Clinical, Cognitive and Behavioural Assessment in Children with Cerebellar Disorder
Abstract
:Featured Application
Abstract
1. Introduction
- -
- The vestibulocerebellum (flocculonodular lobe): this corresponds to the phylogenetically oldest area. The vestibulocerebellum receives information from the visual and vestibular systems, and its output returns to the vestibular nuclei. This cerebellar structure is essential in maintaining balance and coordinating eye movements with movements of the head and body axis. Lesions involving this structure give rise to ataxia and nystagmus (archicerebellar syndrome);
- -
- The spinocerebellum: this includes the cerebellar vermis and the intermediate portion of the hemispheres. It receives sensory and proprioceptive inputs from the spinocerebellar pathways as well as the visual, auditory, and vestibular systems, and it sends messages through the deep cerebellar nuclei to the stations of the trunk and the descending systems (reticular substance, red nucleus, and vestibular nuclei) to the thalamus and the cortex. The structures forming the spinocerebellum have a functional somatotopic representation with a prevalent representation of the trunk and axial musculature in the vermis, and of the musculature of the limbs in the intermediate area. The function of the spinocerebellum is to control and monitor the performance of motor sequences, comparing the spinal marrow inputs and outputs, and modulating the direction and fluidity of the movement. It also has a role in regulating muscle tone by governing the activity of specific motor neurons in the spine. Lesions involving this structure consequently cause ataxia on deambulation, titubation, and limb asynergy, configuring the so-called ‘paleocerebellar syndrome’;
- -
- The cerebrocerebellum: this constitutes the phylogenetically most recent zone. It is represented by the lateral wall of the cerebellar hemispheres. It receives sensory, motor, premotor, and associative information, not from the periphery, but from vast areas of the cerebral cortex. In turn, it sends output through the dentate nucleus and the contralateral thalamic nuclei in the primary motor cortex and the premotor and prefrontal areas. The lateral cerebellar hemispheres enable movement to be programmed in cooperation with the motor cortex. The cerebrocerebellum has an important role in the temporal regulation of motor sequences (modulating the beginning of the movement and the timing of the alternation between agonists and antagonists, controlling the temporal aspects that affect both perception and action). A lesion at this level within the structure produces clinical signs known as ‘neocerebellar syndrome’, which is characterised by dysarthria, dysmetria, poor coordination, and impaired cognitive functions [4,5].
2. Clinical Assessment
3. Developmental Cerebellar Cognitive-Affective Syndrome
3.1. The Role of Cerebellum in Cognition and Emotion: Evidence from Acquired and Congenital Lesions in Children
3.2. Posterior Fossa Malformations Syndromes
3.3. Neurodevelopmental Disorders
3.4. Prematurity
4. Diagnostic Approach
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schmahmann, J.D.; Sherman, J.C. The cerebellar cognitive affective syndrome. Brain A J. Neurol. 1998, 121, 561–579. [Google Scholar] [CrossRef] [PubMed]
- Koziol, L.F.; Budding, D.; Andreasen, N.; D’Arrigo, S.; Bulgheroni, S.; Imamizu, H.; Ito, M.; Manto, M.; Marvel, C.; Parker, K.; et al. Consensus paper: The cerebellum’s role in movement and cognition. Cerebellum 2014, 13, 151–177. [Google Scholar] [CrossRef] [PubMed]
- Schmahmann, J.D. The cerebellum and cognition. Neurosci. Lett. 2019, 688, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Roostaei, T.; Nazeri, A.; Sahraian, M.A.; Minagar, A. The human cerebellum: A review of physiologic neuroanatomy. Neurol. Clin. 2014, 32, 859–869. [Google Scholar] [CrossRef]
- Stoodley, C.J.; Schmahmann, J.D. Functional topography of the human cerebellum. Handb. Clin. Neurol. 2018, 154, 59–70. [Google Scholar] [CrossRef]
- Stoodley, C.J.; Limperopoulos, C. Structure-function relationships in the developing cerebellum: Evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin. Fetal. Neonatal Med. 2016, 21, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Pavone, P.; Praticò, A.D.; Pavone, V.; Lubrano, R.; Falsaperla, R.; Rizzo, R.; Ruggieri, M. Ataxia in children: Early recognition and clinical evaluation. Ital. J. Pediatr. 2017, 43, 6. [Google Scholar] [CrossRef]
- Manto, M. Cerebellar motor syndrome from children to the elderly. Handb. Clin. Neurol. 2018, 154, 151–166. [Google Scholar] [CrossRef]
- Bodranghien, F.; Bastian, A.; Casali, C.; Hallett, M.; Louis, E.D.; Manto, M.; Mariën, P.; Nowak, D.A.; Schmahmann, J.D.; Serrao, M.; et al. Consensus paper: Revisiting the symptoms and signs of cerebellar syndrome. Cerebellum 2016, 15, 369–391. [Google Scholar] [CrossRef] [Green Version]
- Topka, H.; Massaquoi, S.G. Pathophysiology of clinical cerebellar signs. In The Cerebellum and Its Disorders; CU Press: Cambridge, UK, 2002; pp. 129–130. [Google Scholar]
- Strupp, M.; Hüfner, K.; Sandmann, R.; Zwergal, A.; Dieterich, M.; Jahn, K.; Brandt, T. Central oculomotor disturbances and nystagmus: A window into the brainstem and cerebellum. Dtsch. Arztebl. Int. 2011, 108, 197–204. [Google Scholar] [CrossRef]
- Manto, M.-U. Clinical signs of cerebellar disorders. In The Cerebellum and Its Disorders; CU Press: Cambridge, UK, 2002; pp. 97–120. [Google Scholar]
- Kincade, M. Don’t Miss This! Red Flags in the Pediatric Eye Examination: Acquired Nystagmus. J. Binocul. Vis. Ocul. Motil. 2019, 69, 98–101. [Google Scholar] [CrossRef]
- Baier, B.; Dieterich, M. Incidence and anatomy of gaze-evoked nystagmus in patients with cerebellar lesions. Neurology 2011, 76, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.M.; Shawkat, F.; Russell-Eggitt, I.; Wilson, J.; Taylor, D. Intermittent horizontal saccade failure (‘ocular motor apraxia’) in children. Br. J. Ophthalmol. 1996, 80, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salman, M.S.; Ikeda, K.M. The syndrome of infantile-onset saccade initiation delay. Can. J. Neurol. Sci. 2013, 40, 235–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.F.; Kowal, T.J.; Ning, K.; Koo, E.B.; Wu, A.Y.; Mahajan, V.B.; Sun, Y. Review of ocular manifestations of joubert syndrome. Genes 2018, 9, 605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cogan, D.G. A type of congenital ocular motor apraxia presenting jerky head movements. Trans. Am. Acad. Ophthalmol. Otolaryngol. 1952, 56, 853–862. [Google Scholar] [CrossRef]
- Wente, S.; Schröder, S.; Buckard, J.; Büttel, H.M.; von Deimling, F.; Diener, W.; Häussler, M.; Hübschle, S.; Kinder, S.; Kurlemann, G.; et al. Nosological delineation of congenital ocular motor apraxia type Cogan: An observational study. Orphanet J. Rare Dis. 2016, 11, 104. [Google Scholar] [CrossRef] [Green Version]
- Anheim, M.; Monga, B.; Fleury, M.; Charles, P.; Barbot, C.; Salih, M.; Delaunoy, J.P.; Fritsch, M.; Arning, L.; Synofzik, M.; et al. Ataxia with oculomotor apraxia type 2: Clinical, biological and genotype/phenotype correlation study of a cohort of 90 patients. Brain 2009, 132 Pt 10, 2688–2698. [Google Scholar] [CrossRef]
- Shevell, M.I.; Majnemer, A. Clinical features of developmental disability associated with cerebellar hypoplasia. Pediatr. Neurol. 1996, 15, 224–229. [Google Scholar] [CrossRef]
- Stoodley, C.J. The Cerebellum and Neurodevelopmental Disorders. Cerebellum 2016, 15, 34–37. [Google Scholar] [CrossRef]
- Argyropoulos, G.P.D.; van Dun, K.; Adamaszek, M.; Leggio, M.; Manto, M.; Masciullo, M.; Molinari, M.; Stoodley, C.J.; Van Overwalle, F.; Ivry, R.B.; et al. The Cerebellar Cognitive Affective/Schmahmann Syndrome: A Task Force Paper. Cerebellum 2020, 19, 102–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molinari, M.; Masciullo, M.; Bulgheroni, S.; D’Arrigo, S.; Riva, D. Cognitive aspects: Sequencing, behavior, and executive functions. Handb. Clin. Neurol. 2018, 154, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Beckinghausen, J.; Sillitoe, R.V. Insights into cerebellar development and connectivity. Neurosci. Lett. 2019, 688, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Sathyanesan, A.; Zhou, J.; Scafidi, J.; Heck, D.H.; Sillitoe, R.V.; Gallo, V. Emerging connections between cerebellar development, behaviour and complex brain disorders. Nat. Rev. Neurosci. 2019, 20, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Riva, D. The cerebellar contribution to language and sequential functions: Evidence from a child with cerebellitis. Cortex 1998, 34, 279–887. [Google Scholar] [CrossRef]
- Evald, L.; Evald, J.; Hansen, D.; Bonne, N.L.; Hansen, J.K. Cerebellar cognitive affective syndrome in children with acute post-infectious cerebellar ataxia. Pediatr. Neurol. 2020. [Google Scholar] [CrossRef]
- Kossorotoff, M.; Gonin-Flambois, C.; Gitiaux, C.; Quijano, S.; Boddaert, N.; Bahi-Buisson, N.; Barnerias, C.; Dulac, O.; Brunelle, F.; Desguerre, I. A cognitive and affective pattern in posterior fossa strokes in children: A case series. Dev. Med. Child Neurol. 2010, 52, 626–631. [Google Scholar] [CrossRef]
- Schmahmann, J.D. Pediatric post-operative cerebellar mutism syndrome, cerebellar cognitive affective syndrome, and posterior fossa syndrome: Historical review and proposed resolution to guide future study. Childs Nerv. Syst. 2020, 36, 1205–1214. [Google Scholar] [CrossRef]
- Limperopoulos, C.; du Plessis, A.J. Disorders of cerebellar growth and development. Curr. Opin. Pediatr. 2006, 18, 621–627. [Google Scholar] [CrossRef]
- Bruchhage, M.M.K.; Bucci, M.P.; Becker, E.B.E. Cerebellar involvement in autism and ADHD. Handb. Clin. Neurol. 2018, 155, 61–72. [Google Scholar] [CrossRef]
- Nicolson, R.I.; Fawcett, A.J.; Dean, P. Developmental dyslexia: The cerebellar deficit hypothesis. Trends Neurosci. 2001, 24, 508–511. [Google Scholar] [CrossRef]
- Limperopoulos, C.; du Plessis, A.J.; Volpe, J.J. Cerebellar hemorrhage. In Volpe’s Neurology of the Newborn; Elsevier: Amsterdam, The Netherlands, 2018; pp. 623–636. [Google Scholar]
- Correa-Villasenor, A.; Cragan, J.; Kucik, J.; O’Leary, L.; Siffel, C.; Williams, L. The Metropolitan Atlanta Congenital Defects Program: 35 years of birth defects surveillance at the Centers for Disease Control and Prevention. Birth Defects Res. Clin. Mol. Teratol. 2003, 67, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Riva, D.; Bulgheroni, S. The role of cerebellum in higher cognitive and social functions in congenital and acquired diseases of developmental age. In Pediatric Neurological Disorders with Cerebellar Involvement-Diagnosis and Management; John Libbey, Eurotext: Arcueil, France, 2014; pp. 9–20. [Google Scholar]
- Pinchefsky, E.F.; Accogli, A.; Shevell, M.I.; Saint-Martin, C.; Srour, M. Developmental outcomes in children with congenital cerebellar malformations. Dev. Med. Child Neurol. 2019, 61, 350–358. [Google Scholar] [CrossRef]
- Elbendary, H.M.; Eid, E.M.; Nassef, Y.; Fathay, A. Cognitive impairment in cerebellar malformations: A logit model based on cognitive testing. Childhood 2020, 23, 21–24. [Google Scholar]
- Tavano, A.; Grasso, R.; Gagliardi, C.; Triulzi, F.; Bresolin, N.; Fabbro, F.; Borgatti, R. Disorders of cognitive and affective development in cerebellar malformations. Brain 2007, 130 Pt 10, 2646–2660. [Google Scholar] [CrossRef] [Green Version]
- Seese, R.R. Working memory impairments in cerebellar disorders of childhood. Pediatr. Neurol. 2020, 107, 16–23. [Google Scholar] [CrossRef]
- Bulgheroni, S.; Cazzaniga, F.; Bonalumi, M.; Riva, D. Cognitive and behavioural outcome in children with posterior fossa malformations. In Cognitive and Behavioural Neurology during Developmental Age; Riva, D., Bulgheroni, S., Eds.; John Libbey Eurotext: Arcueil, France, 2015; pp. 69–78. [Google Scholar]
- Joubert, M.; Eisenring, J.J.; Robb, J.P.; Andermann, F. Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 1969, 19, 813–825. [Google Scholar] [CrossRef] [Green Version]
- Maria, B.L.; Hoang, K.B.; Tusa, R.J.; Mancuso, A.A.; Hamed, L.M.; Quisling, R.G.; Hove, M.T.; Fennell, E.B.; Booth-Jones, M.; Ringdahl, D.M.; et al. “Joubert syndrome” revisited: Key ocular motor signs with magnetic resonance imaging correlation. J. Child Neurol. 1997, 12, 423–430. [Google Scholar] [CrossRef]
- Bachmann-Gagescu, R.; Dempsey, J.C.; Bulgheroni, S.; Chen, M.L.; D’Arrigo, S.; Glass, I.A.; Heller, T.; Héon, E.; Hildebrandt, F.; Joshi, N. Healthcare recommendations for Joubert syndrome. Am. J. Med. Genet. Part A 2020, 182, 229–249. [Google Scholar] [CrossRef]
- Bulgheroni, S.; D’Arrigo, S.; Signorini, S.; Briguglio, M.; Di Sabato, M.L.; Casarano, M.; Mancini, F.; Romani, M.; Alfieri, P.; Battini, R.; et al. Cognitive, adaptive, and behavioral features in Joubert syndrome. Am. J. Med. Genet. Part A 2016, 170, 3115–3124. [Google Scholar] [CrossRef]
- Summers, A.C.; Snow, J.; Wiggs, E.; Liu, A.G.; Toro, C.; Poretti, A.; Zein, W.M.; Brooks, B.P.; Parisi, M.A.; Inati, S.; et al. Neuropsychological phenotypes of 76 individuals with Joubert syndrome evaluated at a single center. Am. J. Med. Genet. Part A 2017, 173, 1796–1812. [Google Scholar] [CrossRef] [PubMed]
- Graf, H.; Franke, B.; Abler, B. Cerebellar cognitive affective syndrome in Dandy-Walker variant disorder. J. Neuropsychiatry Clin. Neurosci. 2013, 25, E45–E46. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.M.; Savage, G.; Stoodley, M.A. A Systematic Review of Cognition in Chiari I Malformation. Neuropsychol. Rev. 2018, 28, 176–187. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, A.M.; Stoodley, C.J. Cerebro-cerebellar circuits in autism spectrum disorder. Front. Neurosci. 2015, 9, 408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miquel, M.; Nicola, S.M.; Gil-Miravet, I.; Guarque-Chabrera, J.; Sanchez-Hernandez, A. A Working Hypothesis for the Role of the Cerebellum in Impulsivity and Compulsivity. Front. Behav. Neurosci. 2019, 13, 99. [Google Scholar] [CrossRef] [Green Version]
- Nicolson, R.I.; Fawcett, A.J. Development of dyslexia: The delayed neural commitment framework. Front. Behav. Neurosci. 2019, 13, 112. [Google Scholar] [CrossRef]
- Schumann, C.M.; Nordahl, C.W. Bridging the gap between MRI and postmortem research in autism. Brain Res. 2011, 1380, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Webb, S.J.; Sparks, B.F.; Friedman, S.D.; Shaw, D.W.; Giedd, J.; Dawson, G.; Dager, S.R. Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Res. 2009, 172, 61–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivito, G.; Clausi, S.; Laghi, F.; Tedesco, A.M.; Baiocco, R.; Mastropasqua, C.; Molinari, M.; Cercignani, M.; Bozzali, M.; Leggio, M. Resting-State functional connectivity changes between dentate nucleus and cortical social brain regions in autism spectrum disorders. Cerebellum 2017, 16, 283–292. [Google Scholar] [CrossRef]
- Riva, D.; Annunziata, S.; Contarino, V.; Erbetta, A.; Aquino, D.; Bulgheroni, S. Gray matter reduction in the vermis and CRUS-II is associated with social and interaction deficits in low-functioning children with autistic spectrum disorders: A VBM-Dartel Study. Cerebellum 2013, 12, 676–685. [Google Scholar] [CrossRef]
- Stoodley, C.J.; D’Mello, A.M.; Ellegood, J.; Jakkamsetti, V.; Liu, P.; Nebel, M.B.; Gibson, J.M.; Kelly, E.; Meng, F.; Cano, C.A.; et al. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat. Neurosci. 2017, 20, 1744–1751. [Google Scholar] [CrossRef] [PubMed]
- Mostofsky, S.H.; Reiss, A.L.; Lockhart, P.; Denckla, M.B. Evaluation of cerebellar size in attention-deficit hyperactivity disorder. J. Child Neurol. 1998, 13, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Castellanos, F.X.; Giedd, J.N.; Berquin, P.C.; Walter, J.M.; Sharp, W.; Tran, T.; Vaituzis, A.C.; Blumenthal, J.D.; Nelson, J.; Bastain, T.M.; et al. Quantitative brain magnetic resonance imaging in girls with attention-deficit/hyperactivity disorder. Arch. Gen. Psychiatry 2001, 58, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Matthews, L.G.; Inder, T.E.; Pascoe, L.; Kapur, K.; Lee, K.J.; Monson, B.B.; Doyle, L.W.; Thompson, D.K.; Anderson, P.J. Longitudinal preterm cerebellar volume: Perinatal and neurodevelopmental outcome associations. Cerebellum 2018, 17, 610–627. [Google Scholar] [CrossRef]
- Wolf, R.C.; Plichta, M.M.; Sambataro, F.; Fallgatter, A.J.; Jacob, C.; Lesch, K.P.; Herrmann, M.J.; Schönfeldt-Lecuona, C.; Connemann, B.J.; Grön, G.; et al. Regional brain activation changes and abnormal functional connectivity of the ventrolateral prefrontal cortex during working memory processing in adults with attention-deficit/hyperactivity disorder. Hum. Brain Mapp. 2009, 30, 2252–2266. [Google Scholar] [CrossRef]
- Yu-Feng, Z.; Yong, H.; Chao-Zhe, Z.; Qing-Jiu, C.; Man-Qiu, S.; Meng, L.; Li-Xia, T.; Tian-Zi, J.; Yu-Feng, W. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007, 29, 83–91. [Google Scholar] [CrossRef]
- Oldehinkel, M.; Beckmann, C.F.; Pruim, R.H.; van Oort, E.S.; Franke, B.; Hartman, C.A.; Hoekstra, P.J.; Oosterlaan, J.; Heslenfeld, D.; Buitelaar, J.K.; et al. Attention-Deficit/Hyperactivity Disorder symptoms coincide with altered striatal connectivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2016, 1, 353–363. [Google Scholar] [CrossRef] [Green Version]
- Stevens, M.C.; Pearlson, G.D.; Calhoun, V.D.; Bessette, K.L. Functional Neuroimaging Evidence for Distinct Neurobiological Pathways in Attention-Deficit/Hyperactivity Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 675–685. [Google Scholar] [CrossRef]
- Brambati, S.M.; Termine, C.; Ruffino, M.; Danna, M.; Lanzi, G.; Stella, G.; Cappa, S.F.; Perani, D. Neuropsychological deficits and neural dysfunction in familial dyslexia. Brain Res. 2006, 1113, 174–185. [Google Scholar] [CrossRef]
- Hu, W.; Lee, H.L.; Zhang, Q.; Liu, T.; Geng, L.B.; Seghier, M.L.; Shakeshaft, C.; Twomey, T.; Green, D.W.; Yang, Y.M.; et al. Developmental dyslexia in Chinese and English populations: Dissociating the effect of dyslexia from language differences. Brain 2010, 133 Pt 6, 1694–1706. [Google Scholar] [CrossRef] [Green Version]
- Ashburn, S.M.; Flowers, D.L.; Napoliello, E.M.; Eden, G.F. Cerebellar function in children with and without dyslexia during single word processing. Hum. Brain Mapp. 2020, 41, 120–138. [Google Scholar] [CrossRef]
- Gill, J.S.; Sillitoe, R.V. Functional outcomes of cerebellar malformations. Front. Cell Neurosci. 2019, 13, 441. [Google Scholar] [CrossRef] [PubMed]
- Hortensius, L.M.; Dijkshoorn, A.B.C.; Ecury-Goossen, G.M.; Steggerda, S.J.; Hoebeek, F.E.; Benders, M.J.N.L.; Dudink, J. Neurodevelopmental consequences of preterm isolated cerebellar hemorrhage: A systematic Review. Pediatrics 2018, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limperopoulos, C.; Chilingaryan, G.; Guizard, N.; Robertson, R.L.; Du Plessis, A.J. Cerebellar injury in the premature infant is associated with impaired growth of specific cerebral regions. Pediatr. Res. 2010, 68, 145–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limperopoulos, C.; Chilingaryan, G.; Sullivan, N.; Guizard, N.; Robertson, R.L.; du Plessis, A.J. Injury to the premature cerebellum: Outcome is related to remote cortical development. Cereb. Cortex 2014, 24, 728–736. [Google Scholar] [CrossRef]
- Brossard-Racine, M.; du Plessis, A.J.; Limperopoulos, C. Developmental cerebellar cognitive affective syndrome in ex-preterm survivors following cerebellar injury. Cerebellum 2015, 14, 151–164. [Google Scholar] [CrossRef] [Green Version]
- Petley, E.; Prasad, M.; Ojha, S.; Whitehouse, W.P. Investigating ataxia in childhood. Arch. Dis. Child Educ. Pract. Ed. 2020, 105, 214–221. [Google Scholar] [CrossRef]
- Ramaekers, V.T.; Heimann, G.; Reul, J.; Thron, A.; Jaeken, J. Genetic disorders and cerebellar structural abnormalities in childhood. Brain 1997, 120 Pt 10, 1739–1751. [Google Scholar] [CrossRef] [Green Version]
- Brandsma, R.; Verschuuren-Bemelmans, C.C.; Amrom, D.; Barisic, N.; Baxter, P.; Bertini, E.; Blumkin, L.; Brankovic-Sreckovic, V.; Brouwer, O.F.; Bürk, K.; et al. A clinical diagnostic algorithm for early onset cerebellar ataxia. Eur. J. Paediatrics Neurol. 2019, 23, 692–706. [Google Scholar] [CrossRef]
- Bürk, K.; Sival, D.A. Scales for the clinical evaluation of cerebellar disorders. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 154, pp. 329–339. [Google Scholar] [CrossRef]
- Vedolin, L.; Gonzalez, G.; Souza, C.F.; Lourenço, C.; Barkovich, A.J. Inherited cerebellar ataxia in childhood: A pattern-recognition approach using brain MRI. AJNR Am. J. Neuroradiol. 2013, 34, 925–934, S1–S2. [Google Scholar] [CrossRef] [Green Version]
- Demaerel, P. Abnormalities of cerebellar foliation and fissuration: Classification, neurogenetics and clinicoradiological correlations. Neuroradiology 2002, 44, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Barkovich, A.J. Analysis and classification of cerebellar malformations. AJNR Am. J. Neuroradiol. 2002, 23, 1074–1087. [Google Scholar]
- Alves, C.A.P.F.; Fragoso, D.C.; Gonçalves, F.G.; Marussi, V.H.; Amaral, L.L.F.D. Cerebellar ataxia in children: A clinical and mri approach to the differential diagnosis. Top. Magn. Reson. Imaging 2018, 27, 275–302. [Google Scholar] [CrossRef] [PubMed]
- D’Arrigo, S.; Viganò, L.; Grazia Bruzzone, M.; Marzaroli, M.; Nikas, I.; Riva, D.; Pantaleoni, C. Diagnostic approach to cerebellar disease in children. J. Child Neurol. 2005, 20, 859–866. [Google Scholar] [CrossRef]
- Poretti, A.; Wolf, N.I.; Boltshauser, E. Differential diagnosis of cerebellar atrophy in childhood: An update. Neuropediatrics 2015, 46, 359–370. [Google Scholar] [CrossRef]
- Doherty, D.; Millen, K.J.; Barkovich, A.J. Midbrain and hindbrain malformations: Advances in clinical diagnosis, imaging, and genetics. Lancet Neurol. 2013, 12, 381–393. [Google Scholar] [CrossRef] [Green Version]
MEDICAL HISTORY - Family cases - Pre and perinatal background - Age of onset - Static/Progressive evolution |
CLINICAL ASSESSMENT - Anthropometric parameters - Dysmorphisms - Neurological and cerebellar signs - Scale of assessment and rating of ataxia - Cognitive and behavioural evaluation |
BRAIN MRI EVALUATION - Morphology: hypoplasia/dysplasia/atrophy - Topography: vermis/emispheres/global - Associated posterior fossa/supratentorial abnormalities |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Arrigo, S.; Loiacono, C.; Ciaccio, C.; Pantaleoni, C.; Faccio, F.; Taddei, M.; Bulgheroni, S. Clinical, Cognitive and Behavioural Assessment in Children with Cerebellar Disorder. Appl. Sci. 2021, 11, 544. https://doi.org/10.3390/app11020544
D’Arrigo S, Loiacono C, Ciaccio C, Pantaleoni C, Faccio F, Taddei M, Bulgheroni S. Clinical, Cognitive and Behavioural Assessment in Children with Cerebellar Disorder. Applied Sciences. 2021; 11(2):544. https://doi.org/10.3390/app11020544
Chicago/Turabian StyleD’Arrigo, Stefano, Carmela Loiacono, Claudia Ciaccio, Chiara Pantaleoni, Flavia Faccio, Matilde Taddei, and Sara Bulgheroni. 2021. "Clinical, Cognitive and Behavioural Assessment in Children with Cerebellar Disorder" Applied Sciences 11, no. 2: 544. https://doi.org/10.3390/app11020544
APA StyleD’Arrigo, S., Loiacono, C., Ciaccio, C., Pantaleoni, C., Faccio, F., Taddei, M., & Bulgheroni, S. (2021). Clinical, Cognitive and Behavioural Assessment in Children with Cerebellar Disorder. Applied Sciences, 11(2), 544. https://doi.org/10.3390/app11020544