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Abstract: Background: Patients undergoing coronary angiography very frequently exhibit coronary
chronic total occlusions (CTOs). Over the last decade, there has been an increasing acceptance
of the percutaneous coronary interventions (PCI) in CTOs due to, among else, rising operator
experience and advances in technology. This study is an effort to address the problem of identifying
important factors related to the success or failure of the PCI. Methods: The analysis is based on the
EuroCTO Registry, which is the largest database available worldwide, consisting of 164 variables and
29,995 cases for the period 2008–2018. The aim is to assess the dynamics of causal models and causal
discovery, using observational data, in predicting the result of the PCI. Causal models use graph
structure to assess the cause–effect relationships between variables. In this study, the constrained-
based algorithm PC was employed. The focus was to find the local causal structure around the
PCI result and use it as a feature selection tool for building a predictive model. Results: The model
developed was compared with other modeling approaches from the literature, and it was found to
perform equally well or better. Conclusions: The analysis showcased the potential of employing local
causal structure in predictive model development.

Keywords: coronary chronic total occlusions; causal graphs; downsampling; logistic regression;
Markov blanket; PC; prediction

1. Introduction

Coronary chronic total occlusions (CTOs) are defined as occlusions with at least
3 months duration, and thrombolysis in myocardial infarction flow grade 0 (TIMI = 0) [1].
It is a very common condition for patients undergoing coronary angiography with approxi-
mately 20% of the patients exhibiting CTOs. They are considered the most complicated
malfunctions of coronary arteries that a cardiologist might address. During the last decade,
there has been an increasing acceptance of the percutaneous coronary interventions (PCI)
in CTO, with an increasing success rate [1]. PCI is a nonsurgical procedure used to treat nar-
rowing of the coronary arteries of the heart found in coronary artery disease. The process
involves combining coronary angioplasty with stenting. The success rate of PCI has been
increased by, among other reasons, operator experience and advances in technology, both
having a positive impact in the success of the operation, and currently achieving levels of
even 93%.

There exist several attempts in the literature to assess the impact of different predictor
variables to the success or failure of the PCI, ranging in size of the dataset from a few
hundred cases [2] to approximately 20,000 [3]. In most studies, the authors develop
a scoring system that categorizes patients in risk groups relevant to the success of the
operation [2–7]. The operation success ranges from 50% in the seminal paper of Morino
et al. [2] to 93% in [5].

The current study is based on the largest database available worldwide (EuroCTO
Registry), which consists of 29,995 cases referring to the period 2008–2018 (including demo-
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graphic data, clinical, anatomic, procedure parameters, etc.). The motivation in this study
was to assess the dynamics of causal models and causal discovery, using observational data,
in predicting the result of the PCI. Causal models are used for the first time in this context
to the best of our knowledge. Current approaches are mainly based on standard regression
analysis and standard correlation assessment, to detect the most appropriate predictor
variables for the response variable of interest. Causal models, on the other hand, aim to
discover the cause–effect relationships between variables. The focus in this paper was to
find and use the local causal structure around the response/target variable (i.e., operation
result) to predict its outcome, particularly the so-called Markov blanket. By definition, the
Markov blanket of a variable T is the minimal variable subset conditioned on which all
other variables are probabilistically independent of T. The Markov blanket of T consists
of the variables representing its parents, children, and other parents of its children in the
graph (spouses). Using the Markov blanket of the response variable constitutes one of the
emerging successful filtering approaches in variable selection [8].

In [9], the authors used causal models, particularly the probabilistic graphical mod-
els, to assess whether lung cancer prediction can be improved. The motivation in their
approach was that the Markov blanket around a target variable contains, by definition,
the most informative variables for the target variable. They found that their modeling
approach, which was based on causal graphs, performed better than other competitive
models in the literature. In [10], the authors used extensive simulations to assess the usage
of Markov blanket as a feature selection tool compared to other methodological schemes.
Particularly, they compared the predictive accuracy of eight logistic regression-based mod-
els, in which the set of predictors was selected with a different reasoning.
Their results demonstrated empirically that the Markov blanket-based logistic regres-
sion model performed equal to or better than all its competitors. The authors argued that
using causal models to identify the Markov blanket of a target variable might be a useful,
efficient strategy to select predictors in clinical risk prediction models.

The aim of this study is to assess the dynamic of the Markov blanket as a feature
selection tool for detecting predictors that are causally related with the result of the PCI,
and therefore can be used as input for models predicting the PCI success or failure.

2. Materials and Methods
2.1. Patient Population

The EuroCTO club is a collaborative effort among high-volume CTO operators in 55
European centers aimed at sharing experiences and outcomes data. The EuroCTO registry
is an electronic database, developed by EuroCTO club, including data since 2008, related
to patients in whom chronic total occlusion (CTO) recanalization was attempted. In this
database, multiple variables are recorded for every patient regarding preprocedural demo-
graphic and anatomical characteristics, procedural details, and postprocedural outcomes.
It is the largest registry worldwide, including 29,995 cases. The data for this analysis refers
to a 10 years’ time period starting in 2008.

2.2. Definitions

• The degree of calcification was visually estimated on fluoroscopy, defined as moderate
when one-half of the total CTO segment exhibited visible residues, and as severe when
the extension of calcification was >50% of the segment.

• Arterial tortuosity arises from abnormal elongation of the arteries and is characterized
by blood vessel abnormalities, particularly abnormal twists and turns. The CTO was
defined as straight if the pre-occlusive segment contained a bend of <70; moderate
when a segment contained either two bends >70, or one bend >90; and as severe
when it contained either two or more pre-occlusive bends of >90, or at least one bend
of >120.

• The length of coronary occlusions was visually estimated from angiographic projec-
tions with single- or dual-contrast injections.
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• Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory lung dis-
ease that causes obstructed airflow from the lungs. It is characterized by long-term
respiratory symptoms and airflow limitation.

• The morphology of the vessel stump was characterized as tapered, blunt, or un-
seen, depending on its appearance on fluoroscopy. The angiographic assessment of
collateral connections was made according to the Werner classification.

• Dyslipidemia is present when an abnormally high amount of lipids is present.
• Renal failure is a long-term condition of kidney malfunction.
• Family history of coronary disease is present when one or more close relatives had

early coronary artery disease (men <55 years, women <65 years).
• Peripheral disease was defined when abnormal narrowing of arteries was present.
• Segmental regional abnormalities were defined as regional abnormalities in

contractile function.
• Previous MI was defined as documented history of previous myocardial infarction.
• In-stent CTO was defined when CTO inside a previous PCI existed.
• CTO location represented the vessel in which the CTO is located.
• Previous CABG corresponded to history of coronary artery bypass surgery.
• Technical success was defined as a residual stenosis of <10% at the end of the procedure

with TIMI flow grade three antegrade flow.

2.3. PC Algorithm

The PC algorithm [11,12] is a method commonly used to learn the structure of a causal
Bayesian network. More specifically, for each pair of variables (X, Y) in a dataset, the PC
algorithm tests their conditional independence given the remaining variables, and it claims
the nonexistence of a causal relationship between X and Y, i.e., no edge to be drawn between
X and Y in the corresponding graph, when X and Y are independent given some other
variables. Practically, the PC algorithm assesses the association conditioning on all subsets
of all variables other than X and Y, in order to determine whether there exists a persistent
association between X and Y [13]. The relationship is causal when the association exists
given each of the conditioning sets. A network with a structure consistent with the results
of the tests of independence is returned. It is assumed that causal sufficiency [12], which is
a typical condition for the aforementioned algorithm, holds. This condition requires that
for every pair of measured variables, all their common direct causes are also measured.
In other words, there are no hidden, unmeasured confounders for any pair of variables.

2.4. Statistical Analysis
2.4.1. Preprocessing

The initial dataset consisted of 29,995 cases and 164 variables. In order to focus on
detecting predictors for the CTO PCI (response variable), conceptual (variables irrelevant
to the result of the PCI were excluded), relevance (variables with weak association with the
response were filtered out), and literature (variables considered important in the literature
were included) criteria were used to filter the initial dataset and exclude a large number
of variables. In addition, variables with missing values over 20% were not assessed.
No imputation method for the missing values was considered, in order for the analysis to
be based only on observed data. The association of the predictor variables with the response
was separately assessed for each predictor variable with binary logistic regression analysis.
Associations with a p-value > 0.05 resulted in excluding the corresponding variables from
the dataset. The final dataset included 22 out of the 164 original variables with 17,370
complete cases.

This dataset was randomly partitioned into two sub-datasets, namely the training and
the test datasets, which corresponded to 70% (n = 12,160) and 30% (n = 5210) of its cases,
respectively. The training dataset was used for model development. The test dataset was
used for model assessment. Since a strong class imbalance was observed between the two
categories of the PCI result, failure and success, both in the initial dataset (n = 29,995 cases;
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14% failure, 86% success) and in the filtered dataset (n = 17,370 cases; 12.4% failure, 87.6%
success); the latter distribution remaining the same in the training dataset due to random
partition, downsampling was applied. Particularly, the training dataset was randomly
downsampled to address the class imbalance between the two classes of the response
variable. The downsampling procedure employed randomly excluded cases with operation
success until resulting in a dataset with equally sized classes (success and failure) for the
response variable (n = 3026). Despite losing information, downsampling was selected,
since it was assumed that it is of equal interest to correctly predict both the successful
and unsuccessful operation results. In addition, by selecting downsampling compared to
other approaches (e.g., upsampling), the likelihood of overfitting and consequent negative
impact in the prediction model’s performance was avoided [14]. The above procedure is
depicted in a flow chart (Figure 1).
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2.4.2. Analysis

Standard descriptive analysis was performed both for the qualitative variables (fre-
quencies, percentages) and for the quantitative variables (mean, standard deviation).

In the downsampled training dataset, the PC algorithm was used to develop the
causal graph. Since both ordinal and continuous variables were included in the dataset,
the constrained-based PC algorithm was used [12] with the R package “MXM” [15], which
is appropriate for mixed data. In particular, the function “pc.skel” was used to produce
the skeleton of the network, employing the "comb.mm" method (to assess the conditional
independence for every pair of variables, each of the two variables is treated as response and
the appropriate regression model is fitted. Next, two likelihood ratio tests are performed,
and the two emerging p-values are combined in an overall p-value).

Next, the Markov blanket corresponding to the response variable was retrieved.
All the variables that constituted the Markov blanket of the response were included as
independent variables in a multivariate binary logistic regression model with the operation
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result as the dependent variable. This model was trained on the downsampled training
dataset, resulting in the so-called Markov blanket for feature selection (MBFS) model.

The predictive accuracy of the MBFS model was assessed on the test dataset.
Standard statistical accuracy measures were used, namely overall accuracy (overall propor-
tion of true predictions), sensitivity (true predictions of successful operations over total
number of successful operations), specificity (true predictions of unsuccessful operations
over total number of unsuccessful operations), and the value of the area under the receiver
operation characteristics (AUROC) curve [16].

Next, the predictive accuracy of the MBFS model was compared with five predictive
models from the literature, namely, JCTO [2], CASTLE [3], RECHARGE [6], CL [4], and
PROGRESS [5]. Particularly, the predictors included in each of these five models in the
original manuscripts were included as independent variables in five multivariate binary
logistic regression models, with the operation result as the target variable, respectively.
For fairness, these five models were trained anew in the downsampled training dataset of
this study, and new coefficient estimators were computed for the independent variables.
Then, their predictive accuracy was assessed on the test dataset, and their performance
was compared to the MBFS model. For the comparison, the Akaike information criterion
(AIC) was computed after training each model on the downsampled training dataset, and
the AUROC was computed while assessing each model on the test dataset.

In the RECHARGE model, the variable “Disease distal landing zone” was excluded
since in the EuroCTO registry it exhibited a large number of missing values.
Similarly, in the case of the PROGRESS model, the variable “No interventional collat-
eral” was also excluded.

For all hypothesis tests, the level of statistical significance was set at a = 0.05. The anal-
ysis was performed with R version 4.1.0.

3. Results

The variable characteristics of the training and test datasets are shown in Supplemental
Tables A2 and A3 for all the 21 variables considered, separately for the cases with successful
operation and unsuccessful operation. The results show that the training and test datasets
are homogeneous regarding all variables considered. For completeness, the variable
characteristics are shown as well for the downsampled training dataset (Supplemental
Table A1), where the results are, as expected, different in general compared to the other
two datasets.

The causal graph developed based on the PC algorithm is displayed in Figure 2.
The graph revealed the complicated network structure of causal relations among factors
that have effect on the operation result. Five variables appear to have a cause–effect
relationship with the operation result, particularly the CTO length, proximal tortuosity,
stump, calcification, and segmental regional are all direct causes of the operation result.
The operation result does not have any effects/children in the graph; thus, the Markov
blanket of the operation result is composed from its causes alone.

The five variables included in the Markov blanket were then included in a multivariate
binary logistic regression model, and the results are shown in Table 1. All five variables
were statistically significant in the multivariate model.
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Figure 2. The causal graph over the downsampled training dataset (n = 3026, 22 variables) is
displayed. The five nodes/variables constituting the Markov blanket around the operation success
exhibit a directed arrow towards operation success.

Table 1. Multivariate binary logistic regression analysis for success of the PCI. Estimates of the odds ratios (Exp(B)) and
their 95% confidence intervals corresponding to the MBFS model based on the downsampled training dataset (n = 3026) are
displayed, along with their p-values.

95% Confidence Interval for Exp (B)

Variables Exp (B) Lower Upper p-Value

(Intercept) 1.501 1.17 1.93 0.001

Calcification_None/Mild (spots) 1.000

Calcification_Moderate (<=50% RLD) 0.697 0.58 0.84 <0.001

Calcification_Severe (>50% RLD) 0.395 0.32 0.49 <0.001

Segmental regional_Normal 1.000

Segmental regional_H/A/D 0.674 0.58 0.79 <0.001

CTO length 0.986 0.98 0.99 <0.001

Proximal tortuosity_Straight 1.000

Proximal tortuosity_Moderate 0.671 0.56 0.80 <0.001

Proximal tortuosity_Severe 0.355 0.27 0.47 <0.001

Stump_No 1.000

Stump_Tapered 3.237 2.58 4.07 <0.001

Stump_Blunt 1.946 1.56 2.43 <0.001
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In Table 2, the assessment results of the MBFS model are shown. The overall accuracy
of the MBFS model at a prediction probability threshold of 0.5 was 66.47%, with sensitivity
at 66.62% (representing the percentage of correctly identifying cases with successful opera-
tion), and specificity at 65.43% (representing the percentage of correctly identifying cases
with unsuccessful operation). The AUROC was 0.7145.

Table 2. Accuracy measures for the MBFS model over the test dataset (n = 5210). The values of overall
accuracy, sensitivity, specificity, and area under the receiver operation characteristics (AUROC) curve
are displayed (the selected threshold for the predicted probabilities was set to 0.5).

Accuracy Measures MBFS

Overall Accuracy 0.6647

Sensitivity 0.6662

Specificity 0.6543

AUROC 0.7145

Figure 3 shows the tradeoff between sensitivity, specificity, Youden index (sum of
sensitivity and specificity minus one), and misclassification error for different prediction
probability thresholds. It is displayed that at the standard threshold of 0.5, the curves
corresponding to sensitivity and specificity almost cross each other, thus resulting in very
similar values (66.62% and 65.43%). At the same time, the Youden index approximately re-
ceives its maximum value (0.3205). On the other hand, the misclassification error is 33.44%,
which is higher than its minimum value (12.44%), corresponding to prediction probability
threshold equal to 0.035 (which is clearly, however, very close to zero). The reason for
this is that in the test dataset, the class imbalance in operation success still exists, thus,
decrease in sensitivity results in higher values of misclassification error, despite the larger
increase in the specificity. Assuming that it is of equal interest to correctly predict both the
successful and unsuccessful operation results, a slight increase of the misclassification error
is acceptable provided that high values of specificity are achieved.
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The results of the comparison among the MBFS model and the models JCTO, CASTLE,
RECHARGE, CL, and PROGRESS are shown in Table 3 and Figure 4. In Table 3, the
number of the features is displayed for each model, along with their specific names, the
AIC value obtained based on the corresponding logistic regression model (downsampled
training data), and the AUROC value (test data). The differences among the models are
small, which has already been noted, among else, in [17]. The proposed MBFS model
is the best one in terms of both the AIC (exhibited minimum value) and the AUROC
(exhibited maximum value), compared to all the remaining models. Particularly, the MBFS
model exhibited an AIC value of 3751.7, compared to (in increasing order) 3760.6 (JCTO),
3774 (CASTLE), 3774.1 (RECHARGE), 3841.7 (CL), and 3915.1 (PROGRESS). At the same
time, the AUROC with the MBFS model was 0.715, compared to (in decreasing order)
0.710 (CASTLE), 0.709 (RECHARGE), 0.708 (JCTO), 0.706 (CL), and 0.659 (PROGRESS).
Note that this is not a strict ranking of the above models, since the JCTO, CASTLE,
RECHARGE, CL, and PROGRESS models are used in a different way than in the origi-
nal articles, and mainly as feature selection tools in this study. In Figure 4, it is visually
exhibited that the AUROC corresponding to the MBFS model surpasses all other models.

Table 3. Comparison of the six models. The number of the features is displayed for each model,
along with their specific names, the Akaike information criterion (AIC) value obtained based on
the corresponding logistic regression model (downsampled training dataset, n = 3026), and the area
under the receiver operation characteristics (AUROC) value (test dataset, n = 5210).

Model
Name

# of
Features FEATURES USED AIC AUROC

MBFS 5 Segmental, Proximal tortuosity,
Calcification, Stump, CTO length 3751.7 0.715

CASTLE 6
Previous CABG, Age, Proximal
tortuosity, Calcification, Stump,

CTO length
3774 0.710

JCTO 5
Proximal tortuosity, Calcification,
Stump, CTO length, Previously

failed lesion
3760.6 0.708

RECHARGE 5
Previous CABG, Proximal

tortuosity, Calcification, Stump,
CTO length

3774.1 0.709

CL 6
Previous CABG, Previous MI,

Calcification, Stump, CTO length,
n-LAD

3841.7 0.706

PROGRESS 4 Previous PCI, Proximal tortuosity,
Stump, CTO artery 3915.1 0.659
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4. Discussion

CTO is a very common condition for patients that undergo coronary angiography.
The increasing acceptance of PCI in CTO in recent years highlights the importance of effi-
ciently detecting the factors that are strongly related with the result of the PCI for prediction
model development. Several attempts are available in the literature that assess the impact
of independent predictor variables to the PCI result. To the best of our knowledge in all
previous attempts, the authors have used regression-based methodological procedures to
select the predictor variables that will be included in their models. In this study, a new ap-
proach is proposed to select the most important predictor variables. This approach is based
on exploiting the dynamics of cause–effect relationships between variables. The focus was
on the local causal structure around the target variable, particularly on its Markov blanket.
The Markov blanket of the operation result was used as a feature selection tool towards
developing the prediction model for the result of the PCI. Essentially, variables detected
to be causally related with the result of the PCI were included as independent factors in a
prediction model for the result of the PCI (success/failure). A similar approach has been
already successfully applied in [9], aiming in detecting the most informative variables in
lung cancer.

The proposed prediction model, MBFS, included all five variables that constituted
the Markov blanket of the operation result, namely, the CTO length, proximal tortuosity,
stump, calcification, and segmental regional. The impact of proximal tortuosity, stump,
calcification, and CTO length to the operation result (see Table 1) was found to be in
agreement with the literature [2–7]. Particularly, it is known that the proximal tortuosity
categories moderate and severe are compounding regarding the success of the operation
compared to the straight class (odds ratio values 0.671, 0.355, respectively). Similarly, the
classes moderate and severe of calcification are compounding regarding the success of the
operation compared to the none/mild class (odds ratio values 0.697, 0.395, respectively).
The CTO length negatively impacted the operation success, exhibiting odds ratio equal to
0.986. On the other hand, the stump categories tapered and blunt positively impacted the
operation success compared to the no category (odds ratio values 3.247, 1.946, respectively).
Interestingly, a new predictor variable was included in this model, namely the segmental
regional. It was found that the category representing hypokinetic/akinetic/dyskinetic
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was compounding for operation success, compared to the category representing normal
segmental regional, exhibiting an odds ratio equal to 0.674 (Table 1).

The MBFS model that is proposed in this study was assessed and compared to five
well-known models from the literature. In the corresponding manuscripts of these five
models [2–6], a multivariate binary logistic regression model was developed at first, and
then a risk score was computed based on the magnitude of the coefficient estimates of the
independent variables that were included in each model. Here, we were only interested in
assessing the predictive ability of the binary logistic regression models themselves, which
were all retrained in this dataset for fairness. Thus, the comparison is not a strict attempt to
rank the MBFS and all five well-known models, but to also assess a novel approach that
employs causality in detecting the most important predictor variables, compared to the
standard approach that is mainly based on regression. The results of the assessment have
not only shown that the MBFS model performed better than all its competitors, but a new
important predictor factor emerged as well, namely, the segmental regional.

Building on this experience, a next step might be to further exploit the cause–effect
relationships, not only with the target variable (here operation result), but between pre-
dictor variables as well. This could possibly assist in detecting yet unexplored variable
relationships, and enrich the capacity of the final prediction model.

5. Conclusions

The above discussion highlights the strong potential of causality as a feature selection
tool in prediction model development. Particularly, capitalizing on the dynamics of local
causal structure and the Markov blanket resulted in a promising prediction model, and
showcased the prospects of employing causal relationships in building prediction models.

Causal model development has yet to be thoroughly assessed as a prediction tool
in different scientific fields. In this study, the usage of local causal structure as a feature
selection tool for prediction regarding the result of PCI in CTO resulted in developing a
very competitive model, thus, highlighting the potential of causal models for applications.
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Appendix A

Table A1. Descriptive characteristics for the downsampled training dataset (n = 3026). For quantitative variables, the mean
and standard deviation (in brackets) are displayed. For qualitative variables, the frequencies and corresponding percentages
(in brackets) are displayed for each category.

Variable Operation Success
n = 1513

Operation Failure
n = 1513

Calcification (%)
None/Mild (spots)
Moderate(<=50% RLD)
Severe (>50% RLD)

902 (59.6)
407 (26.9)
204 (13.5)

583 (38.5)
464 (30.7)
466 (30.8)

Segmental regional (%)
Normal
H/A/D

835 (55.2)
678 (44.8)

678 (44.8)
835 (55.2)

Age, mean (SD) 64.12 (10.6) 65.21 (10.1)

Weight, mean (SD) 84.31 (16.5) 84.47 (16.4)

Family history (%)
No
Yes

1059 (70.0)
454 (30.0)

1065 (70)
448 (29.6)

Dyslipidemia (%)
No
Yes

338 (22.3)
1175 (77.7)

303 (20.0)
1210 (80.0)

Diabetes (%)
No
Yes

1045 (69.1)
468 (30.9)

1025 (67.8)
488 (32.3)

Peripheral disease (%)
No
Yes

1369 (90.5)
144 (9.5)

1314 (88.8)
199 (13.2)

COPD (%)
No
Yes

1429 (94.4)
84 (5.5)

1411 (93.3)
102 (6.7)

Prior stroke (%)
No
Yes

1472 (97.3)
41 (2.7)

1456 (96.2)
57 (3.8)

Renal failure (%)
No
Yes

1495 (98.8)
18 (1.2)

1498 (99.0)
15 (1.0)

Previous MI (%)
No
Yes

940 (62.1)
573 (37.9)

901 (59.6)
612 (40.5)

Previous CABG (%)
No
Yes

1325 (87.6)
188 (12.4)

1239 (81.9)
274 (18.1)

Previous PCI (%)
No
Yes

795 (52.5)
718 (47.5)

730 (48.3)
783 (51.8)

CTO location (%)
Ostial
Proximal
Mid
Distal

156 (10.3)
649 (42.9)
607 (40.1)
101 (6.7)

219 (14.5)
638 (42.2)
571 (37.7)
85 (5.6)
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Table A1. Cont.

Variable Operation Success
n = 1513

Operation Failure
n = 1513

In stent CTO (%)
No
Yes

1401 (92.6)
112 (7.4)

1409 (93.1)
104 (6.9)

Bifurcation involvement (%)
No
Yes

1217 (80.4)
296 (19.6)

1262 (83.4)
251 (16.6)

CTO length, mean (SD) 28.28 (18.6) 36.23 (22.1)

Vessel diameter, mean (SD) 2.93 (0.4) 2.90 (0.5)

Proximal tortuosity (%)
Straight
Moderate
Severe

1098 (72.6)
336 (22.2)
79 (5.2)

822 (54.3)
463 (30.6)
228 (15.1)

Stump (%)
No stump
Tapered stump
Blunt stump

171 (11.3)
745 (49.2)
597 (39.5)

358 (23.7)
413 (27.3)
742 (49.0)

Table A2. Descriptive characteristics for the training dataset (n = 12,160). For quantitative variables, the mean and standard
deviation (in brackets) are displayed. For qualitative variables, the frequencies and corresponding percentages (in brackets)
are displayed for each category.

Variable Operation Success
n = 10,647

Operation Failure
m = 1513

Calcification (%)
None/Mild (spots)
Moderate (<=50% RLD)
Severe (>50% RLD)

6270 (58.9)
2877 (27.0)
1500 (14.1)

583 (38.5)
464 (30.7)
466 (30.8)

Segmental regional (%)
Normal
H/A/D

5658 (53.1)
4989 (46.9)

678 (44.8)
835 (55.2)

Age, mean (SD) 64.06 (10.7) 65.21 (10.1)

Weight, mean (SD) 84.32 (16.3) 84.47 (16.4)

Family history (%)
No
Yes

7379 (69.3)
3268 (30.7)

1065 (70.4)
448 (29.6)

Dyslipidemia (%)
No
Yes

2356 (22.1)
8291 (77.9)

303 (20.0)
1210 (80.0)

Diabetes (%)
No
Yes

7382 (69.3)
3265 (30.7)

1025 (67.8)
488 (32.3)

Peripheral disease (%)
No
Yes

9611 (90.3)
1036 (9.7)

1314 (88.8)
199 (13.2)

COPD (%)
No
Yes

10108 (94.9)
539 (5.1)

1411 (93.3)
102 (6.7)
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Table A2. Cont.

Variable Operation Success
n = 10,647

Operation Failure
m = 1513

Prior stroke (%)
No
Yes

10363 (97.3)
284 (2.7)

1456 (96.2)
57 (3.8)

Renal failure (%)
No
Yes

10536 (99.0)
111 (1.0)

1498 (99.0)
15 (1.0)

Previous MI (%)
No
Yes

6601 (62.0)
4046 (38.0)

901 (59.6)
612 (40.5)

Previous CABG (%)
No
Yes

9324 (87.6)
1323 (12.4)

1239 (81.9)
274 (18.1)

Previous PCI (%)
No
Yes

5591 (52.5)
5056 (47.5)

730 (48.3)
783 (51.8)

CTO location (%)
Ostial
Proximal
Mid
Distal

1018 (9.6)
4581 (43.0)
4311 (40.5)
737 (6.9)

219 (14.5)
638 (42.2)
571 (37.7)
85 (5.6)

In stent CTO (%)
No
Yes

9793 (92.0)
854 (8.0)

1409 (93.1)
104 (6.9)

Bifurcation involvement (%)
No
Yes

8526 (80.1)
2121 (19.9)

1262 (83.4)
251 (16.6)

CTO length, mean (SD) 28.72 (18.8) 36.23 (22.1)

Vessel diameter, mean (SD) 2.94 (0.4) 2.90 (0.5)

Proximal tortuosity (%)
Straight
Moderate
Severe

7535(70.8)
2567(24.1)
545(5.1)

822 (54.3)
463 (30.6)
228 (15.1)

Stump (%)
No stump
Tapered stump
Blunt stump

1219 (11.5)
5088 (47.8)
4340 (40.8)

358 (23.7)
413 (27.3)
742 (49.0)

Table A3. Descriptive characteristics for the test dataset (n = 5210). For quantitative variables, the mean and standard
deviation (in brackets) are displayed. For qualitative variables, the frequencies and corresponding percentages (in brackets)
are displayed for each category.

Variable Operation Success
n = 4562

Operation Failure
n = 648

Calcification (%)
None/Mild (spots)
Moderate (<=50% RLD)
Severe (>50% RLD)

2714 (59.5)
1167 (25.6)
681 (14.9)

246 (38.0)
178 (27.5)
224 (34.6)

Segmental regional (%)
Normal
H/A/D

2430 (53.3)
2132 (46.7)

277 (42.8)
371 (57.3)
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Table A3. Cont.

Variable Operation Success
n = 4562

Operation Failure
n = 648

Age, mean (SD) 63.98 (10.6) 65.53 (10.5)

Weight, mean (SD) 84.34 (16.1) 85.89 (16.8)

Family history (%)
No
Yes

3132 (68.7)
1430 (31.4)

444 (68.5)
204 (31.5)

Dyslipidemia (%)
No
Yes

1027 (22.5)
3535 (77.5)

143 (22.1)
505 (77.9)

Diabetes (%)
No
Yes

3096 (67.9)
1466 (32.1)

411 (63.4)
237 (36.6)

Peripheral disease (%)
No
Yes

4106 (90.0)
456 (10.0)

543 (83.8)
105 (16.2)

COPD (%)
No
Yes

4339 (95.1)
223 (4.9)

594 (91.7)
54 (8.3)

Prior stroke (%)
No
Yes

4440 (97.3)
122 (2.7)

625 (96.5)
23 (3.6)

Renal failure (%)
No
Yes

4508 (98.8)
54 (1.2)

638 (98.5)
10 (1.5)

Previous MI (%)
No
Yes

2831 (62.1)
1731 (37.9)

365 (56.3)
283 (43.7)

Previous CABG (%)
No
Yes

3985 (87.4)
577 (12.7)

516 (79.6)
132 (20.4)

Previous PCI (%)
No
Yes

2357 (51.7)
2205 (48.3)

300 (46.3)
348 (53.7)

CTO location (%)
Ostial
Proximal
Mid
Distal

451 (9.9)
1985 (43.5)
1822 (39.9)
304 (6.7)

84 (13.0)
272 (42.0)
250 (38.6)
42 (6.5)

In stent CTO (%)
No
Yes

4144 (90.9)
418 (9.2)

614 (94.8)
34 (5.3)

Bifurcation involvement (%)
No
Yes

3653 (80.1)
909 (19.9)

516 (79.6)
132 (20.4)

CTO length, mean (SD) 29.07 (19.7) 37.27 (22.9)

Vessel diameter, mean (SD) 2.94 (0.4) 2.91 (0.4)

Proximal tortuosity (%)
Straight
Moderate
Severe

3173 (69.6)
1161 (25.5)
228 (5.0)

369 (57.0)
200 (30.9)
79 (12.2)
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Table A3. Cont.

Variable Operation Success
n = 4562

Operation Failure
n = 648

Stump (%)
No stump
Tapered stump
Blunt stump

538 (11.8)
2190 (48.0)
1834 (40.2)

151 (23.3)
171 (26.4)
326 (50.3)
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