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Abstract: Laser-induced breakdown spectroscopy (LIBS) is a rapidly developing technique for
chemical materials analysis. LIBS is applied for fundamental investigations, e.g., the laser plasma
matter interaction, for element, molecule, and isotope analysis, and for various technical applications,
e.g., minimal destructive materials inspection, the monitoring of production processes, and remote
analysis of materials in hostile environment. In this review, we focus on the element analysis
of industrial materials and the in-line chemical sensing in industrial production. After a brief
introduction we discuss the optical emission of chemical elements in laser-induced plasma and the
capability of LIBS for multi-element detection. An overview of the various classes of industrial
materials analyzed by LIBS is given. This includes so-called Technology materials that are essential
for the functionality of modern high-tech devices (smartphones, computers, cars, etc.). The LIBS
technique enables unique applications for rapid element analysis under harsh conditions where other
techniques are not available. We present several examples of LIBS-based sensors that are applied
in-line and at-line of industrial production processes.

Keywords: laser-induced breakdown spectroscopy (LIBS); multi-element detection; industrial mate-
rials; technology materials; in-line chemical analysis; process control in industrial production

1. Introduction

Laser-induced breakdown spectroscopy (LIBS) is a versatile technique for the analysis
of the chemical composition of many classes of materials. Solids, liquids, gases, powders,
biological, and organic material, aerosols, and micro and nanoparticles are investigated
and the type and abundance of chemical elements in such materials is determined by
LIBS [1–8]. This laser-based analytical method is fast and robust, enables multi-element
detection, does not require laborious sample preparation, and can be employed for field
measurements under harsh conditions. For these reasons, LIBS is becoming one of the
key techniques for element analysis of complex materials besides X-ray fluorescence spec-
trometry (XRF), spark optical emission spectrometry (spark OES), prompt gamma neutron
activation analysis (PGNAA), and others [9]. LIBS has enormous potential for various ap-
plications and LIBS-based sensors are employed in many areas: industry (e.g., for materials
analysis on-site or in-line with production processes), security (e.g., for remote detection
of hazardous materials such as CBRNE threats [10]), mineralogy and geological materi-
als [11,12], cultural heritage [13,14], biomedicine (e.g., identification of bacteria [15–18]),
deep-sea inspection [19,20], space exploration (e.g., for analysis of Martian rocks using
the LIBS sensors in ChemCam and SuperCam on board of the NASA Mars rovers Curios-
ity and Perseverance [21–24]), environmental measurements [25–28], and many others.
The number of scientific papers on LIBS that are published per year is increasing rapidly
(Figures A1 and A2 in Appendix A).
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In LIBS, material is pulsed-laser ablated from the surface of a sample and the optical radi-
ation of the laser-induced plasma (LIP) is analyzed by optical emission spectroscopy [29,30].
Short nanosecond laser pulses are employed for the sampling of material, typically, as sta-
ble and robust nanosecond laser sources operating at various wavelengths, pulse energies
and repetition rates are available. However, ultrashort femtosecond lasers offer several
advantages for LIBS compared to conventional nanosecond lasers and femtosecond-LIBS
experiences a growing number of applications (e.g., [31–38]). In most studies, the optical
emission of atomic and molecular species in the plasma is analyzed spectroscopically.
Furthermore, recent studies have successfully demonstrated the remote isotope analysis by
LIBS-based molecular isotope spectroscopy [39,40].

For the quantitative analysis of the chemical composition of plasma and sample
calibration-based methods are frequently employed. Certified reference materials (CRM)
are measured with the LIBS system and calibration curves for the analyte species are de-
rived by univariate or multivariate regression procedures. With chemometric methods and
machine learning techniques, large spectral data sets can be evaluated and the extraction of
information from multidimensional data cubes can be automated [41,42]. The calibration-
based approach enables quantifying trace concentrations (ppm range). However, matrix-
matched reference materials have to be measured under the same conditions as the sample
materials. With laboratory-based analytical methods such as laser-ablation inductively cou-
pled plasma mass spectrometry/optical emission spectroscopy (LA-ICP-MS/OES) much
smaller element concentrations (ppb range) can be resolved [43–47]. Calibration-free (CF)
LIBS is complementary to calibration-based LIBS and can be employed to quantify the
major elements in a sample material without measuring CRMs. In CF-LIBS, the concen-
tration of major components is derived directly from measured LIBS spectra by modeling
the laser-induced plasma and the optical plasma emission [48,49]. This approach is of
interest as matrix-matched calibration samples are not required and constraints regarding
the control of experimental parameters are less stringent.

2. Plasma Emission and Multi-Element Detection

For a laser-induced plasma that is optically thin and in local thermodynamic equi-
librium (LTE), the number of photons ∆nki emitted within the time interval ∆t due to
transitions between two atomic quantum states k and i is given by [Equation (1)]:

∆nki/∆t = N Aki gk exp[−Ek/kB Te]/Z(Te), (1)

where N is the number of neutral atoms of the respective chemical element in the plasma,
Aki the transition probability, gk the degeneracy factor of state k, Ek the energy of the
upper level of transition, kB the Boltzmann constant, Z(Te) the partition function, and Te
the electron temperature (= plasma temperature). The number of detected photons ndet
depends strongly on the measurement setup and the instrumentation used [Equation (2)]:

ndet = ∆nki/∆t × (∆Ω/2 π) τg γdet. (2)

The solid angle covered by the collection optics is ∆Ω, the measurement time (gate
width) is τg, and the total detection efficiency is γdet (which includes efficiencies of the
light guiding system with mirrors, lenses, and fibers, of the optical imaging, and of spec-
trometer and electronic detector). As an example, we discuss the ablation of an iron sample
containing 10 ppm of carbon impurity and the optical emission of carbon in the laser-
induced plasma. With nanosecond lasers, the ablated mass per pulse is typically around
300 ng, corresponding to 3.2 × 1015 Fe atoms and N = 3.2 × 1010 C atoms (ignoring ions
in the following). The most intense emission line of C is in the UV range at wavelength
λki = 193.09 nm and the corresponding spectroscopic parameters are Aki = 3.7×108 s−1,
gk = 3, and Ek = 7.7 eV. For a typical plasma temperature of Te = 9000 K the partition
function of neutral C is Z = 9.8. The C atoms are emitting ∆nki/∆t ≈ 1.8 × 1014 photons
per second. For a typical LIBS setup equipped with an Echelle spectrometer and ICCD
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detector and with ∆Ω/2π ≈ 10−2, τg ≈ 10 µs, and γdet ≈ 1.25 × 10−5, the total detected
emission signal for carbon is ndet ≈ 430 photons. As a consequence of such rather low
signals, the limits of detection (LOD) and of quantification (LOQ) in LIBS are typically
in the ppm range (or higher, depending on the element considered). With double-pulse
LIBS the emission of the laser-induced plasma can be enhanced and lower LOD values are
achieved [1,6]. The measured signals depend also on the type of sample material (matrix
effect) and very different limits for the same analyte may be obtained for different matrices.
The measured LOD and LOQ values for many analyte elements in different matrices can
be found in the literature [50]. The LOD values for solid materials are summarized in the
table of elements in Figure A3 (Appendix A).

The compositional analysis of industrial materials requires multi-element detection
capability. Modern electronic components used in mobile phones, computers, and cars are
comprised of up to 60 chemical elements, for example. In LIBS, many different elements can
be measured at the same time, making this technique especially suited for the analysis of
materials with complex composition. The number of photons emitted from a laser-induced
plasma per atom in the plasma and per time can be calculated considering the spectroscopic
parameters of the involved atomic transition and the plasma temperature [51]. From
Equation (1) this element-specific emission rate (EMRA) is calculated by [Equation (3)]:

EMRA = (∆nki/∆t)/N = Aki gk exp[−Ek/kB Te]/Z(Te). (3)

Figure 1 shows the calculated emission rate of most chemical elements for a homoge-
neous and optically thin plasma in (local) thermodynamic equilibrium at Te = 10,000 K.

Figure 1. Number of photons emitted per atom and second for optically thin and homogeneous
LTE plasma at temperature Te = 10,000 K. This emission rate of atoms EMRA is calculated for
most chemical elements using the most intense emission lines of neutral species (upper part). The
ionization energy of neutral atoms versus the atomic number of elements (lower part). The sign “*”
stands for multiplication.
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For each element, the most abundant isotope is selected and at least the two most
intense emission lines of neutral atoms are evaluated [52,53]. Ions are not considered here
as most species are neutrals in LIBS plasma measured at longer delay times with respect to
the laser pulse. The emission rate varies by almost 12 orders of magnitude for the different
elements. The temperature Te = 10,000 K is typical in LIBS measurements employing
nanosecond laser pulses with energy density (fluence) Φ = 1−100 J/cm2 for ablation. At
very high nanosecond laser fluence of Φ ~ 104−105 J/cm2 the plasma species can have
high ionization stages (e.g., Ti12+ and Sn11+). The corresponding plasma temperatures
are around 105−106 K and plasma emission is obtained in the extreme UV and soft X-ray
spectral ranges. This regime has so far not been explored for technical applications in
analytics. The lower part of Figure 1 displays the ionization energy of neutral atoms. The
plasma emission and the ionization energies of elements are correlated. High energy levels
are sparsely populated and atoms with high excited state and ionization energies have
relatively weak emission.

In Figure 2 the emission rate of atoms in ideal plasma is presented according to the
group of chemical elements in the periodic table. The numbering of groups follows the
scheme of the International Union of Pure and Applied Chemistry [54].

Figure 2. Emission rate EMRA of atoms in ideal plasma for most chemical elements in groups 1 to 18
of the periodic table (Te = 10,000 K). Groups are numbered according to the IUPAC scheme [54]. The
sign “*” stands for multiplication.

In group 1, the alkali metals (lithium to francium) show intense emission
(EMRA ≈ 106 − 107 photons/atom × sec), whereas the hydrogen emission lines are weak
in comparison (EMRA ≤ 104 photons/atom × sec). The alkaline earth metals (beryllium to
radium, group 2), the transition metals (group 3 including lanthanoids and groups 4−12),
and the elements in group 13 (boron to thallium) have rather intense emissions. From
group 14 to 18 the emission rates show a trend to lower values and much larger varia-
tions for different elements within the same group. For halogens (group 17) and noble
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gases (group 18) the lightest elements have the faintest emissions with EMRA ≈ 100 and
10−3 photons/atom × sec for fluorine and helium, respectively. Elements with high plasma
emission intensities such as alkali metals, alkaline earth metals, and lanthanoids are mea-
sured with low LOD values, for example ~10 ppm for Mg and Na and ~2 ppm for Y. For
halogens, on the other hand, the emission intensity is much lower and the reported LOD
values are much higher, for example ~300 ppm for F, ~1000 ppm for Cl, and ~5000 ppm
for Br. In real LIBS plasma, the emission intensities may be significantly lower than the
calculated values. Radiation self-absorption, plasma non-homogeneity, plasma-chemical re-
actions, and ejection of non-luminous particles from the sample material are influencing the
optical emission of the plasma. A secondary excitation of the laser-induced plasma can en-
hance the optical signals, homogenize the plasma [55] and improve the detection sensitivity.
Techniques employed for secondary excitation in LIBS include double laser pulses [56–61],
electric spark discharges [62–65], and radiofrequency [47,66,67], and microwave [68–70]
radiation.

The reported LOD values of the different elements measured in solid samples and the
calculated emission rates of elements are correlated. There is a clear trend to lower LOD
for higher EMRA for most elements (Figure A4 in Appendix A).

3. LIBS Analysis of Industrial Materials

The rapid development of stable and robust high power laser sources, of efficient and
broadband spectrometers, and of fast and sensitive detection systems has stimulated many
scientific studies on LIBS in the last years. Various research groups and business enterprises
are developing LIBS systems, components, and software for technical applications in the
field, i.e., out-of-laboratory. Many classes of materials that are used in large scale in
industrial production are investigated by LIBS. Some materials classes are listed in the
following in alphabetical order. For each class of materials some references to recent
scientific publications are given.

• Aluminum alloys [71–80];
• Cement and concrete [81–91];
• Coal [92–105];
• Coal ashes [106–110];
• Combustible gases such as fuel/air mixtures [111–115];
• Copper alloys [74,116–123];
• Electrolytes, battery materials, fuel cells [124–129];
• Fertilizer [130–142];
• Food [143–153];
• Food supplements [154–156];
• Gases, exhaust gases [157–167];
• Glasses [168–179];
• Glass melts [180–182];
• Magnesium alloys [183–187];
• Metal melts:

◦ Aluminum [188–192],
◦ Sodium [193],
◦ Steel [194–203],
◦ Zinc [204,205];

• Metal scrap [9,77,102,206–218];
• Minerals [219–235];
• Mineral melts, solidified [236,237];
• Mineral ores [238–244];
• Nuclear and radioactive materials [245–264];
• Oil, oil shales, and sands [265–272];
• Oil residues [273–277];
• Organic and inorganic photovoltaic materials [278–280];
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• Paper and coated paper [281–283];
• Particulate matter:

◦ Aerosols and air-borne particles [284–292],
◦ Coarse grained powder [293–295],
◦ Loose fine-grained powder [296–301],
◦ Particles [297,302–307];

• Pharmaceutical substances [308–319];
• Polymers and technical polymers [59,320–336];
• Polymer waste [337–348];
• Refractory materials [349–354];
• Rubber [355–364];
• Silicon, metallurgical and solar grade silicon [365–368];
• Slag from steel production [51,55,369–377];
• Steel [194,378–401];
• Steel metal welds [402–405];
• Thin film solar cells [406–411];
• Waste electrical and electronic equipment (WEEE) [208,412–418];
• Wastewater [25,419–423];
• Wood and wood waste [424–429].

Other classes of materials that are investigated by LIBS include artefacts in cultural
heritage (e.g., metallic equipment, coins, mineral materials, paintings), biological materials
(e.g., bacteria, cells, tissue, bones), chemical colorants, explosives, extra-terrestrial mate-
rials, geological minerals, gemstones, ink, isotopes (e.g., hydrogen [31], uranium oxide,
lithium [430]), paints, plants, seafloor (underwater inspection), soil, and thin film coatings.

4. Technology Materials

Materials and energy are among the most important resources in industrial production
and are the basis for the development of new high-tech materials, novel products, and
advanced devices. Technology metals are especially important to produce such materials
and devices and the future need for various metals is increasing. Neodymium, for example,
is used mainly to produce permanent magnets and laser crystals and the need for Nd in
year 2030 is expected to be 3.8× larger than the present world production of this metal [431].
Plastics are another important resource material due to their high versatility and their use
in many areas. Plastics have grown enormously in importance over the last few decades
and 359 million tons of plastics were produced worldwide in 2018.

4.1. Precious Metals and Minerals

The production volume of high-tech devices such as smartphones, computers, high
energy density rechargeable batteries, flat panel displays, clean energy applications, and
components for cars and e-cars is strongly increasing. For the industrial fabrication of
such devices, large amounts of special materials are required. For example, the number of
smartphones sold worldwide to end-users increased from 122 Mio devices in 2007 to more
than 1520 Mio devices in 2019 [432] (for details see Figure A5 in Appendix A). Around
1300 Mio smartphones (with 1300 Mio rechargeable batteries) and 300 Mio PC’s and
Laptops (with 140 Mio rechargeable batteries) have been sold worldwide in 2008. The
production of only these devices consumed 3, 16, and 23% of the annual global mine
production of metals Ag, Pd and Co, respectively [433]. More than 50% of the global mine
production of noble metals Pt and Pd and more than 80% of Rh are used only for exhaust
gas catalyst systems of cars.

The global production of precious and special metals (“technology metals”) by mining
has drastically increased in recent years to cope with the demands. Figure 3 shows the
global mine production of some technology metals in years 1990–2017 normalized to the
total production since 1900 (compiled from data of the U.S. Geological Survey [434]). For
many metals more, than 80% of the total material mined since 1900 has been produced
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in the last few decades [433,435,436]. The available reserve of metals (in units of years)
is estimated from the materials reserve (tons) known in 2019 and the amount of material
(tons/year) produced in 2017 [434]. For several metals the reserve is only a few decades.
The supply of more than 50 chemical elements of economic value is considered to be at
risk [437]. An example of the depletion of natural resources is indium. In year 2007 the
global production of In metal was 510 tons, the known global reserves 11,000 tons, and the
estimated remaining time until exhaustion 19 years [431]. This risk clearly conflicts with
the need of In, which is expected to increase by 3.3× (until 2030) over the present world
production just for the fabrication of displays and photovoltaic devices.

Figure 3. Global mine production of some technology metals in years 1990 to 2017 normalized to
the production since 1900 (REO is rare earth oxide; PGM is platinum group metals including Pd, Pt,
Ir, Os, Rh, and Ru; Si refers to silicon metal). Reserve calculated from known materials reserve and
annual mine production. Data taken from [434].

Technological metals and other materials are continuously transferred from natural
geogenic resources to anthropogenic resources (i.e., products, goods, buildings and other
infrastructure, waste in man-made deposits) and to the environment. The global reserve for
copper, for instance, is around 955 Mio tons. In 1920, 930 and 25 Mio tons were contained
in geogenic and anthropogenic resources, respectively. In year 2000, the distribution has
drastically changed to 495 Mio tons in geogenic resources, 360 Mio tons in anthropogenic
resources, and 105 Mio tons spread in the environment [438].

4.2. Plastics Materials

The use of polymers and plastics in industry and many other areas has been strongly
growing over the last decades. In 2018, the plastic production reached 359 million tons
worldwide and 62 million tons in Europe [439]. China is the biggest producer of plastics
worldwide (30%). Most of the plastics in Europe (EU-28 + Switzerland and Norway) are
used for packaging, building/construction, automotive purposes, electronics, household,
and agriculture. The share of polymers by resin type is for polyethylene (PE-LD and PE-HD)
29.7%, for polypropylene (PP) 19.3%, for polyvinyl chloride (PVC) 10%, for polyurethane
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(PUR) 7.9%, for polyethylene terephthalate (PET) 7.7%, for polystyrene (PS) 6.4%, and for
others (ABS, PBT, PC, PMMA, PTFE, etc.) 19%, see Figure 4. The increasing demand for
plastics requires efficient treatment of the post-consumer plastic waste in order to avoid
uncontrolled release of the material into the ecosphere, e.g., as marine litter [440]. The
collection of post-consumer polymer and plastic waste reached 29.1 million tons in Europe
in 2018 (including 17.8 Mt plastics packaging waste). This waste material was recycled
(32.5%), used for energy recovery (42.6%), and disposed as landfill (24.9%), see Figure 4.
The evolution of plastic post-consumer waste treatment in Europe from 2006 to 2018 shows
a strong increase of materials recycling (4.7 to 9.4 Mt) and energy recovery (7.0 to 12.4 Mt)
and a substantial decrease of landfill (12.9 to 7.2 Mt).

Figure 4. (a) European plastics demand distribution by resin type in million tons (Mt) in 2018. (b) Distribution of post-
consumer plastic waste in Europe in 2018. Data taken from [441].

The European Strategy for Plastics in a Circular Economy [441] is aiming to transform
the production and use of plastic material and products and to further increase the recycling
rates for plastic waste. Different pathways of plastic recycling are assessed to reduce the
emission of greenhouse gases [442]. The PVC fraction must be removed from the collected
plastic waste prior to waste treatment. The removal of PVC protects machines that are
processing recyclate material from damage and avoids the formation of reactive substances
(e.g., HCl) and toxins in energy recovery processes.

4.3. Secondary Raw Materials

The exploitation of natural deposits and the production of primary raw materials
most likely cannot be scaled up with the increasing demands. Depletion of (known)
natural reserves, low abundance, and economic and environmental issues are obstacles in
increasing the mine production. Secondary raw materials are produced by the recycling
of end-of-life products and articles (e.g., waste), of by-products (e.g., from industrial
production), and of materials after their initial use. The recovery of raw materials from
anthropogenic resources is an important strategy to avoid severe shortage of commodities
and to stabilize the materials supply chains. “Urban mining” of secondary raw materials
has substantial economic and environmental impact as materials are used more efficiently
and materials flows become manageable (circular economy [443], impact on materials flow
cost accounting [444,445]). The mining of urban resources is also more energy-efficient than
the production of primary raw materials. The mining of gold (average Au concentration
in ore ~5 g/ton) produces approx. 17,000 tons of CO2 per ton of Au metal [446]. The
CO2 gas emission is in large part due to the energy required to extract the ore from deep
lying natural deposits and to process it. Printed circuit boards (PCB) of computers and cell
phones, on the other hand, have Au concentrations of 150 and 300 g/ton, respectively, and
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are easily accessible [447]. Another example is the recycling of Cu and Al, which saves
more than 85% and up to 95%, respectively, of the energy required to produce the primary
raw materials by mining.

The production of high-quality secondary raw materials from waste streams requires
the inspection of the waste composition and the separation into different fractions and
materials classes. In the recycling industry, various sensor technologies are employed in
sensor-based sorting [448]. The sorting systems are using optical sensors (e.g., detecting
the color or absorption/reflection/fluorescence of waste pieces) [449], X-ray transmission
sensors (e.g., measuring the atomic density and element composition), magnetic and Eddy
current sensors (e.g., detecting Fe and non-Fe metals), spectroscopic sensors (e.g., detecting
specific absorption bands in the infrared (IR) and emission lines and bands in the ultraviolet
(UV) and visible (VIS)), gamma ray-based sensors, and acoustic sensors.

5. In-Line Application of LIBS in Industrial Production

The major strengths of the LIBS technique are its robustness and versatility and its
capability for rapid and stand-off multi-element detection. This enables LIBS to be used
for in-line chemical sensing in industrial production under harsh conditions. Laboratory-
based element analytical techniques (e.g., LA-ICP-OES/MS) are more accurate than in-line
compatible techniques such as LIBS. However, in-line techniques allow for continuous
sampling, the reduction of sampling errors, and the real-time detection of rapid changes
in the materials composition. Hence, analytical data obtained by a less accurate but
continuously performed in-line measurement may have advantages over more accurate
data measured in the laboratory that are less representative. In the following we present
some recent examples for in-line, at-line, and in-situ measurements of various materials
(alphabetical order).

5.1. Coal and Coal Ash

Coal is still one of the major resources for the global production of electricity. Around
39% of the total electricity production worldwide was based on coal in 2015 [450]. Moreover,
coal is an important raw material in various industries. The combustion efficiency of coal
depends on various material properties such as chemical composition (major elements
C, H, O, N, and S), heat value, moisture content, volatile matter, fixed carbon, and ash
content [92,451]. In order to optimize the efficiency of power generation and to reduce the
environmental pollution (e.g., by emission of SO2) a technology for rapid in-line or at-line
chemical analysis is needed.

Coal is usually analyzed by standardized ASTM laboratory methods (American
Society for Testing and Materials), which requires several days for the results to be obtained.
Prompt gamma neutron activation analysis (PGNAA) and X-ray fluorescence (XRF) are
methods enabling in-line analysis of coal. However, radiation safety issues are of relevance
for both methods. Furthermore, PGNAA requires the use of an isotope source and XRF does
detect only the heavier elements (Z ≥ 11). LIBS is a promising candidate for coal quality
detection due to its advantages of real-time, in-situ, and multi-element measurement
capability. A schematic of a LIBS measurement system installed in a coal-fired power plant
is shown in Figure 5a [452,453]. The LIBS system was installed above a conveyor belt to
analyze coal material that was transported from the crushing station to the coal bunkers
(PPL Generation’s Montour Power Station). For calibration, an artificial neural network
(ANN) model was developed and trained with calibration samples (ASTM reference
analysis). Figure 5b shows results from validation tests of the in-line LIBS system using
approx. 120 coal samples that were grabbed and then analyzed by LIBS and a laboratory
method. The LIBS results for the Sulphur concentration (red and black symbols, Figure 5b)
were in good agreement with the lab reference analyses (black lines, Figure 5b). The
measurement of S was required for optimal operation of the SO2 reduction system of the
plant. Besides S, the LIBS analyzer was detecting also Al, C, Ca, K, Mg, Na, Fe, Si, and Ti
in real-time.
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Figure 5. LIBS in-line analyzer of coal. (a) Schematic of measurement system for coal on conveyor belt in coal-fired power
plant. (b) Measured concentration of Sulphur in coal for approx. 120 samples (validation tests). Adapted from [452,453].

The ash content in coal transported on a conveyor belt can be monitored online
by PGNAA. However, the neutron radiation in PGNAA represents a potential health
hazard requiring strict regulatory demands. LIBS does not require radioactive materials for
operation and LIBS systems can be designed more compact and of less weight compared
to PGNAA systems. Laser Detect Systems has developed one of the first mineral analysis
systems using LIBS and has pioneered the in-line analysis of coal ash [110]. The system
was installed at a conveyor belt of a coal mine in South Africa for a four-month field
trial (Figure 6a).

Figure 6. LIBS in-line analyzer of coal ash. (a) Measurement system installed at a conveyor belt (photograph: LDS Laser
Detect Systems). (b) Real-time coal quality monitoring by LIBS (triangles) and PGNAA (squares). Reference concentrations
(circles). Adapted from [110].

The analytical performance of the LIBS system was compared to a PGNAA system
installed in the same line. LIBS analyzed the surface of the coal material on the belt while
the PGNAA signal depended on the volume of the irradiated material. The field trial
demonstrated successful online coal ash content monitoring by the LIBS analyzer. The key
elements in coal and coal ash, C, Mg, Al, Si, Ca, Fe, and Ti, were measured and the in-line
ash quantification by LIBS and PGNAA had the same accuracy with a mean absolute error
of ±0.5% (Figure 6b).

The concentration of unburned carbon in fly ash is an important criterion for evaluat-
ing the combustion efficiency of coal-fired power plants and the commercial value of fly ash
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as a secondary raw material. A high concentration of unburned carbon can have adverse
impact on the combustion efficiency and on the value of the ash. The carbon concentration
is presently measured off-line by manually obtaining fly ash samples from the precipitator
ash hoppers or flue gas streams and sending the samples to a laboratory. Depending on
the laboratory test procedure employed, the results may not be available for up to 24 h.
This procedure takes several hours and delays the combustion optimization process. For
online measurements a LIBS system and a two-stage cyclone measurement system were
developed to quantify the carbon content in fly ash in real-time [106]. The cyclone system
in combination with a 1 ns pulse-width laser enabled to eliminate the effect of CO2 on the
unburned carbon content. A schematic diagram of a boiler control system using LIBS in a
coal-fired power plant for fly ash measurement is shown in Figure 7a.

Figure 7. LIBS analysis of unburned carbon in coal fly ash. (a) Schematic of advanced control system using real-time LIBS
measurements. (b) Unburned carbon content measured by LIBS and by standard chemical analysis method (JIS). Adapted
from [106].

The unburned carbon content in different fly ash samples as measured by LIBS and by
standard chemical analysis methods (Japanese Industrial Standards JIS) are compared in
Figure 7b. For improved quantitative analysis the plasma temperature correction method
was used. The results of measurements by LIBS and JIS method were consistent with
R2 = 0.9052 and RMSEP = 3.9% in the measurement range of 14.0 to 53.2% of unburned
carbon. This demonstrates the feasibility of LIBS for real-time measurement of fly ash
contents in power plants. Some earlier studies on the on-line analysis of unburned carbon
in fly ash and of combustion products in industrial boilers and furnaces are reported
in [454,455], respectively.

5.2. Metal Melts

The element analysis of metal melts in the production is usually performed off-line
by laboratory-based analytical techniques such as XRF and spark OES. A liquid sample is
taken and measured after cool-down and solidification. This is a time-consuming process,
making the real-time monitoring of the melt composition impossible. With LIBS the melt
can be measured directly, i.e., without sampling, and real-time analysis becomes feasible.

The chemical analysis of aluminum in a primary aluminum smelter has been re-
ported recently [188]. The measurement system was installed at a casting launder system
(Figure 8a). The melt temperature was around 730 ◦C. Fourteen trace elements (Fe, Si,
Cu, Ni, Ti, Cr, Mn, Sn, V, Ga, Zn, Sb, Mg, Na) were measured in the melt and the results
were correlated with laboratory measurements on corresponding solid samples. The trace
elements Cu, Cr, Mn, and Sn were quantified down to ppm levels and volatile elements,
e.g., Na, were measured in real-time down to ppm levels (Figure 8b). It was concluded
that the in-line LIBS analysis of many technically important trace elements in the primary
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aluminum melt was fully competitive with the off-line laboratory analysis of solid pro-
cess samples in terms of accuracy and precision. Some earlier reports on the analysis of
aluminum melts are [190–192].

Figure 8. LIBS in-line measurement of molten aluminum. (a) LIBS device installed at a casting launder system in a primary
aluminum smelter. (b) In-situ measurement of sodium concentration in the molten aluminum (dashed line: guide to the
eye). Adapted from [188].

The LIBS analysis of molten steel has been reported by several groups, e.g., in [194,197–203].
In a recent publication, a hollow refractory lancet was immersed into the metal melt to pass
the laser light through the surface slag layer onto the liquid steel underneath and to pass
the optical radiation of the laser-induced plasma backwards to the optical detection system
(using a Cassegrain telescope) and spectrometer (Figure 9a) [197]. The setup was designed
to protect all optical and electronic equipment against the high-temperature environment
near the steel ladle.

Figure 9. LIBS in-line measurement of molten steel. (a) Photograph of the LIBS system refractory lance that is immersed
into the liquid steel in the ladle. (b) Calibration and test results for C, Si, and Mn of liquid steel in a steel plant (straight
lines: linear fits to data). Adapted from [197].

In laboratory test runs the elements Si, Mn, Cr, Ni, and V in molten steel samples were
measured. In the steel plant the elements C (0.21–0.27 wt%), Si (0.52–0.63 wt%), and Mn
(1.20–1.38 wt%) were analyzed quantitatively by LIBS and by spark OES as reference. The
predicted concentration of test samples was close to the reference concentration with small
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relative root mean square errors of prediction RMSEP (Figure 9b). The results obtained in
the steel plant were not as good as the results in the laboratory. However, the accuracy
achieved in the in-line measurements approached the steel plant’s requirements. From
these results it was concluded that the developed LIBS system is promising for the in situ
analysis of melt steel in the steelmaking industry. Immersion probes for LIBS analysis of
liquid metals including steel were developed prior by other groups [199–201].

5.3. Minerals

For the exploration and efficient excavation of mineral quarries the composition of
rock has to be measured during the drilling process. Analysis of minerals inside the drill
hole is not feasible; however, the drill dust can be extracted with a dust hose and analyzed.
Figure 10a shows a LIBS analyzer for continuous in-line analysis of the drill dust [102]. The
LIBS system is mounted on a mobile drill rig.

Figure 10. LIBS in-line measurement of drill dust in a quarry. (a) LIBS system mounted on a drill rig. (b) Measured spatial
variation of Aluminum concentration as a function of drill depth and horizontal position of the mobile drill rig. Adapted
from [102].

The results from a LIBS measurement campaign in a quarry are shown in Figure 10b.
Dust samples were collected at different horizontal positions of the drill rig and at various
drill depths. The Aluminum concentration measured as a function of drill depth and
horizontal position varied from 0 to 1.5 m%. From such elemental maps a spatial model of
the mineral deposit can be determined, and the excavation process can be optimized.

In another study, the ability of LIBS to provide in-line analyses of phosphate ores
under industrial conditions was demonstrated [233]. Impurities in the phosphate rock sig-
nificantly affect the ability to efficiently recover phosphate from the rock in the production
plant and produce on-grade products. The most significant variables are CaO, MgO, Fe2O3,
and Al2O3. A rugged LIBS sensor was developed and installed above a conveyer belt in
an open phosphate mine (Four Corners Mine, FL, USA). A photograph of the installed
LIBS system is seen in Figure 11a. The system enabled automated measurements of several
elements (Mg, Fe, Al, Si, Ca) and the on-belt evaluation of phosphate ores. The variation of
LIBS-measured signals for MgO (square symbols), Fe2O3 (up triangle), bone phosphate
lime (BPL, down triangle), and metal impurity ratio (MER, circle) over 27 h of a test run
are shown in Figure 11b. During the test run two different rock portions were detected
as evidenced by varying signals of MgO, Fe2O3, BPL, and MER. The real-time detection
of unwanted material by LIBS enables removing this material from the conveyer before
further processing.
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Figure 11. LIBS in-line measurement of phosphate minerals. (a) Photograph of LIBS sensor installed above a conveyor belt
in the Four Corners Mine, Florida (USA). (b) MgO, Fe2O3, BPL, and MER measured by LIBS over several days. Adapted
from [233].

5.4. Metal Scrap

Metal scrap is an important resource material for various industries. In 2017, approx.
57 million metric tons of selected metals were recycled from scrap in the U.S. (an amount
equivalent to about 47% of the apparent supply of those metals). Iron and steel accounted
for about 89% of the recycled metal and about 88% of the apparent supply [456]. The use of
recycled scrap metals in place of virgin iron ore is beneficial to the environment (e.g., energy
savings by 75%) and for every ton of new steel made from scrap steel approx. 1.1 tons of
iron ore and 0.6 tons of coal are saved [457]. Aluminum is one of the few materials that is
completely recyclable. The production of recycled aluminum is 92% more efficient than
the production of new aluminum. Per year, 5 Mt of aluminum are recycled in the U.S. and
Canada [458].

LIBS was applied for the in-line monitoring of steel scrap on a conveyor belt transport-
ing the scrap metal to an electrical arc furnace (EAF) in a steel plant [102]. The real-time
measurement of the content of key elements in the scrap allows stabilizing the process
of furnace charging and steel making. The optical unit of the developed LIBS system
was installed over the conveyor line (Figure 12a). The main components included a 3D
scanner and a laser light section sensor to measure the geometry of the scrap pieces. The
scanner optics directed and focused the laser beam onto the scrap in a wide field of the
cross-section of the conveyor (1.2 m × 2 m, varying filling level). The charging operation
of the EAF is controlled by determining the mass flow of key elements (e.g., Si) from the
element concentration measured by LIBS (Figure 12b). Parameters such as the belt speed,
the filling height, and the average scrap density have to be taken into account to determine
the element mass flow. The availability of data in real-time enables to adjust the charging
process before the charging is finished. LIBS analysis of steel scarp was reported by other
groups as well [215].

The LIBS technique has been applied also to the inspection of aluminum scrap for
metal recycling [6,209,210,214]. Wrought and cast Al alloy pieces have been identified using
a belt conveyor sorting system by measuring the LIBS signals for Al, Ti, and Si achieving a
mass throughput of up to 4 tons/hour [6]. In another study, scrap of Al alloys containing
different amount of Mg and Si was sorted by LIBS. For Al scrap pieces of 40–110 mm size
the sorting throughput was 3–5 metric tons per hour and the sorting purity was 98% [209].
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Figure 12. LIBS in-line measurement of steel scrap. (a) Schematic of LIBS sensor installed above a conveyor belt in a steel
plant. (b) Variation of the silicon mass in the scrap on the conveyor as derived from the in-line LIBS measurements. Adapted
from [102].

5.5. Nuclear Material

In the nuclear industry the analysis of nuclear and other materials before, during,
and after production and utilization is required for safe and economic operation. This
includes different processes in the nuclear fuel cycle such as mining of ore, fabrication of
fuel, power plant operation, fuel reprocessing, and spent fuel storage (Figure 13a) [259].
Laser spectroscopy techniques such as LIBS, laser-induced fluorescence (LIF), and cavity-
ring down spectroscopy (CRDS) are employed for analysis due to their elemental and
molecular selectivity and high sensitivity. The inherent advantages of LIBS make it an
efficient method for the analysis of hazardous samples in harsh environments. The nuclear
industry is one of the fast-growing fields of LIBS application [248]. The development of
stand-off LIBS systems enables for remote and in situ inspection of samples that are at large
distance from the LIBS sensor (i.e., many meters).

Figure 13. LIBS in nuclear materials analysis. (a) Potential applications of LIBS in nuclear fuel cycle. Adapted from [259].
(b) Schematic of a stand-off LIBS analyzer installed at the THORP nuclear plant in UK. Adapted from [263].
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Figure 13b shows a stand-off LIBS system using an optical telescope for the char-
acterization of high-level radioactive waste at the THORP nuclear reprocessing plant in
UK [263]. Optical access to the material was possible via a 1 m thick lead-glass radiation
shield window. The LIBS system was used for remote identification of an unknown solid
material that accumulated on the basket surface. The perforated basket was used in the
processing of spent fuel. Remote analysis of this surface contamination was necessary due
to the difficulties in taking a sample from behind the radiation shield and the subsequent
difficulties with laboratory analysis. The LIBS analysis showed that the contaminant mate-
rial was rich in zirconium and molybdenum (mainly zirconium molybdate which forms
during the reprocessing of spent fuel).

Remote analysis of materials in nuclear fusion reactors is another important applica-
tion for stand-off LIBS [249,257]. During operation of a tokamak fusion reactor, the inner
walls of fusion chambers and divertors (plasma-facing components, PFC) are severely in-
teracting with the plasma. As a consequence, the PFCs are subject to erosion, re-deposition
of eroded material, and retention of fuel. The performance of fusion tokamaks such as
ITER [459] can be influenced by such processes. Figure 14a shows the schematic of a
stand-off LIBS system installed at the Experimental Advanced Superconducting Tokamak
(EAST) [257,460]. The Nd:YAG laser beam (1064 nm, 5 ns, 180 mJ) was focused on the wall
surface on the high-magnetic-field side using a quartz lens (f = 3 m) mounted at port H of
the EAST device. The emission of LIBS plasma was collected in a backward direction using
an optical telescope. The LIBS spectra measured in situ showed spectral signals of multiple
elements (D, H, Li, Mo, W, Ti, La, Fe, and Si). The signals of Mo, W, C, and La were from
the substrate materials of tiles, the signals of D and H came from the fuel (H was used for
isotope experiments). The Li signal was caused by Li wall conditioning and Ti, Fe, and Si
were due to impurities in the Li co-deposited layer.

Figure 14. LIBS in fusion materials analysis. (a) Schematic of a stand-off LIBS system installed at the EAST tokamak in
China. (b) In situ LIBS spectra with Hα and Dα lines measured on different days at EAST. Adapted from [257].

Figure 14b shows LIBS spectra with the Hα and Dα lines measured in situ at EAST on
different days. From such measurements, the H/H + D ratio in the plasma phase can be
determined. These results demonstrate the potential of LIBS for in situ characterization of
D/H retention and Li co-deposition on the walls of the fusion reactor.
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5.6. Refractory Materials

Many industrial processes at high temperature such as metal making, furnace anneal-
ing, and sintering require high-temperature stable refractory products such as bricks, etc.
The reuse and recycling of spent refractory materials have high potential to reduce the
production of waste and the consumption of primary raw materials. The estimated amount
of spent refractories is up to 28 million tons per year [461]. For high-grade recycling, the
different types of refractory materials have to be identified and sorted with respect to
their chemical composition and impurities have to be removed. The refractory materials
are modified on the surface due to the interaction with the high-temperature processed
material (e.g., liquid steel). Therefore, the surface layer is not representative for the bulk.
LIBS has been used for the analysis of spent refractory materials [353,354]. When several
laser pulses are applied on the same position of the specimen the contamination layers on
the surface can be removed and the composition of the bulk material retrieved [208].

A demonstrator of a LIBS-based spent refractory sorting machine is shown in Figure 15a.
The LIBS sensor is installed above the conveyor belt. An end-of-life refractory brick
with a modified surface layer and unmodified bulk is shown in Figure 15b. Three LIBS
measurement spots are marked with a white rectangle.

Figure 15. LIBS on-site measurement of spent refractory materials. (a) Demonstrator of a LIBS-based sorting machine
(Photo: Orbix). Adapted from [461]. (b) End-of-life refractory brick with a modified surface layer. LIBS measurement spots
marked with white rectangle (Photo: Fraunhofer ILT). Adapted from [208].

The demonstrator succeeded in sorting 30 tons of mixed bricks (doloma, magnesia,
and alumina) at a throughput of 10 tons/h (1 brick per second). The sorting accuracy
was validated by analysis of the output fractions (magnesite and dolomite). For all oxides
analyzed (CaO, MgO, SiO2, Fe2O3, Al2O3) the targeted composition of sorted fractions was
reached (small exceedance for SiO2) [208].

5.7. Rubber

Rubber has outstanding material properties such as mechanical elasticity, viscoelastic-
ity, dielectric strength, thermal stability, resisting power against chemicals, morphological
flexibility, and durability, and is used in a wide range of applications. About 70% of the
annual global production of rubber is used for tire production and retreading [462]. A key
parameter for the fabrication of rubber is the concentration of the vulcanization agents
Sulfur and Zinc oxide (ZnO). The properties of the material (e.g., elasticity, stiffness, wear)
depend on the amount of S and ZnO, and for the production of rubber of high quality the
concentrations have to be controlled precisely in the process.

XRF and PGNAA cannot be employed for in-line measurements in the rubber pro-
duction due to radiation hazards and other techniques were not available. Recently, LIBS
has been employed for the first time to quantify ZnO and S directly in the tire rubber
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production [357]. The system was optimized to measure the optical emission of S and Zn
from the rubber plasma in air (Figure 16a). Plasma excitation in collinear double-pulse
geometry and detection of plasma emission with time-gated detectors was employed to
resolve the weak sulfur lines in the near-infrared range.

Figure 16. LIBS in-line measurement of tire rubber. (a) Photograph of the LIBS system installed at the tire rubber production
line. (b) Validation of S and ZnO concentrations measured in different types of rubbers (dashed line: ideal match). Adapted
from [357].

The element S and ZnO were quantified in three different sample materials (natural
rubber NR, styrene-butadiene rubber SBR, and butadiene rubber BR) that were prepared
from the most important polymers used in production (Figure 16b). The mean error of
the prediction of concentrations RMSEP is ≤0.07 wt% for S and ≤0.33 wt% for ZnO for
all polymer types. The results demonstrated that the vulcanizing system of rubber can be
quantified under ambient conditions with a LIBS in-line sensor. Earlier attempts on tire
rubber analysis by LIBS in the production are reported in [363,364].

5.8. Steel Grade Detection in Casting

In industrial steel production the casting of liquid steel into slabs, blooms, and billets
is a frequently used process. The continuous casting of steel from different heats produces
slabs that may have different chemical composition. The detection of different steel grades
is important for the identification of the slabs. Moreover, the detection of transition zones
from one steel grade to the other can improve productivity and cost-efficiency, e.g., by the
reduction of steel waste. LIBS has been proposed for analyzing the chemical composition
of cast steel and the at-line monitoring in the steel casting process has been successfully
demonstrated [463–465].

The steel slabs are covered by different layers of varying thickness, which poses a
substantial challenge for surface-analytical techniques such as LIBS. A schematic of LIBS
at-line measurement of hot steel slabs in the continuous steel casting process is shown
in Figure 17a. The bulk steel material (a) is covered by a scale (oxide) layer (c), mold
powder (d), and dirt. The thickness of this surface layer can exceed several 100 µm. For
LIBS analysis of the bulk material the surface layer has to be removed locally, e.g., by a
sequence of laser pulses that precede the LIBS measurement and ablate the slab surface
(“laser cleaning”).



Appl. Sci. 2021, 11, 9274 19 of 46

Figure 17. LIBS at-line measurement of hot steel slabs in the continuous steel casting process. (a) Schematic of a slab with
steel matrix (a) and various surface layers (b–d). Adapted from [464]. (b) LIBS signal of Pb showing the transition between
two different steel grades. The inset shows the signal for Ni. Solid lines are 25-point averages. Adapted from [463].

The LIBS signal of the Pb (I) line at 405.78 nm measured at-line on a hot steel slab
in motion shows the transition from one steel grade to another (Figure 17b) [463]. The
number of laser shots corresponds to the position of LIBS measurements on the steel slab
along the casting direction (5 mm distance between two subsequent laser shots at pulse
repetition frequency of 5 Hz). For comparison, the Ni (I) 341.47 nm line intensity did not
change at the transition zone (inset of Figure 17b). The concentration of Pb in the two steel
grades was 0 and 0.17 wt% (for Ni the concentration was 1.75 and 0.88 wt%). The LIBS
signals obtained from the sample surface in real-time and the statistical analysis of signals
allowed to discriminate special steel grades and to predict the distribution of elements in
the intermixed transition zone of the cast slabs. The combination of LIBS measurements
and Artificial Neural Network (ANN) methods for signal evaluation has also been used for
the quantitative elemental analysis of cast steel along the slab length [465].

5.9. Steel Slags

Steel slags are multi-component oxide materials that are produced in large quantity
in industrial steel production. For the control of the steelmaking processes and for the
recycling of the metallurgical slag materials suitable analytical techniques are required.
The standard method is XRF. However, LIBS requires less time for the analysis of slags
than XRF [466]. For some applications the quantitative analysis of the major components
of metallurgical slags is sufficient. This task can be accomplished by calibration-free LIBS
(CF-LIBS) where the concentration of major elements is calculated directly from LIBS
spectra of the samples without the need to measure reference materials. This approach
is of interest if minor and trace elements are not relevant, analysis time is important, and
reference materials are not available. The CF-LIBS method has been employed to analyze
metals [467–470], rocks [471–473], and biological materials [474,475].

Figure 18a shows a LIBS system installed in the secondary metallurgy of a steel plant
of voestalpine Stahl GmbH (Austria). The system measures the concentration of major
oxides in solid slag by the CF-LIBS method [375,476]. The concentration of major oxides in
various slag samples determined by CF-LIBS and the nominal concentration determined
by reference analysis are shown in Figure 18b. The major oxides in the slag samples
were CaO, Al2O3, MgO, SiO2, FeO, and MnO with concentration values ranging from
5×10−3 wt% to 54 wt%. The concentration values by CF-LIBS (CCF) match very closely the
nominal concentrations (CN). Deviations from the perfect match CCF = CN (dashed line in
Figure 18b) depend on type and concentration of oxide and are up to a few wt%.
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Figure 18. LIBS in-line measurement of solid steel slag in secondary metallurgy at voestalpine steel plant. (a) Photograph
of the installed LIBS system. (b) Concentration of major oxides obtained by calibration-free (CF) analysis vs. nominal
concentration (dashed line: ideal match). Adapted from [372].

The analysis of slag samples at high temperature is important when short time-to-
analysis is required. In order to study the stability of CF-LIBS analysis against sample
temperature, ceramic slag samples were heated in a box furnace to high temperature and
measured during cool-down in air [374]. The calculated concentration values CCF showed
only weak variation with sample temperature up to 275 ◦C. Larger deviations in concentra-
tion were observed at higher sample temperature. The ablation rate, the self-absorption of
radiation, the plasma expansion dynamics, and the plasma parameters may depend on
the sample temperature [477]. The evaluation of data has led to the conclusion that the CF-
LIBS method enables to quantify individual constituents with concentrations ≥1 wt%. This
result agrees with the conclusions from theoretical investigations [371,478] that the inhomo-
geneity of plasma is a major limiting factor for the quantitation of smaller concentrations
by CF-LIBS.

In the crude steel production (Linz-Donawitz process) converter slag is a by-product
which can be used as raw material in other industrial branches, e.g., for road construc-
tion. The chemical composition of the slag is varying, and chemical analysis is required
before further use of the material. An automated LIBS measurement system has been
developed to analyze the major oxide components of the liquid slag (T = 600−1400 ◦C)
while it is transported in a ladle to slag pits [373]. Figure 19a is a camera view into the slag
ladle showing a solidified crust at the slag surface and the laser-induced plasma plume.
A measuring probe guides the laser beam onto the slag surface and the plasma radiation
from the liquid to the detection unit. The probe is moving across the slag surface during
the LIBS measurement (2 min/meas.). The mass fraction of the major oxides was deter-
mined by calibration curves for approx. 50 slag ladles and compared to the XRF reference
mass fraction (Figure 19b). Similar results were obtained for the liquid slag (R2 = 0.992,
Figure 19b) and solid pressed powder samples (R2 = 0.997, data not shown). Stable op-
eration during a three-month test run has demonstrated the potential of LIBS for in-line
process analysis.
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Figure 19. LIBS in-line measurement of liquid converter slag at voestalpine steel plant. (a) Photograph of the laser-induced
plasma at the slag surface in the slag ladle. (b) Concentration of major oxides obtained by calibration-based analysis vs.
reference concentration (dashed line: ideal match). Adapted from [373].

5.10. Waste Electrical and Electronic Equipment

The amount of waste electrical and electronic equipment (WEEE) produced per year
has increased exponentially in the last 20 years, reaching 50 million metric tons in 2018 [479].
WEEE is mainly composed of iron/steel, plastics, non-ferrous metals, glass, and printed
circuit boards (PCBs). For efficient recycling and recovery of valuable materials from this
increasing waste, new technologies for fast and accurate chemical identification of WEEE
components are needed [412].

Figure 20 shows an application of LIBS for the inspection of end-of-life PCBs from
disassembled mobile phones [208].

Figure 20. LIBS measurement of printed circuit boards (PCBs). (a) Schematic setup for optical inspection and LIBS analysis.
(b) Photograph of PCB from a mobile phone (top); chemical image of Tantalum in the PCB measured by LIBS. Adapted
from [208].

The optical sensors used for sample recognition within the measuring volume and the
LIBS sensor (Figure 20a) were part of a large demonstrator system aiming at automated
disassembly, separation, and recovery of valuable materials from WEEE [480]. The pho-
tograph of a PCB from a mobile phone (top) and a LIBS raster scan of the PCB with the
obtained chemical image of Ta (bottom) are shown in Figure 20b. High intensities of Ta are
represented by orange/red color. The LIBS scan of the complete PCB (108 × 42 mm2) was
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repeated several times to penetrate the housings of the electronic components and to access
the bulk material. The chemical information gained by LIBS can be used in the next step
for selective laser unsoldering and removal of the identified components (e.g., capacitors)
from the PCB [208].

In related studies, LIBS sensors have been developed to control a hydrometallurgical
Cu recovery process in discarded PCBs [412] and to analyze heavy metals and brominated
flame retardants in polymers and WEEE pieces on a conveyor belt [347].

5.11. Waste Polymers

For the recycling of waste polymers and the use of polymer recyclates as secondary raw
material, the identification of different types of polymers and the detection of contamina-
tions such as surface layers and heavy metals is important. The polymer polyvinylchloride
(PVC, monomer formula C2H3Cl) is used in different segments such as building and con-
struction, packaging, automotive, electrical and electronic, and textile. PVC is among the
top three materials by market share accounting for 10% of the total European demand
for plastics (Figure 4). More than 42% of the collected post-consumer plastic waste in
Europe is used for energy recovery. For the energy recovery, the PVC fraction has to be
sorted out from the polymer waste to avoid the formation of HCl and other detrimental or
toxic substances.

LIBS enables discriminating different types of polymers and detecting contaminations.
PVC can be identified by measuring the Chlorine emission line, which is unique for this
polymer type. However, this task is challenging because of the low emission rate (Figure 1)
and rather high LOD values for Cl (Figure A4 in Appendix). The in-line measurement of
waste polymers for the identification of PVC in an industrial waste materials sorting plant
is shown in Figure 21a [343]. Material from municipal waste plastic collection containing
different types of plastic pieces and impurities was measured on the conveyor belt.

Figure 21. LIBS in-line measurement of waste polymers. (a) Photograph of the LIBS sensor head mounted above a conveyor
belt in a waste sorting plant. (b) LIBS spectra of two polymer waste samples and a pure PVC reference sample. Chlorine
emission line at 837.6 nm used for PVC detection. Adapted from [343].

The LIBS spectra (100 measurements/sec) were evaluated in real-time comparing the
NIR range with the Cl emission line at around 837.6 nm. LIBS spectra of two different
polymer waste samples measured in-line and of a pure PVC reference sample are shown
in Figure 21b. PVC pieces were identified by a high correlation of spectra of the waste
and reference materials (e.g., sample 1). Waste polymers of low optical reflectivity are
difficult to measure by standard NIR reflectance sensors, but they are easy to measure with
LIBS as this signal is largely independent of the sample color. Similar measurements were
performed on polymer recyclate material to identify impurities such as PVC and surface
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contaminations in recycled PET flakes [481]. LIBS analysis of heavy metals and halogens in
waste polymers has been reported by several groups, e.g., [345,347,482,483].

In the production of plastics, new polymers are often diluted with recycled material.
The properties (mechanical, color, chemical) of the diluted polymer should be monitored
to keep it within specifications. This is a challenging task as the chemical and mechanical
properties are usually tuned via a huge variety of additives such as inorganic coloring
pigments, flame retardants, and various thermal and photochemical stabilizers. LIBS can
be used for the elemental monitoring of recycled plastics in the production process. A
demonstration of LIBS monitoring in polymer production is illustrated in Figure 22 [418].
The produced polymer material is measured at the extrusion orifice of an industrial extruder
in a recycling plant (Figure 22a). In addition to the elemental analysis by LIBS, other
parameters of the recycled material such as color and strength can also be measured.

Figure 22. LIBS in-line measurement of polymers in a recycling plant. (a) Schematic of the LIBS sensor installed at a polymer
extruder. (b) Detection of different types of polymer material at the extruder by means of LIBS intensities measured for Ti
and Sb. Adapted from [418].

The monitoring of chemical composition of polymers is shown in Figure 22b. The
measured LIBS intensities for Ti and Sb (from additives) are changing with extrusion time
as the raw polymeric material (ABS) is increasingly replaced by recycled plastic material
(granulate from casings of electronic waste) [418]. After completion of transition from raw
to recycled material (at approx. 20 min time) the elemental signals reach a plateau level.
The elemental monitoring allows to control the polymer composition and to automatically
discard undesirable fractions of the recycled material.

5.12. Welds

Welding processes are one of the most commonly used joining technologies. Defects in
the weld metal reduce the safety and integrity of a weldment. For the welding of stainless
steel, the chemical composition of the weld metal determines the solidification of the
steel and the weld metal quality. For the inspection of weld seams, various destructive
and non-destructive methods are employed after completion of the welding process. In-
spection during the welding process would save time and effort. LIBS can be used for
in-situ weld pool monitoring during the welding process. Tungsten inert gas welding of
austenitic stainless steel was monitored by LIBS to measure in-situ changes of the chem-
ical composition [402]. Figure 23a shows the schematic of an in-situ LIBS monitor in a
welding process.
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Figure 23. In-situ LIBS measurement of tungsten inert gas (TIG) stainless steel welding. (a) Experimental set-up of welding
and LIBS equipment. (b) Intensities of Cr I/Fe I (black squares), Ni I/Fe I (red circles), and Mn I/Fe I (blue triangles) were
measured at different distance to the welding arc (HAZ is heated affected zone). Adapted from [402].

The normalized intensities for elements Cr, Ni, and Mn recorded during welding at
various positions on the weld metal are shown in Figure 23b. After solidification of the
weld pool the intensity for Mn strongly dropped, whereas intensities for Cr and Ni were
almost unchanged. The formation of Mn vapor above the weld pool and condensation of
Mn on the weld metal surface was concluded from the measurements. The results proved
that LIBS can be used in situ to inspect the TIG welding process.

6. Conclusions

The major strengths of LIBS from the application point of view are the versatility,
the multi-element detection, and the field suitability of the method. LIBS enables for fast
measurements without or with only little sample preparation reaching detection limits
in the low ppm range, typically. The major limitation of LIBS is its rather low sensitivity
(“ppm barrier”), which does not compete with laboratory-based laser analytical techniques
such as LA-ICP-MS and LA-ICP-OES. These methods have better analytical performance
in terms of LOD and LOQ reaching values in the ppb range, typically. However, the field
suitability of LIBS enables to use LIBS-based sensors for in-line and at-line measurements
in industrial production and for other applications under harsh conditions out of the
laboratory. The ongoing rapid development of laser sources, efficient spectrometers, and
sensitive light detection systems is a driving force for the further development of robust
LIBS systems and of hand-held LIBS devices. New solid state lasers with high repetition
rate and high average power, e.g., advanced fiber lasers and compact Nd:YAG lasers,
are supporting this development. Fast element analysis of primary and secondary raw
materials, of semi-finished workpieces, and of finished goods is an area with large growth
potential. LIBS-based sensors can contribute to the efficient use of resource materials
and the accurate chemical monitoring of materials in production. The progress in LIBS
measurement technology and the increasing demands for efficient production processes
will continue triggering the development of new in-line, at-line, and on-site applications of
this laser-analytical method in the near future.
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Appendix A

Figure A1 shows the annual number of scientific publications on LIBS as retrieved
from the SCOPUS database in June 2021 using the search terms “laser induced breakdown
spectroscopy” and “laser induced plasma spectroscopy” [484].

Figure A1. Number of scientific papers on LIBS or LIPS published per year (SCOPUS, June
2021) [484].

The distribution of country affiliations of LIBS papers published in years 2001–2010
and 2011–2020 is shown in Figure A2 (the 15 most frequent country affiliations). More than
80% of the papers are published by research groups in theses 15 countries.
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Figure A2. Fifteen top countries, i.e., most frequent country affiliations, regarding scientific papers
on LIBS or LIPS published in years 2001–2010 and 2011–2020 (SCOPUS, June 2021) [484].

China and the United States account for more than 35% of the scientific publications
on LIBS or LIPS.

Figure A3 shows the table of elements with the LOD values obtained by LIBS mea-
surements of solid sample materials (data taken from www.LIBS-info.com [50]). For each
element, the LOD values reported in several publications are averaged. The number above
the atomic symbol is the number of publications used. For some elements only one pub-
lication was available. The number below the atomic symbol is the average LOD value
in ppm.

Figure A3. LOD values reported for LIBS analysis of solid materials (data: www.LIBS-info.com [50], accessed on 31
May 2021).

Figure A4 shows the correlation of reported LOD values [50] and calculated emission
rate EMRA of elements (calculated for LTE plasma at temperature Te = 10,000 K, average

www.LIBS-info.com
www.LIBS-info.com
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over the most intense emission lines for each element). A higher EMRA favors lower LOD
values for most of the elements (order of magnitude estimate).

Figure A4. Correlation of reported LOD values for LIBS analysis of solid materials with calculated
emission rate EMRA of LIBS plasma for various elements. The sign “*” stands for multiplication.

Figure A5 shows the total number of smartphones sold to end-users in the time period
2007 to 2021 (values for 2020 and 2021 are estimates) [432].

Figure A5. Global sales of smartphones to end-users from 2007 to 2021 [432].
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