν(OH) and ν(C=O) vibrations moved towards
lower wavenumbers due to the breakdown of the inter- and intramolecular hydrogen
bonds, and a metal complex formation with the participation of carbonyl and hydroxyl
groups. Moreover, such an occurrence in the FT-IR spectra of the complex, in the bands
assigned to the stretching vibrations of the C-O catechol group at 1460 and 1422 cm−1 and
Co(II)-O, was caused by the participation of catechol moiety in the metal ion coordination.
The other bands, which were derived from the aromatic ring of the ligand, changed their
position as well when comparing the spectra of quercetin to its metal complex.

Table 1. The wavenumbers and intensity of selected bands from the FT-IR and FT-Raman spectra of
studied compounds.

Assignment
Quercetin Co(II)-Quercetin

IR Int. IR Int.

ν(OH) * 3426–3291 s 3397–3266 s
ν(C=O) 1672 s 1663, 1655 s
ν ring 1614 vs 1611 vs
ν ring 1514 vs 1522 vs

ν(C-O) catechol group - 1460 m
ν ring 1429 s 1449 s

ν(C-O) catechol group - 1422 s
β(C-OH) 1362 vs -
β(CH) 1317 s 1317 s

ν(C-O-C) 1244 vs 1261 vs
β(OH) 1213 vs 1210 m

ν(C-CO-C) + β(C-CO-C) 1165 vs 1167 s
ν(Co(II)-O) 604 w

* symbols denote: ν–stretching vibrations, β–deforming in-plane vibrations; int–intensity, m–medium, s–strong,
vs–very strong.

In the UV/Vis spectrum of quercetin, recorded in a Tris-HCl buffer solution with
pH = 7.4 and concentration C = 5 × 10−5 M (Figure 3), two main absorption bands
were observed corresponding to the π-π * transitions. Band I, present at the wavelength
λmax = 375 nm, corresponds to the π-π * transitions in the ring marked as B, and band II
present at the wavelength λmax = 256 nm, corresponds to the π-π * electron transition in
ring A [39]. The intensity of the bands in the UV/Vis spectra of Co(II)-quercetin complex
dropped significantly, and a slight shift of band II towards longer wavelengths and a shift
of band I towards shorter wavelengths was observed.
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registered in Tris-HCl for (pH = 7.4).

In order to establish the metal-ion–ligand ratio in the solution, the molar ratio method
was applied. Figure 4 shows the dependence of the absorbance maxima (for the I band;
375 nm), on the composition of the Co(II)-quercetin complex. The analysis showed that
in the solution, at pH = 7.4, the complex is present in the composition at a ratio of
1:2 (metal:ligand). Similarly in the solid state, the complex shows a molar ratio of 1:2
(metal:ligand), as was shown by an elemental analysis.
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The analysis of infrared spectra of the cobalt with quercetin complex indicates the par-
ticipation of the carbonyl group and the hydroxyl group, from the B ring, in the formation
of the complex. Moreover, the decrease in the absorbance of band I and II in the UV/Vis
spectra of the complex also suggests the participation of catechol moiety and the carboxyl
group in metal ion bonding [40]. Having taken into account the results of the elemental
analysis (1:2 molar ratio of metal:ligand), the proposed structure of Co(II)-quercetin is
shown in Figure 5. The central ion attaches two ligand molecules via chelate bonds involv-
ing the carbonyl group and the deprotonated hydroxyl group of the quercetin pyron ring.
The central ion also co-ordinates the two water molecules. The way in which the ligand
coordinates metal is the same as described by other authors [41]. The catechol moiety is
probably engaged in the metal bonding and may therefore lead to polymeric structures
being formed.
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3.2. Antioxidant Activity

The antioxidant activity of the Co(II) complex of quercetin was studied by means of
DPPH and FRAP spectrophotometric assays. The first relied on the reduction of DPPH•

radicals by antioxidants. With the increase in the concentration of quercetin and the
Co(II)-quercetin complex, the antiradical activity against DPPH• increased too (Figure 6).
The determined value of IC50 for quercetin was 3.88 ± 0.06 µM, whereas for the Co(II)
complex it was 2.01 ± 0.25 µM. This means that its complexation with Co(II) increased the
antiradical properties of quercetin (measured in the DPPH assay). According to the data,
both synthesized Cu(II) and Fe(II) complexes with quercetin showed stronger antioxidant
activity compared to the flavonoid alone in the DPPH assay [16]. In another study, Co(II)-
quercetin and Cd(II)-quercetin complexes showed a higher antioxidant activity measured in
the DPPH assay than in the ligand, i.e., 74.20, 82.31, and 48.43%, respectively (after 30 min,
C = 0.01 M) [17]. In the work conducted by Raza et al., the DPPH• radical scaveng-
ing activity of Fe(II)-quercetin after a 30 min reaction was approximately 97%, while for
quercetin it was only about 85% (C = 20 µM) [15]. Bukhari et al. reported a greater
antioxidant activity of the Co(II)-quercetin complex compared to the flavonoid alone.
For example, in the DPPH assay conducted by the researchers, the % of the DPPH• re-
maining for quercetin was equal to around 80%, while for the complex it was around
50% (C = 4 µM) [20]. In their other work, Cu(II)-quercetin complex also showed higher
antioxidant activity, measured in the DPPH assay, than the ligand, e.g., the percentage of
DPPH• remaining with the complex was around 50%, and for quercetin it was around
90% (C = 4 µM) [21]. However, there are also reports in the literature of reduced antiox-
idant activity of quercetin after complexation with metals. For example, in the work of
Ravichandran et al., quercetin showed higher DPPH• radical scavenging activity than the
Pb(II)-quercetin complex. In their research, after 15 min of incubation, it was found that
quercetin inhibits DPPH• radicals by 4.08, 23.90, and 30.10%, while Pb(II)-quercetin only
inhibits them by 1.2, 4.69, and 5.8%, at concentrations of 5, 10, and 15 µM, respectively [22].
In a study conducted by Tong et al., a Sb(II)-quercetin complex was found to have lower
antioxidant activity than the ligand alone. The IC50 values obtained in the DPPH• assay
were equal to 13.46 mg/L and 3.78 mg/L, for the complex and the ligand, respectively [23].
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Similar results as in the DPPH test were obtained in the ferric-reducing antioxidant
assay FRAP (Figure 7), where the Fe(III)-TPTZ complex is reduced, using an antioxidant,
to a Fe(II)-TPTZ complex. The reducing activity of studied compounds expressed in FRAP
values were: 566.23 ± 18.52 and 830.16 ± 15.56 µM Fe2+, respectively. Both selected tests
differ in their mechanism of action. The FRAP assay is described as a totally SET (single
electron transfer) reaction, where one electron is transferred from an antioxidant to reduce
the number of metal ions or radicals [42], whereas the reaction of antioxidants with DPPH•

can be describe as having SET or hydrogen atom transfer (HAT) mechanisms (or the
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combination of them) [43,44]. Moreover, the type of solvent and the pH of the environment
do not affect HAT-type reactions, unlike in the SET reaction, which depends on the acidity
of the environment [45]. The DPPH assay was conducted in a methanolic solution, whereas
FRAP was more often in an aqueous environment, which may affect the rate of reaction
and compound solubility.
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Figure 7. The FRAP values obtained for quercetin (Q) and Co(II) complex of quercetin (Co-Q). Mean
values from three independent experiments ± SD are shown.

The quercetin and the Co(II) complex of quercetin revealed pro-oxidant activity in
the Trolox oxidation assay. The reaction between tested phenolic compounds and H2O2
catalyzed by horseradish peroxide provide the phenoxyl radicals. The obtained phe-
noxyl radicals undergo a reaction with Trolox, the Trolox is oxidized to create Trolox
radicals, and then transformed into Trolox quinones (with maximum absorption at 272 nm),
and the phenoxyl radicals are transformed into phenolic compounds. The pro-oxidant
activity of the tested substances was measured for two concentrations (0.35 and 0.70 µM)
and expressed as the absorbance of the tested samples (Figure 8). The Co(II)-complex of
quercetin showed slightly lower pro-oxidant activity in the Trolox assay compared with
quercetin alone.
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3.3. Cell Viability

The influence of quercetin and its cobalt salt on cell viability was estimated using
the fluorimetric neutral red uptake test, as described previously [29,46]. Neutral red dye
is uptaken by the viable cells and stains the lysosomes. The Co(II)-Q had a much lower
solubility in the culture medium than the Q alone, therefore a lower range of concentrations
could be studied for the Co(II)-Q complex. However, practically no antiproliferative activity
was observed within the solubility range of the salt. Simultaneously, the quercetin was
not toxic in HaCat cells even in the concentrations that were three orders of magnitude
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higher than the maximum Co(II)-Q complex concentration (Figure 9). It can be concluded
that complexing quercetin to Co(II) strongly decreases its availability in the water-based
medium, which renders the Co(II)-Q non-toxic in the given solubility range.
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Figure 9. Toxicity of quercetin (Q) and its cobalt(II) complex of quercetin (Co-Q) against HaCaT
immortalized human keratinocyte cell line, as measured by the fluorimetric neutral red uptake assay.
The maximal concentration of Co-Q in the culture media was applied (15 µM). The concentration
range for Co-Q was 0.06–15 µM, for Q it was 10–2 577 µM.

4. Conclusions

The cobalt(II) complex of quercetin with the formula Co(C15H9O7)2·2H2O was syn-
thetized in its solid state in pH = 7.4. The metal:ligand ratio of 1:2 in the solution was
determined using the molar-ratio method. In line with the above-cited reports showing
a protective role for quercetin in the amelioration of the oxidative stress-related toxicity
of cobalt [34], the presented results indicate that the obtained Co(II)-quercetin complex
showed higher antioxidant activity than quercetin alone in the DPPH and FRAP assays.
Moreover, the Co(II)-quercetin complex showed slightly lower pro-oxidant activity in the
Trolox oxidation assay than the ligand. It should also be noted that the Co(II) complex
showed low solubility, suggesting that quercetin may also significantly reduce the concen-
tration of toxic cobalt ions and other transition metals in biological medias. Quercetin was
found to be non-toxic towards HaCat keratinocyte cells in the wide concentration range
(10–2 577 µM). The considerably lower obtainable concentrations of the Co(II) complex
(0.06–15 µM) were also found to be non-toxic, with the simultaneous enhancement of
antioxidative potential of Co(II)-quercetin complex. The above findings correspond well
with the strengthening of the antioxidant defense system observed in CoCl2-treated rats
upon quercetin and ascorbate administration [34] and contributes to the clarification of
the reported protection provided by quercetin against oxidative stress-related and metal-
related diseases [47–49]. Further research on Co(II)-quercetin action in vitro and in vivo
models is needed to define the possibility of the application of Co(II)-quercetin and to
determine the Q-metal chelation potential in many oxidative stress-related disorders.
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