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Abstract: Land cover products obtained from remote sensing image classification inevitably contain a
large number of false classification or uncertain pixels because of spectral confusion, image resolution
limitation, and ground object complexity. The confusion matrix used to evaluate the classification
accuracy cannot reflect the spatial variation. The information provided to users of land cover
products is incomplete and uncertain. In this study, a method is presented to evaluate and improve
the accuracy of land cover classification products by coupling Geo-Eco zoning and Markov chain
geoscience statistical simulation. Validation points collected from various sources are used in the
model calculation and accuracy verification of results. The pre-classified image that needs to be
improved and Geo-Eco zoning attribute data are used as auxiliary data for co-simulation. Results
show that the accuracy of Globeland30 data can be improved by more than 10% by coupling Geo-Eco
zoning and Markov chain geostatistical simulation.
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1. Introduction

Land cover is a concept emerging with the development of remote sensing technology,
and remote sensing is the only effective means for large-scale land cover mapping [1].
Since the 1980s, the international scientific community has been highly concerned about
remote sensing mapping of global land cover [2–4]. A variety of 1000, 300, 30, and 10 m
resolution global, regional, or national land cover products have been developed [5–12].
Classical supervised and unsupervised classification technologies are commonly used, but
the accuracy is not high, which is about 60% to 70% [13,14]. A deep learning algorithm
has not been applied to the classification of land cover products on a large scale [15]. The
second-level land cover product classification is more difficult to obtain reliable results via
automatic classification. Classification accuracy varies spatially, and spatial variation in
accuracy should be quantitatively evaluated. Evaluating and improving the accuracy of
land cover product classification (hereinafter referred to as pre-classified image) obtained
by conventional classification algorithm and quantifying the uncertainty of classification
are necessary to study global change, geographical condition census, social environment
planning, and ecological resource management.

Two kinds of methods are used to improve the accuracy of remote sensing classifi-
cation. One of the methods is the application of Geoscience Knowledge Rules. Since the
1980s, experts and scholars have introduced expert systems and knowledge engineering to
solve remote sensing classification problems [16–20]. In previous land cover mapping, aux-
iliary data, such as digital elevation model (DEM) data, ecological region data, vegetation
data of countries or regions [5], global mangrove atlas, global human settlements, and re-
gional data of global urban coverage (http://maps.elie.ucl.ac.be/CCI/viewer/index.php),
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MODIS (moderate-resolution imaging spectroradiometer, NASA, USA) NDVI (normalized
different vegetation index) data, global geographic information data, global DEM data,
various thematic data, and online high-resolution images are employed to improve product
accuracy [21]. However, the expert knowledge and reference auxiliary data used in land
cover mapping are sporadic and unsystematic, and no global integral system is available
to manage expert knowledge and auxiliary data for reuse.

Eco geographical regions are areas where ecosystems (and the type, quality, and
quantity of environmental resources) are generally similar. They are relatively large units
of land containing a distinct assemblage of natural communities and species, with bound-
aries that approximate the original extent of natural communities prior to major land-use
change [22]. Eco geographical regions can be applied as a frame to construct a global expert
knowledge base and assist in remote sensing image classification. Zhu et al. [23] adopted
the “world terrestrial ecological region” established by the World Wildlife Fund for natural
protection as the basic framework of the global Geo-Eco zoning knowledge base [22]. An
object-oriented method is used to construct a rule base and help identify spurious changes
in remote sensing image detection. Five kinds of attributes, namely, DEM, slope, NDVI,
temperature, and moisture, of each Geo-eco zone, are collected to identify spurious change.
The accuracy of change detection is improved to a certain extent [23].

Another method to improve the accuracy of remote sensing classification is the applica-
tion of geostatistics. Geostatistics is used to analyze and predict the values associated with
spatial or spatiotemporal phenomena. Geostatistics has been applied in remote sensing
since the 1980s but not popular. Meer [24] made a detailed review. Among them, studies on
using geostatistics to improve the accuracy of land cover classification products are limited.
Bruin [25] used the sequential indicator simulation algorithm and the cokriging method to
predict the area range of olive trees by using the classified image as the soft data and the
interpretation sample from the aerial image as the hard index. Tsendbazar et al. [14] used
indicator Kriging to estimate the spatial variation in the accuracy of the source land cover
products and use integration methods, which consider the local accuracy of each source
product to obtain Africa’s land cover products. Carvalho et al. [26] improved the accuracy
of land cover classification by using a direct sequential co-simulation algorithm combined
with field observations and remote sensing images classified by maximum likelihood clas-
sification. Tang et al. [27] utilized a multipoint geostatistic calculation method to take the
maximum likelihood classification result as the training image, the maximum likelihood
probability as the soft condition, and the training sample as the hard condition and improve
the accuracy of classification products. Li and Zhang [28] proposed to use the Markov chain
random field (MCRF) method to evaluate the uncertainty of the land cover classification.
They carried out conditional random simulation at the sample pixels interpreted by experts
referring to high-resolution images and other auxiliary information. Unlabeled pixels are
regarded as uncertain regions, and the class is obtained by using the MCRF algorithm [29].
However, the disadvantage of this method is that a large number of expert-interpreted
samples are needed to ensure the reliability of results; consequently, the method becomes
time-consuming and laborious. Li et al. [30] further improved the algorithm by introducing
a pre-classified image to the simulation process. The co-simulation algorithm of the MCRF
(Co-MCSS) is used to improve the classification accuracy by integrating sample pixels and
pre-classified images.

In this study, the boundary of geostatistics is confined in each Geo-Eco zone, and the
Co-MCSS method [30] is used to quantify the classification local accuracy by integrating the
pre-classified image, the verification points, and the attribute data based on the Geo-Eco
zoning. Three contributions are made in terms of determining, evaluating, and improving
the accuracy of the land cover product.

(1) Taking Geo-Eco zoning as the area of geostatistics. Generally the area of geostatistics is
based on the selected image area, which often contains boundary effect, that is, the fact
that a class may have statistically biased smaller frequencies of transitions if it has a
higher chance of occurring at boundaries of the study area because boundary polygons
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are incomplete and have no transition to other classes beyond the boundary [28].
Generally, the boundary of Geo-Eco zoning does not cross two different types of land
cover to avoid the boundary effect.

(2) In previous research, the large number of sample pixels were interpreted by experts
to obtain a transiogram model [28], but this process is time-consuming and laborious.
In this study, reliable verification data published by some websites or institutions
related to land cover research are reused to reduce the work on visual interpretation.

(3) The Co-MCSS method not only combines remote sensing pre-classified images but
also takes various attributes of Geo-Eco zoning (such as DEM, slope, temperature, and
humidity) as auxiliary data to participate in the simulation and calculation of cross
field transition probability. With the combination of additional attribute information,
the simulation algorithm becomes more robust.

2. Method
2.1. Geo-Eco Zoning Rule Base

In this study, the global eco-regions established by the World Wild Fund for natural
protection were selected. With these eco-regions, the terrestrial world was subdivided into
14 biomes and 8 biogeographic realms and nested 867 Geo-Eco zones [22]. The framework
of Zhu et al. [23] Geo-Eco zoning rule base was adopted to collect and sort out the natural
attribute data sets, including the DEM, slope, NDVI, temperature, and moisture. This kind
of knowledge was highly correlated with land cover. Each attribute was expressed as a
layer, which was used as the auxiliary data of co-simulation with the pre-classified image.

2.2. Markov Chain Co-Simulation
2.2.1. Process

The technical process is shown in Figure 1. In this study, a set of transiogram mod-
els of each Geo-Eco zone were estimated by using the sample pixels. The cross field
transition probability from the sample data to the auxiliary data set was estimated. The
Co-MCSS algorithm was used to generate the optimal prediction map and occurrence
probability map.
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The main steps were as follows:

(1) The land cover verification points from networks were collected from the relevant
websites (citations are provided below). If the amount of verification points from
networks was not enough for the transiogram estimation, then visual interpretation
of sample points was added as a supplement to form the sample data set.

(2) Traditional methods, such as the maximum likelihood method, were used to obtain
pre-classified images. The natural attribute layers (such as DEM, slope, and aspect) of
Geo-Eco zoning constituted the auxiliary data set for co-simulation.
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(3) A set of transiograms were estimated by using the sample data set.
(4) The cross field transition probabilities were estimated by the sample and auxiliary

data set.
(5) Co-MCSS algorithm was carried out under the condition of sample data and auxiliary

data.
(6) The optimal prediction map and occurrence probability map were obtained.

In the above steps, except that some of the sample points needed to be interpreted
manually, other works were coded by Matlab and realized automatically. These steps will
be further presented in detail in the Results part.

2.2.2. Transiogram

Traditionally, variograms are commonly used to describe the correlation between
variables. However, variograms cannot describe directional asymmetry when land cover
categories appear sequentially, thus they cannot effectively express the parallel relationship
between categories. Markov chain conditional simulation provides a general framework
for a non-linear non-kriging geostatistical approach. It needs a powerful index of spatial
heterogeneity to realize multi-type simulation. Li [31] proposed the concept of transiogram,
which is a one-dimensional transition probability function (conditional probability between
two points) model at distance h:

pij(h) = Pr[z(x + h) = j|z (x) = i] (1)

where x is a specific location, and Pij(h) is the transition probability of a random variable z
from class i to class j. When h increases gradually, Pij(h) forms a graph, i.e., a transiogram.
Pii(h) denotes an auto-transiogram, which describes the dependency of a type itself; a
cross-transiogram describes the dependency between types (including cross correlation,
parallel relationship, and directional asymmetry).

Transiograms can estimate multistep transition probabilities from sparse point samples
for two-dimensional Markov chain simulations, which involves the rich spatial hetero-
geneity characteristics of land cover types. The transition probabilities of different spatial
steps (or lag) can form a one-dimensional continuous transition probability graph. The
role of transiograms on Markov chain geostatistics is similar to that of variograms for
Kriging geostatistics.

Transiograms can only rely on a large number of reliable and soundly distributed
sample points, which need an amount of visual interpretation. When the number of sample
points is insufficient, transiograms may show false fluctuations and cannot convey reliable
information [31].

In recent years, some organizations participating in land cover mapping around the
world have released their validation data to the public, thereby providing a reference for
subsequent research. Geoweb-based tagging system also enables users to tag geographical
information for land cover data acquisition [32]. We collected these reference sample data,
and they were mainly from the following websites: (1) GOFC-GOLD Land Cover Project
Office in coordination with reference data producers (http://www.gofcgold.wur.nl/sites/
gofcgold_refdataportal.php). The GOFC-GOLD includes the consolidated GLC 2000 refer-
ence (GLC200ref) [33], the consolidated GlobCover 2005 reference (GlobCover2005ref) [34],
the System for Terrestrial Ecosystem Parameterization (STEP) reference [35], the Visible
Infrared Imaging Radiometer Suite Surface-Type reference [36] and the GLCNMO 2008
datasets [37]; (2) Geo-Wiki crowdsourced data (https://www.geo-wiki.org/); (3) DCP
volunteers (http://www.confluence.org); (4) other research institutions, such as the global
validation sample set developed by Tsinghua University [38]; http://data.ess.tsinghua.edu.
cn/data/temp/GlobalLandCoverValidationSampleSet_v1.xlsx.); (5) Flickr photo-sharing
website (www.flickr.com); and (6) LACO-Wiki open access online portal for land cover vali-
dation (http://www.laco-wiki.net). Existing reference sample datasets built for calibrating
and validating global land cover maps have high reliability and can be reused. However,
the density and distribution of these verification points was not balanced because of the

http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php
http://www.gofcgold.wur.nl/sites/gofcgold_refdataportal.php
https://www.geo-wiki.org/
http://www.confluence.org
http://data.ess.tsinghua.edu.cn/data/temp/GlobalLandCoverValidationSampleSet_v1.xlsx
http://data.ess.tsinghua.edu.cn/data/temp/GlobalLandCoverValidationSampleSet_v1.xlsx
www.flickr.com
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scattered collection and may not meet the density requirements of model estimation. Nev-
ertheless, the workload of the visual interpretation of sample points can be appropriately
reduced. As more and more organizations release their validation data sets, reusing these
data to reduce visual interpretation will become feasible.

2.2.3. Cross Field Transition Probability Matrix

The transition probability from a primary variable to an auxiliary variable can be
called a cross field transition probability matrix. Each auxiliary variable is considered
independent of each other. The cross field transfer probability is calculated as follows:

q̂ik =
fik

∑n
j=1 fij

(2)

where fik is the frequency of class i being transformed into class k in the space of auxiliary
variables, and n is the number of auxiliary variables.

2.2.4. MCRF Co-Simulation (Co-MCSS)

Similar to the cokriging model in classical geostatistics, Co-MCSS can be built by
extending Markov chain random fields. According to Bayesian reasoning theory, Co-MCSS
can be regarded as the Bayesian updating of the Markov chain random field model based
on new evidence on auxiliary data.

If X is the target classification variable to be estimated, and E is the auxiliary data set,
then the Bayesian inference formula can be written as follows:

P(X|E) = P(E|X)P(X)

P(E)
=

P(E|X)P(X)

∑X P(E|X)P(X)
= C−1P(E|X)P(X) (3)

where C = ∑X P(E|X)P(X) is a constant. Based on Bayes principle, the simplified
Equation (3) is extended to the Co-MCSS model, and the auxiliary data are combined
via co-simulation. The contribution of auxiliary variables can be realized in different ways.
In this study, auxiliary variable data are considered the nearest neighbor of an unknown
location in other variable spaces. The Co-MCSS model with k auxiliary variables can be
expressed as follows:

p
[
i0(u0)|i 1(u1), . . . , im(um); r(1)0 (u(1)

0 ), . . . , r(k)0 (u(k)
0 )
]
=

pi1i0(h10)∏m
g=2 pi0ig

(
h0g
)

∏k
l=1 qi0r0

(l)

∑n
f 0=1

[
pi1 f0(h10)∏m

g=2 p f0ig

(
h0g
)

∏k
l=1 q f0r0

(l)

] (4)

where r0
(k) is the class of the kth auxiliary variable at u0

(k), and qi0r0
(k) is the transition

field probability matrix between i0 in the space of the primary variable at position u0 and
r0 in the space of the auxiliary variable. In this study, two auxiliary variables are selected:
(1) Pre-classified image and (2) DEM. Therefore, k = 2 in Equation (4).

In practical applications, considering many nearest known neighbors in different
directions is unnecessary and difficult. For the pixel data of a remote sensing image,
the four main directions are easily considered. Therefore, Equation (4) of the Co-MCSS
considering two auxiliary variables and four main directions is as follows:

p
[
i0(u0)|i 1(u1), . . . , im(um); r(1)0 (u(1)

0 ), . . . , r(4)0 (u(k2)
0 )

]
=

pi1i0(h10)∏4
g=2 pi0ig

(
h0g
)

∏2
l=1 qi0r0

(l)

∑n
f 0=1

[
pi1 f0(h10)∏4

g=2 p f0ig

(
h0g
)

∏2
l=1 q f0r0

(l)

] (5)

Equation (5) is the Co-MCSS model used in this study.
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3. Results
3.1. Study Area

The selected study area was located in Indonesia, Southeast Asia. Indonesia is ex-
tremely rich in biological species, and the forest coverage rate has reached 67.8% (according
to Globeland30 land cover product 2010, www.globeland30.com).

The collected verification points whose resolution and time met the requirements
include reference data of GLC 2000 (GLC2000ref), reference data of Globcover 2005 (Glob-
cover2005ref), reference data of system for Territorial Ecosystem parameter (STEP), refer-
ence data of visible infrared imaging radiometer Suite (VIIRS), GLCNMO 2008 reference
data, Tsinghua University Global validation sample set, and Globeland30 verification
points provided by NGCC (National Geomatics Center of China). The collected verification
points were filtered because of the inconsistency semantics and resolution between the ver-
ification points and the pre-classified image. Figure 2a shows the distribution of reserved
verification points according to the source of verification points; Figure 2b illustrates the
distribution of reserved verification points in the study area according to the land cover
class of Globeland30-2015.
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the classification of remote sensing images within year 2015. The demonstration area had 
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Figure 2. Verification points of the study area (a) Verification points according to the origin; (b) Verification points according
to the classification of Globeland 30-2015.

Because of the limitation of the operation speed and data volume of the algorithm, a
small block, as shown in the red frame of Figure 2a,b, was selected as the demonstration
area based on the richness of land cover type. The demonstration area was located in
the IM0104 of the Geo-Eco zone [22]. Only one zone was involved, thus the subsequent
processing was carried out uniformly within this zone. Figure 3a presents the land cover
classification map of Globeland30-2015, which was used as the pre-classified image in
this study. There were five kinds of land cover in this area according to GlobeLand30
classification schema [11]. Globeland30-2015 had a resolution of 30 m and was based on the
classification of remote sensing images within year 2015. The demonstration area had more
than 70,000 pixels. The number of available verification points was insufficient to meet
the requirements of model calculation. Therefore, some sample pixels were interpreted as
supplements to form a sample data set as shown in Figure 3b.

Using the “create random points” function in ArcGIS, the random points were gen-
erated and uniformly distributed of the density of 1 point per 4000 m2. If there was no
network collected verification point at or near the position of the random point, then
visually interpreted on Google Earth high resolution images was needed. A total of 15,826
sample points were divided into two parts. Of these points, 7913 were used for model
simulation (about 10% of the pixels in the demonstration area), and the remaining points
were utilized for the final accuracy verification.

www.globeland30.com
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In addition to the sample point data, Geo-Eco zoning related attribute data should
also be collected. For the demonstration area, the final data source was GDEM 30 m
resolution digital elevation data, considering the availability of data, the independence of
data, resolution, and year close to 2015 (Figure 4).
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3.2. Transfer Probability Diagram

Figure 5 is the result of the self- and cross-transiograms of each land cover type. The
type is indicated by a code, and the specific meaning is shown in Table 1.

For the cultivated land, the curve was more tortuous as shown in Figure 5a. The
self-transfer (cultivated land with itself) and cross-transfer (with the other four categories
of forest, grassland, wetland, and water body) probabilities of the forest were the highest,
wetland were lower than forest, water body were lower than wetland, and grassland were
basically 0. This finding was due to the scattered distribution of grassland. The transfer
probability map results were consistent with the results of expert interpretation.
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The forest had the largest proportion, thus its self-transfer probability was higher than
those of the four other categories as shown in Figure 5b. The transfer probabilities of the
wetland and the water body were lower than the autocorrelation transfer probability of the
forest. The conversion relationship from the cultivated land to the grassland and the forest
almost did not exist, because the area of these two categories was relatively small. This
finding was consistent with the results of expert interpretation.

In Figure 5c, the distribution of the grassland was scattered, thus the curve of the
transiogram was very tortuous and not as smooth as those of the other categories. Generally,
the cross-transfer probability of the grassland and the cultivated land was almost 0, and
the short-distance cross-transfer probabilities of the forest land, the water body, and the
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wetland were similar. The long-distance cross-transfer probability of the forest was higher
than that of the other categories because the proportion of the forest was the largest.

As shown in Figure 5d, the curve of the wetland was relatively smooth. As the distance
increased, the probability of the conversion of the wetland to the forest gradually increased.
The probability of the conversion of the wetland to the water body was lower than that
of the forest. Almost no conversion relationship was observed in the cultivated land and
the grassland. In addition, the wetlands and water bodies always appeared together, and
this finding was consistent with our common sense that wetlands always form around
water bodies.

The shapes of the autocorrelation transfer probability curve and the cross-correlation
transfer probability curve of the water body were similar to those of the wetland by
comparing Figure 5d,e. As distance increased, the probability of the conversion of the
water body to the forest increased gradually. The probability of the conversion of the water
body to the wetland was less than that of the forest. Almost no conversion relationship
was observed in the cultivated land and the grassland. In addition, wetlands and water
bodies always appeared together, wetlands always formed around water bodies, thus their
transfer probability curves were very similar.

In general, each category had the highest probability of conversion to forest, because
the proportion of forest was relatively large. In addition, the forest, wetland, and water
sample points were rich, the transfer probability curve was stable, and the credibility was
high. Although the curve of cultivated land was not smooth enough, the transiogram
model was reliable because of its concentrated distribution. There were few and scattered
samples in grassland, and the transfer probability map was not smooth enough, and the
confidence level was low.

3.3. Simulation Results

For comparison, two kinds of simulation methods were adopted: One was using
MCRF, which involves sample pixels only, and the other applies the Co-MCSS method
combined with auxiliary data (including pre-classified image, i.e., Globeland30-2015 data
and DEM layer). The simulation results include the occurrence probability map of each
category and the optimal prediction map.

3.3.1. Simulation Results of MCRF

The occurrence probability map of the simulation results obtained from the sample
pixels is shown in Figure 6. The deeper the hue is, the higher the likelihood of a category
to be correct, and vice versa. The black part indicates that the confidence level of the type
is nearly 1, i.e., it can be considered almost 100% certain. The white part implies that the
confidence level of the type is approximately 0, which can be considered impossible. The
color of the forest is the deepest, and the range is the widest, suggesting that the reliability
of the forest land is highest. Although the scope of the cultivated land is small, the color is
deep. As such, the simulation of the cultivated land is reliable. For grassland, few dark
places and many gray areas are found, implying that the simulation of the grassland is
insufficiently reliable. The light tone part can be considered the warning area for further
survey. Wetlands and water bodies are always accompanied by each other, thus their hues
are almost complementary, and the range of gray colors is large. Therefore, wetlands and
water bodies are easily misclassified.

The optimal prediction map of the simulation results is shown in Figure 7, which was
the assembly of the most likely type of each location. The coincidence degree of the forest,
cultivated land, and part of grassland, wetland, and water bodies was higher than that of
the original classification products (Globeland30-2015), and the other places with deviation
were likely to be the ones with false classifications.
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3.3.2. Simulation Results of Co-MCRF with Auxiliary Data

After the auxiliary data were added, the occurrence probability map of the co-
simulation results is shown in Figure 8. The simulation results of the forest, cultivated land,
grassland, wetland, and water body was similar to MCRF. The distribution of the wetland,
water body, and grassland was slightly different from that involving the sample data only.
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Figure 8. Occurrence probability map results of auxiliary data added.

The simulation result of the optimal prediction map with the auxiliary data are shown
in Figure 9. The simulation results revealed that the cultivated land, forest, and the original
classification products had slight variations, the distribution of the cultivated land was
relatively concentrated, and the coverage of forest distribution was very wide. The main
changes were found in the grassland, the wetland, and the water body. Wetlands and
water bodies were always together, thus they were easily misclassified. For grassland, the
simulation result considerably differed from the original pre-classified image because of
two possible reasons. One was that more pixels were wrongly classified into grassland,
and the other is that the transiograms obtained were insufficiently reliable.
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3.4. Accuracy Analysis

Accuracy verification aims to compare the optimal prediction map of two different
simulation methods with the set of sample pixels used for accuracy verification. Type
matching means that the simulation results are correct, and the type inconsistency indicates
that the simulation results are wrong. The results are shown in Table 2.

Table 2. Accuracy assessment.

Simulation Method Number of Matching Proportion

Pre-classified image (GlobeLand30-2015) 5962 75.34%
Simulation results of MCRF 6451 81.52%

Simulation results (with auxiliary data) 6843 86.48%

The overall accuracy of Globeland30 products was high [21], but accuracy was spatially
varied in Southeast Asia in part or some land cover types. The proportion of matching
the pre-classified image with the sample pixels was 75.34%. The accuracy of the MCRF
simulation results was 81.52%, which was 6.18% higher than that of the GlobeLand30-
2015 products. The accuracy of matching the co-simulation results with the verification
points was 86.48%, which was 11.14% higher than that of the GlobeLand30 products. The
simulation results also revealed where the accuracy was relatively low. The area with a low
accuracy can be used as the warning area of false classification, which provides a reference
for subsequent product improvement.

4. Conclusions

In this study, a method is proposed to improve the accuracy of land cover classification
products by coupling Geo-Eco zoning and Markov chain geostatistical simulation. This
method can be used to evaluate the spatial accuracy variation of land cover classification
products and improve the drawbacks of the overall accuracy evaluation of the general
confusion matrix method. In this study, the verification points collected from the network
are reused. The Geo-Eco zoning attribute data and pre-classified images are set as auxiliary
data for co-simulation. The simulation results are more reliable if the simulation area is
limited in the Geo-eco zone. The local accuracy of the pre-classified image can be quantified
and improved. Therefore, the coupling of Geo-Eco zoning and Markov chain geostatistical
simulation can enhance the accuracy of Globeland30 data by more than 10%.

However, some deficiencies should be improved in the future.

(1) In this study, the image size that can be processed is limited because of the high
operation cost of the algorithm. The experimental area only contains one Geo-eco
zone. In future studies, the algorithm should be optimized, and a GPU-parallel
acceleration method should be used to increase the amount of data that can be
processed and make the algorithm more practical.

(2) Existing data are limited, thus only the attribute data related to elevation are tested,
and the impact of other types of auxiliary data are yet to be described. The role of
Geo-Eco zoning in geostatistical simulation should be further explored. For example,
geoscience knowledge on Geo-Eco zoning can be applied and combined with verifi-
cation points to generate reasonable transiograms and further reduce the number of
sample pixels required by the algorithm.

(3) The case study only tested in one site with a high density of the sample points. The
method needs to be verified with a wider scope and more example sites in the future.
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