Current Status of Optical Systems for Measuring Lycopene Content in Fruits: Review
Abstract
:1. Introduction
2. Lycopene Nutraceutical Properties and Its Effects on Human Health
3. Effects in the Biological and Physical-Chemical Properties of Lycopene by Electromagnetic Wave Radiation
3.1. Biological and Chemical Effects by Radiation in Lycopene
3.2. Fluorescent Lighting
3.3. UV-C Radiation
3.4. γ-Radiation
4. Current Systems for Estimating Lycopene
4.1. High-Performance Liquid Chromatography (HPLC)
4.1.1. Lycopene Extraction Methods
4.1.2. Chromatographic Conditions
4.2. Colorimeter
4.3. Ultraviolet-Visible (UV-Vis) and Infrared (NIR) Spectroscopy
4.3.1. Raman Spectroscopy
4.3.2. Multispectral (MSI) and Hyperspectral (HSI) Imaging Systems
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Vazquez-Cruz, M.A.; Jimenez-Garcia, S.N.; Luna-Rubio, R.; Contreras-Medina, L.M.; Vazquez-Barrios, E.; Mercado-Silva, E.; Torres-Pacheco, I.; Guevara-Gonzalez, R.G. Application of neural networks to estimate carotenoid content during ripening in tomato fruits (Solanum lycopersicum). Sci. Hortic. 2013, 162, 165–171. [Google Scholar] [CrossRef]
- Villaseñor-Aguilar, M.J.; Bravo-Sánchez, M.G.; Padilla-Medina, J.A.; Vázquez-Vera, J.L.; Guevara-González, R.G.; García-Rodríguez, F.J.; Barranco-Gutiérrez, A.I. A maturity estimation of bell pepper (Capsicum annuum L.) by artificial vision system for quality control. Appl. Sci. 2020, 10, 5097. [Google Scholar] [CrossRef]
- Villaseñor-Aguilar, M.-J.; Botello-Álvarez, J.E.; Pérez-Pinal, F.J.; Cano-Lara, M.; León-Galván, M.F.; Bravo-Sánchez, M.-G. Fuzzy-Classification of the maturity of the tomato using a vision system. J. Sens. 2019, 2019, 3175848. [Google Scholar] [CrossRef]
- Santoyo-Mora, M.; Sancen-Plaza, A.; Espinosa-Calderon, A.; Barranco-Gutierrez, A.I.; Prado-Olivarez, J. Nondestructive Quantification of the Ripening Process in Banana (Musa AAB Simmonds) Using Multispectral Imaging. J. Sens. 2019, 2019, 6742896. [Google Scholar] [CrossRef]
- Chen, P. Use of optical properties of food materials in quality evaluation and materials sorting. J. Food Process Eng. 1978, 2, 307–322. [Google Scholar] [CrossRef]
- Birth, G.S. How light interacts with foods. In Quality Detection in Foods; Gaffney, J.J., Ed.; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 1976; Volume 6. [Google Scholar]
- Polder, G.; Van Der Heijden, G.W.A.M.; Van der Voet, H.; Young, I.T. Measuring surface distribution of carotenes and chlorophyll in ripening tomatoes using imaging spectrometry. Postharvest Biol. Technol. 2004, 34, 117–129. [Google Scholar] [CrossRef]
- Jahns, P.; Holzwarth, A.R. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta BBA Bioenerg. 2012, 1817, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Liu, W.; Chen, W.; Yang, J.; Zheng, L. Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit. Food Chem. 2015, 173, 482–488. [Google Scholar] [CrossRef]
- Liu, H.; Mao, J.; Yan, S.; Yu, Y.; Xie, L.; Hu, J.G.; Li, T.; Abbasi, A.M.; Guo, X.; Liu, R.H. Evaluation of carotenoid biosynthesis, accumulation and antioxidant activities in sweetcorn (Zea mays L.) during kernel development. Int. J. Food Sci. Technol. 2010, 53, 381–388. [Google Scholar] [CrossRef]
- Quinlan, R.F.; Shumskaya, M.; Bradbury, L.M.T.; Beltrán, J.; Ma, C.; Kennelly, E.J.; Wurtzel, E.T. Synergistic interactions between carotene ring hydroxylases drive lutein formation in plant carotenoid biosynthesis. Plant Physiol. 2012, 160, 204–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, M.H.; Floss, D.S.; Strack, D. Apocarotenoids: Hormones, mycorrhizal metabolites and aroma volatiles. Planta 2010, 232, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bonet, M.L.; Canas, J.A.; Ribot, J.; Palou, A. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch. Biochem. Biophys. 2015, 572, 112–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bohn, T.; Desmarchelier, C.; Dragsted, L.O.; Nielsen, C.S.; Stahl, W.; Rühl, R.; Keijer, J.; Borel, P. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. Mol. Nutr. Food Res. 2017, 61, 1600685. [Google Scholar] [CrossRef]
- Pan, W.H.; Yeh, N.H.; Yang, R.Y.; Lin, W.H.; Wu, W.C.; Yeh, W.T.; Sung, M.-K.; Lee, H.-S.; Chang, S.-J.; Huang, C.-J.; et al. Vegetable, fruit, and phytonutrient consumption patterns in Taiwan. J. Food Drug Anal. 2016, 25, e1–e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, A.V.; Agarwal, S. Role of lycopene as antioxidant carotenoid in the prevention of chronic diseases: A review. Nutr. Res. 1999, 19, 305–323. [Google Scholar] [CrossRef]
- Global Carotenoids Market—Premium Insight, Competitive News Feed Analysis, Company Usability Profiles, Market Sizing & Forecasts to 2025. Available online: https://www.marketresearch.com/360iResearch-v4164/Global-Carotenoids-Premium-Insight-Competitive-13036149/ (accessed on 15 June 2021).
- Desmarchelier, C.; Bore, P. Overview of carotenoid bioavailability determinants: From dietary factors to host genetic variations. Trends Food Sci. Technol. 2017, 69, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.V.; Shen, H. Effect of low dose lycopene intake on lycopene bioavailability and oxidative stress. Nutr. Res. 2002, 22, 1125–1131. [Google Scholar] [CrossRef]
- Rao, A.V.; Ray, M.R.; Rao, L.G. Lycopene. Adv. Food Nutr. Res. 2006, 51, 99–164. [Google Scholar] [PubMed]
- Rao, A.V.; Rao, L.G. Carotenoids and human health. Pharmacol. Res. 2007, 55, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Chauhan1, K.; Sharma, S.; Agarwal, N.; Chauhan, B. Lycopene of tomato fame: Its role in health and disease. Int. J. Pharm. Sci. Rev. Res. 2011, 10, 99–115. [Google Scholar]
- Durairajanayagam, D.; Agarwal, A.; Ong, C.; Prashast, P. Lycopene and male infertility. Asian J. Androl. 2014, 16, 420–425. [Google Scholar] [PubMed]
- Mezzomo, N.; Ferreira, S.R.S. Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. J. Chem. 2016, 2016, 3164312. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, H.; Uragami, C.; Cogdell, R.J. Carotenoids and Photosynthesis. In Carotenoids in Nature; Stange, C., Ed.; Springer: Cham, Switzerland, 2016; pp. 111–139. [Google Scholar]
- Ermakov, I.V.; Gellermann, W. Optical detection methods for carotenoids in human skin. Arch. Biochem. Biophys. 2015, 572, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Whigham, L.D.; Redelfs, A.H. Optical detection of carotenoids in living tissue as a measure of fruit and vegetable intake. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); IEEE: Piscataway, NJ, USA, 2015; pp. 8197–8200. [Google Scholar]
- Brecht, J.K.; Saltveit, M.E.; Talcott, S.T.; Schneider, K.R.; Felkey, K.; Bartz, J.A. Fresh-cut vegetables and fruits. Hortic. Rev. Am. Soc. Hortic. Sci. 2004, 30, 185–251. [Google Scholar]
- Khudairi, A.K.; Arboleda, O.P. Phytochrome-mediated Carotenoid Biosynthesis and Its Influence by Plant Hormones. Physiol. Plant. 1971, 24, 18–22. [Google Scholar] [CrossRef]
- Ronnie, L.T.; Jen, J.J. Phytochrome-mediated Carotenoids Biosynthesis in Ripening Tomatoes. Plant Physiol. 1975, 56, 452–453. [Google Scholar]
- Barrett, D.M.; Anthon, G.E. Color Quality of Tomato Products. In Color Quality of Fresh and Processed Foods; Culver, C.A., Wrolstad, R.E., Eds.; American Chemical Society: Washington, DC, USA, 2008; pp. 131–139. [Google Scholar]
- Meléndez-Martínez, A.J.; Britton, G.; Vicario, I.M.; Heredia, F.J. Relationship between the colour and the chemical structure of carotenoid pigments. Food Chem. 2007, 101, 1145–1150. [Google Scholar] [CrossRef]
- Periago, M.J.; Martinez-Valverde, I.; Ros, G. Propiedades químicas, biológicas y valor nutritivo del licopeno. An. Vet. 2001, 66, 51–66. [Google Scholar]
- Liu, L.H.; Zabaras, D.; Bennett, L.E.; Aguas, P.; Woonton, B.W. Effects of UV-C, red light and sun light on the carotenoid content and physical qualities of tomatoes during post-harvest storage. Food Chem. 2009, 115, 495–500. [Google Scholar] [CrossRef]
- Zielinska, M.A.; Wesołowska, A.; Pawlus, B.; Hamułka, J. Health Effects of Carotenoids during Pregnancy and Lactation. Nutrients 2017, 9, 838. [Google Scholar] [CrossRef] [Green Version]
- Bhat, R.; Ameran, S.B.; Voon, H.C.; Karim, A.A.; MinTze, L. Quality attributes of starfruit (Averrhoa carambola L.) juice treated with ultraviolet radiation. Food Chem. 2011, 127, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Agilent Technologies. Agilent 1200 Infinity Series Diode Array Detectors User Manual. 2015. Available online: https://www.agilent.com/cs/library/usermanuals/public/G4212-90013_DAD-A-B_USR_EN.pdf (accessed on 17 July 2021).
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidantcontent of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Fallik, E. Light quality manipulation improves vegetable quality at harvest and postharvest: A review. Environ. Exp. Bot. 2017, 139, 79–90. [Google Scholar] [CrossRef]
- Burns, J.; Fraser, P.D.; Bramley, P.M. Identification and quantification of carotenoids, tocopherols and chlorophylls in commonly consumed fruits and vegetables. Phytochemistry 2003, 62, 939–947. [Google Scholar] [CrossRef]
- Pesek, A.; Warthesen, J.J. Photodegradation of carotenoids in a vegetable juice system. J. Food Sci. 1987, 52, 744–746. [Google Scholar] [CrossRef]
- Lee, M.T.; Chen, B.H. Stability of lycopene during heating and illumination in a model system. Food Chem. 2002, 78, 425–432. [Google Scholar] [CrossRef]
- Steffen, H.; Zumstein, P.; Rice, R.G. Fruit and Vegetables Disinfection at SAMRO, Ltd. Using Hygienic Packaging by Means of Ozone and UV Radiation. Ozone Sci. Eng. 2010, 32, 144–149. [Google Scholar] [CrossRef]
- Stevens, C.; Khan, V.A.; Wilson, C.L.; Lua, J.Y.; Chalutz, E.; Drobyc, S. The effect of fruit orientation of postharvest commodities following low dose ultraviolet light-C treatment on host induced resistance to decay. Crop Prot. 2005, 24, 756–759. [Google Scholar] [CrossRef]
- Bhat, R. Impact of ultraviolet radiation treatments on the quality of freshly prepared tomato (Solanum lycopersicum) juice. Food Chem. 2016, 213, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Noga, L.; Noga, G.; Fiebig, A.; Hunsche, M. Effects of continuous red light and short daily UV exposure during postharvest on carotenoid concentration and antioxidant capacity in stored tomatoes. Sci. Hortic. 2017, 226, 97–103. [Google Scholar]
- Kumar, M.; Ahuja, S.; Dahuja, A.; Kumar, R.; Singh, B. Gamma radiation protects fruit quality in tomato by inhibiting the production of reactive oxygen species (ROS) and ethylene. J. Radioanal. Nucl. Chem. 2014, 301, 871–880. [Google Scholar] [CrossRef]
- Silva-Sena, G.; de Santana, E.N.; Nascimento, R.G.E.; Neto, J.O.; de Oliveira, C.A.; de Figueiredo, S.G. Effect of Gamma Irradiation on Carotenoids and Vitamin C Contents of Papaya Fruit (Carica papaya L.) Cv. Golden. Food Process. Technol. 2014, 5, 337–339. [Google Scholar]
- Artal, P.; Schwiegerling, J.; Schwiegerling, J. Handbook of Visual Optics. Handb. Vis. Opt. 2017, 1, 449–450. [Google Scholar]
- Skoog, D.A.; Holler, F.J.; Nieman, T.A. Principios de Análisis Instrumental; McGraw-Hill Interamericana de España: Madrid, Spain, 2001. [Google Scholar]
- Cámara, M.; Torrecilla, J.S.; Caceres, J.O.; Mata, M.C.S.; Fernández-Ruiz, V. Neural Network Analysis of Spectroscopic Data of Lycopene and $β$-Carotene Content in Food Samples Compared to HPLC-UV-Vis. J. Agric. Food Chem. 2009, 58, 72–75. [Google Scholar] [CrossRef]
- Perkins-Veazie, P.; Collins, J.K.; Pair, S.D.; Roberts, W. Lycopene content differs among red-fleshed watermelon cultivar. J. Sci. Food Agric. 2001, 81, 983–987. [Google Scholar] [CrossRef]
- Sadler, G.; Dezman, J.D.D. Rapid extraction of lycopene and β-carotene from reconstituted tomato paste and pink grapefruit homogenates. J. Food Sci. 1990, 55, 1460–1461. [Google Scholar] [CrossRef]
- Barba, A.I.O.; Hurtado, M.C.; Mata, M.C.S.; Ruiz, V.F.; Tejada, M.L.S. De Application of a UV--vis detection-HPLC method for a rapid determination of lycopene and $β$-carotene in vegetables. Food Chem. 2006, 95, 328–336. [Google Scholar] [CrossRef]
- Pedro, A.M.K.; Ferreira, M.M. Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration. ACS Publ. 2005, 77, 2505–2511. [Google Scholar] [CrossRef]
- Arias, R.; Lee, T.-C.; Logendra, L.; Janes, H. Correlation of lycopene measured by HPLC with the L*, a*, b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 2000, 48, 1697–1702. [Google Scholar] [CrossRef]
- Li, B.; Lecourt, J.; Bishop, G. Advances in Non-Destructive Early Assessment of Fruit Ripeness towards Defining Optimal Time of Harvest and Yield Prediction—A Review. Plants 2018, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, F.; Aguilera, J.M. Application of image analysis for classification of ripening bananas. J. Food Sci. 2004, 69. [Google Scholar] [CrossRef]
- Wu, D.; Sun, D.-W. Colour measurements by computer vision for food quality control—A review. Trends Food Sci. Technol. 2013, 29, 5–20. [Google Scholar] [CrossRef]
- Camelo, A.F.L.; Gómez, P.A. Comparison of color indexes for tomato ripening. Hortic. Bras. 2004, 22, 534–537. [Google Scholar] [CrossRef]
- Hobson, G.E.; Adams, P.; Dixon, T.J. Assessing the colour of tomato fruit during ripening. J. Sci. Food Agric. 1983, 34, 286–292. [Google Scholar] [CrossRef]
- Wyszecki, G.; Stiles, W.S. Color Science; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Bleys, J. Language Strategies for the Domain of Colour; Language Science Press, 2016. [Google Scholar]
- Va Roy, J.; Keresztes, J.C.; Wouters, N.; De Ketelaere, B.; Saeys, W. Measuring colour of vine tomatoes using hyperspectral imaging. Postharvest Biol. Technol. 2017, 129, 79–89. [Google Scholar] [CrossRef]
- Ye, X.; Izawa, T.; Zhang, S. Rapid determination of lycopene content and fruit grading in tomatoes using a smart device camera. Cogent Eng. 2018, 5, 1504499. [Google Scholar] [CrossRef]
- Tilahun, S.; Park, D.S.; Seo, M.H.; Hwang, I.G.; Kim, S.H.; Choi, H.R.; Jeong, C.S. Prediction of lycopene and $β$-carotene in tomatoes by portable chroma-meter and VIS/NIR spectra. Postharvest Biol. Technol. 2018, 136, 50–56. [Google Scholar] [CrossRef]
- Huang, Y.; Lu, L.R.; Kunjie, C. Prediction of firmness parameters of tomatoes by portable visible and near-infrared spectroscopy. J. Food Eng. 2018, 222, 185–1984. [Google Scholar] [CrossRef]
- Reich, G. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliv. Rev. 2005, 57, 1109–1143. [Google Scholar] [CrossRef]
- Nicola, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Pan, L.; Lu, R.; Zhu, Q.; McGrath, J.M.; Tu, K. Measurement of moisture, soluble solids, sucrose content and mechanical properties in sugar beet using portable visible and near-infrared spectroscopy. Postharvest Biol. Technol. 2015, 102, 42–50. [Google Scholar] [CrossRef]
- Parker, R.S.; Swanson, J.E.; You, C.S.; Edwards, A.J.; Huang, T. Bioavailability of carotenoids in human subjects. Proc. Nutr. Soc. 1999, 58, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Ying, Y. Use of near-infrared spectroscopy and least-squares support vector machine to determine quality change of tomato juice. J. Zhejiang Univ. Sci. B 2009, 10, 465–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamburini, E.; Costa, S.; Rugiero, I.; Pedrini, P.; Marchetti, M.G. Quantification of Lycopene, Beta-Carotene, and Total Soluble Solids in Intact Red-Flesh Watermelon (Citrullus lanatus) Using On-Line Near-Infrared Spectroscopy. Sensors 2017, 17, 746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eliasson, C.; Matousek, P. Noninvasive Authentication of Pharmaceutical Products through Packaging Using Spatially Offset Raman Spectroscopy. Anal. Chem. 2007, 79, 1696–1701. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.I.; Brewster, V.L.; Dunn, W.B.; Allwood, J.W.; Golovanov, A.P.; Goodacre, R. Fingerprinting food: Current technologies for the detection of food adulteration and contamination. Chem. Soc. Rev. 2012, 41, 5706–5727. [Google Scholar] [CrossRef]
- Tao, F.; Ngadi, M. Applications of spectroscopic techniques for fat and fatty acids analysis of dairy foods. Curr. Opin. Food Sci. 2017, 17, 100–112. [Google Scholar] [CrossRef]
- Hoskins, L.C. Resonance Raman spectroscopy of beta-carotene and lycopene, a physical chemistry experiment. J. Chem. Educ. 1984, 61, 4608. [Google Scholar] [CrossRef]
- Baranska, M.; Schulz, H.; Nothnagel, T. Tissue-specific accumulation of carotenoids in carrot roots. Planta 2006, 224, 1028–1037. [Google Scholar] [CrossRef]
- da Silva, C.E.; Vandenabeele, P.; Edwards, H.G.M.; de Oliveira, L.F.C. Raman spectra of carotenoids in natural products. Anal. Bioanal. Chem. 2008, 392, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, V.E.; Castro, H.V.; Edwards, H.G.M.; de Oliveira, L.F.C. Carotenes and carotenoids in natural biological samples: A Raman spectroscopic analys. J. Raman Spectrosc. 2010, 41, 642–650. [Google Scholar] [CrossRef]
- Merlin, J.C. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems. Pure Appl. Chem. 1985, 57, 785–792. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Withnall, R.; Chowdhry, B.Z.; Silver, J.; Edwards, H.G.M.; de Oliveira, L.F.C. Raman spectra of carotenoids in natural products. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2003, 59, 2207–2212. [Google Scholar] [CrossRef]
- Trebolazabala, J.; Maguregui, M.; Morillas, H.; de Diego, A.; Madariaga, J.M. Portable Raman spectroscopy for an in-situ monitoring the ripening of tomato (Solanum lycopersicum) fruits. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 180, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Chao, K.; Kim, M.S. Evaluating carotenoid changes in tomatoes during postharvest ripening using Raman chemical imaging. In Sensing for Agriculture and Food Quality and Safety III; IEEE: Piscataway, NJ, USA, 2011; Volume 8027, p. 802703. [Google Scholar]
- Lieber, C.A.; Mahadevan-Jansen, A. Automated Method for Subtraction of Fluorescence from Biological Raman Spectra. Appl. Spectrosc. 2003, 57, 1363–1367. [Google Scholar] [CrossRef]
- Qin, J.; Kim, M.S.; Chao, K.; Chan, D.E.; Delwiche, S.R.; Cho, B.-K. Line-scan hyperspectral imaging techniques for food safety and quality applications. Appl. Sci. 2017, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Lu, R. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse reflectance imaging technique. Postharvest Biol. Technol. 2008, 49, 355–365. [Google Scholar] [CrossRef]
- Gastélum-Barrios, A.; García-Trejo, J.F.; Macías-bobadilla, G.; Toledano-Ayala, M. Portable System to Estimate Ripeness and Lycopene Content in Fresh Tomatoes Based on Image Processing. In 2018 XIV International Engineering Congress (CONIIN); IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Qin, J.; Chao, K.; Kim, M.S. Investigation of Raman chemical imaging for detection of lycopene changes in tomatoes during postharvest ripening. J. Food Eng. 2011, 107, 277–288. [Google Scholar] [CrossRef]
Fruit | Tomato | Watermelon | Guava | Grapefruit | Papaya | Apricot |
---|---|---|---|---|---|---|
Lycopene µg/100 g wet weight | 8.8–42 | 23–72 | 54 | 33.6 | 20–53 | <0.1 |
Treatment | Exhibition Time | Lycopene Concentration mg/Kg | ||||
---|---|---|---|---|---|---|
0 Days | 5 Days | 10 Days | 15 Days | 20 Days | ||
Dark (Control) | 24 h | 42.07 | 44.22 | 131.92 | 961.37 | 871.16 |
Dark + UV | Only two UV radiation of 15 min daily | - | 54.61 | 49.6 0 | 855.14 | 850.84 |
Red light | 24 h | - | 40.92 | 1049.08 | 1176.50 | 1507.17 |
Red light + UV | 24 h of red light with two UV radiation of 15 min daily | - | 54.65 | 1280.18 | 1324.43 | 1413.91 |
Factor | Arias et al. (2000) | Vazquez-Cruz et al. (2013) | Tilahun et al. (2018) | Xujun Ye and Zhang (2018) |
---|---|---|---|---|
Linear Regression R2 | Linear Regression R2 | Linear Regression R2 | Linear Regression R2 | |
L* | 0.90 | 0.908 | 0.49 | 0.83 |
a* | 0.87 | 0.909 | 0.92 | 0.78 |
a2* | X | X | X | 0.72 |
b* | 0.09 | 0.02 | 0.52 | 0.50 |
b2* | x | X | x | 0.48 |
(a*/b*) | 0.90 | 0.980 | 0.94 | 0.76 |
(a*/b*)2 | 0.86 | X | 0.42 | 0.81 |
Hue Tan − 1 (b*/a*) | 0.44 | X | X | X |
Chroma C* = ((a*)2 + (b*)2)1/2 | 0.67 | X | X | 0.36 |
Lycopene mg/100 g wet weight | 0.91 | 0.586 | X | X |
Food | Technique | Mode of Acquisition | Wavelength of Detection | Treatment of the Matrix | Rank of Measurement Wet Weight | Correlation | Analysis Photochemical of Lycopene | Reference |
---|---|---|---|---|---|---|---|---|
Watermelon (Citrullus lanatus (Thumb) Matsum & Nakai) | HPLC (190–950 nm) | Absorbance | 475 nm | hydroxytoluene, butylated al 0.1% (p/v) | 25 a 100 3 µg/g | a* chorma 1000 a*/(b* + L) | R2 = 0.723 | (Perkins- Veazie et al., 2001) |
R2 = 0.468 | ||||||||
R2 = 0.357 | ||||||||
R2 = 0.123 | ||||||||
Colorimeter (400–700 nm) | Absorbance | (BHT) in etanol (1:1, v/v) | R2 = 0.666 | |||||
R2 = 0.451 | ||||||||
Lycopersicun esculentum Mill cv. Laura | HPLC (420–530 nm) | Absorbance | 471 nm | hexane/ acetone/ | 10.37–29.25 mg/100 g 0.12–1.17 mg/100 g 1.13–14.32 mg/100 g | a* a*/b* (a*/b*)2 | R2 = 0.82 R2 = 0.96 R2 = 0.905 | (Arias et al., 2000) |
Colorimeter | Absorbance | ethanol (50:25:25) | ||||||
Ketchup, juice tomato, tomato pure, carrots, watermelon, green pepper and medlar | HPLC (190–800 nm) | Absorbance | 502 y 446 nm | THF/ ACN/ metanol (15:30:55 v/v/v) | 2–9 (g mL−1) | Absorbance values in 446 and 502 nm | Rc = 0.99 RP = 0.99 | (Cámara et al., 2009) |
Solanum lycopersicum | HPLC (190–950 nm) | Absorbance | 450 nm | 0.1% (w/v) butylated, hydroxytoluene (BHT) in ethanol (1:1, v/v) | 6.456 105 (7.1 × 10−6) mg/_L | (Vazquez- Cruz et al., 2013) | ||
Colorimeter (400–700 nm) | Absorbance | L*, a*, b*, a*/b*, and LAI | Rp = 0.95 | |||||
Solanum lycopersicum | Spectrophoto-metry | Transmittance | 503 nm | acetone, ethanol, and hexan (25:25:50) | 2.14–15.57 mg/Kg 2.23–16.67 mg/Kg 6.04–17.46 mg/Kg 2.41–16.19 mg/Kg 2.75–16.23 mg/Kg 6.10–16.40 mg/Kg | a* a*/b* (a*/b*)2 a* a*/b* (a*/b*)2 | Rc = 0.92 Rc = 0.94 Rc = 0.42 RP = 0.90 RP = 0.98 RP = 0.52 | (Tilahun et al., 2018) |
Colorimeter (400–700 nm) | Absorbance | |||||||
Spectroscopy VIS/NIR (500–1100 nm) | Rc = 0.89 Rp = 0.85 | |||||||
Watermelon Citrullus lanatus | HPLC (195–650 nm) | Absorbance | 450 nm | chloroform | 2.65–151.75 (mg/kg) | Rc = 0.756 RP = 0.805 | (Tamburini et al., 2017) | |
NIR Process Analyser 900–1700 nm | Reflectance | |||||||
Solanum lycopersicum | HPLC (190–600 nm) | Absorbance | 473 nm | hexane/acetone/ethanol (50:25:25) | 144–921 mg/Kg | Rc = 0.9996 | (Pedro and Ferreira, 2005) | |
Spectrometer 1000–2500 nm | Reflectance | 4000– 10,000 cm−1. | MSC and segmentation of the spectrum region 4000 to 6000 cm−1 and 6000 to 8000 cm−1 | |||||
Solanum lycopersicum | Spectrometer of pictures Raman 779–1144 nm | light scattering | 1151 y 1513 cm−1 | chloroform | (Qin and Lu, 2008; Qin et al., 2001) | |||
Solanum lycopersicum | Spectrograph 396–736 nm | Reflectance | 396–736 nm | Nitrogen, Acetone, CaCO3, hexane, (p/v) hydroxytoluene, butylated (BHT) | 7.52–139.0 µg/g | Correlation PCA | (Polder et al., 2004) | |
Solanum lycopersicum | Spectroscopy VIS/NIR | Absorbance | 503 nm | hexane/ethanol/acetone | (Liu et al., 2010) | |||
Videometer 405, 435, 450, 470, 505, 525, 570, 590, 630, 645, 660, 700, 780, 850, 870, 890, 910, 940 and 970 nm | Reflectance | Video-meter wave-lengths | (2:1:1), containing 2.5% BHT (butylated hydroxy toluene) | 0.840–36.791 mg/kg | Neural network with 19 wavelengths | Rc = 0.957 Rp = 0.938 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villaseñor-Aguilar, M.-J.; Padilla-Medina, J.-A.; Botello-Álvarez, J.-E.; Bravo-Sánchez, M.-G.; Prado-Olivares, J.; Espinosa-Calderon, A.; Barranco-Gutiérrez, A.-I. Current Status of Optical Systems for Measuring Lycopene Content in Fruits: Review. Appl. Sci. 2021, 11, 9332. https://doi.org/10.3390/app11199332
Villaseñor-Aguilar M-J, Padilla-Medina J-A, Botello-Álvarez J-E, Bravo-Sánchez M-G, Prado-Olivares J, Espinosa-Calderon A, Barranco-Gutiérrez A-I. Current Status of Optical Systems for Measuring Lycopene Content in Fruits: Review. Applied Sciences. 2021; 11(19):9332. https://doi.org/10.3390/app11199332
Chicago/Turabian StyleVillaseñor-Aguilar, Marcos-Jesús, José-Alfredo Padilla-Medina, José-Enrique Botello-Álvarez, Micael-Gerardo Bravo-Sánchez, Juan Prado-Olivares, Alejandro Espinosa-Calderon, and Alejandro-Israel Barranco-Gutiérrez. 2021. "Current Status of Optical Systems for Measuring Lycopene Content in Fruits: Review" Applied Sciences 11, no. 19: 9332. https://doi.org/10.3390/app11199332
APA StyleVillaseñor-Aguilar, M. -J., Padilla-Medina, J. -A., Botello-Álvarez, J. -E., Bravo-Sánchez, M. -G., Prado-Olivares, J., Espinosa-Calderon, A., & Barranco-Gutiérrez, A. -I. (2021). Current Status of Optical Systems for Measuring Lycopene Content in Fruits: Review. Applied Sciences, 11(19), 9332. https://doi.org/10.3390/app11199332