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Abstract: The conception of special finite elements called multi-area elements for the analysis of
structures with different stiffness areas has been presented in the paper. A new type of finite element
has been determined in order to perform analyses and calculations of heterogeneous, multi-coherent,
and layered structures using fewer finite elements and it provides proper accuracy of the results.
The main advantage of the presented special multi-area elements is the possibility that areas of the
structure with different stiffness and geometrical parameters can be described by single element
integrated in subdivisions (sub-areas). The formulation of such elements has been presented with
the example of one-dimensional elements. The main idea of developed elements is the assumption
that the deformation field inside the element is dependent on its geometry and stiffness distribution.
The deformation field can be changed and adjusted during the calculation process that is why such
elements can be treated as self-adaptive. The application of the self-adaptation method on strain field
should simplify the analysis of complex non-linear problems and increase their accuracy. In order to
confirm the correctness of the established assumptions, comparative analyses have been carried out
and potential areas of application have been indicated.

Keywords: finite element method; integration in sub-areas; self-adaptation

1. Introduction

The first step in the finite element method (FEM) is the discretization of the domain
into finite elements. The meaning of this process is essential especially if the influence of
the results is concerned. To ensure that the simulation of the original domain is suitable to
perform the calculations, such parameters as shape, size, type, and configuration of the
elements have to be taken into consideration. Another parameter is the number of the finite
elements, which has significant influence of the computational effort.

In practice of structural modeling using FEM [1–3] very often it is necessary to define
domains with areas of significantly different geometrical and material characteristics.
The obvious solution is to divide these areas into subregions (sub-areas) and describe
them with separate finite elements. This approach is natural for FEM, however it can be
computationally expensive (a large number of finite elements, complicated discretization
algorithms, etc.). In particular it refers especially to materials with high heterogeneity.

A typical example of the occurrence of sub-areas with significant stiffness differences
is the analysis of physically non-linear processes. In such a case, stiffness in the analysed
points can even reach the extremal values, e.g., yielding or cracking. Simultaneously the
changes in stiffness are not followed by the adjustment of the strain field. This is one
of the main methodological reasons of non-linear analysis error generation. In this case,
it could be reasonable to use special type of elements called “multi-area elements”, where
sub-areas with different stiffness parameters can be combined and completed with a self-
adaptive procedure of deformation field. It means that one special multi-area element
can be used to describe larger (wider) parts of structure even with different geometry or
material parameters.
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Special multi-area elements have been developed to deal with problems in analysis
of structures with different geometrical and stiffness parameters for example inclusions
or accidental damages in form of various holes, etc. Moreover multi-area elements can be
used in analysis of constructions with openings, for example wall panels with openings for
doors or windows. The main goal of using such an element is the limitation of element and
nodes number in comparison with the fine mesh finite element model [4,5].

Currently, in the literature the significant number of scientific papers is dedicated to
searching for a new finite elements that ensure the appropriate accuracy of the results and
simultaneously reduce the number of unknowns in the computational model. They are
often called dedicated elements, developed in order to analyse a specific physical phe-
nomenon. Such type of elements are exactly the special multi-area elements, formulated in
order to analyse structures and structural systems containing areas of different geometrical
and stiffness characteristics.

Generally, searching for dedicated elements used in the numerical analysis of building
structures is carried out at different levels of observation scales. These issues concern
the macroscale and microscale. For example, macromodeling technique is used for large
structures and consists in describing by finite element a fragment of a construction with a
complex structure, for example part of a brick wall containing several bricks and a mortar
between them, like in [6,7]. Similar approach was represented by Choi and Bang [8]. Their
plate rectangular element has been used in analysis of shear walls with openings. The
stiffness matrix of such an element has been developed by subtracting the stiffness of
opening from the stiffness of whole plane of stress element without opening. The main
disadvantage of this method was the increase of calculation error due to increase of the
openings size. Another type of element used in the analysis of structures with different
stiffness areas are super elements presented by Kim and Lee [9]. These elements have
been also applied in structural analysis of shear walls with openings. Typical for super
elements is elimination of nodes using the matrix condensation technique. That is why
super elements have only four nodes at the corners of a wall panel, but to satisfy the
compatibility conditions at the boundaries of the element, so called fictitious beams have
to be added. A certain limitation of modelling the structure with use of macromodeling
technique is the fact that homogenization of the material properties is required, which is
performed on the basis of theoretical assumptions and the results of experimental research.

However, micromodeling is based on the analysis of small-sized parts of the con-
structions, including microscopic structures, and relates only to selected areas of building
constructions. Similar to macromodelling, the final finite element is the result of homog-
enization of various sub-areas. Additionally, the interaction between the components of
the microstructure is taken into account, introducing complex interface elements and/or
describing non-linear phenomena such as plasticity or cracking [10]. Mostly analysis of
microstructure is performed in order to assess influence of microdefects on bearing capacity
of building components, on strength of materials and also on potential progress of failure
mechanism [11]. A characteristic attribute of the micromodeling technique is the develop-
ment of a computer model of a single cell of the structure, and then homogenization [12–14]
Unfortunately, analysis of microstructures with this technique is computationally expensive,
which often results in the lack of practical application of this approach in the calculations
of large and complex structural models.

As heterogeneous materials are largely treated, the materials containing various types
of inclusions like in works [15,16] or holes. Very often, the analysis of structures containing
holes or inhomogeneities is the part of the so-called multi-scale modelling. In recent
decades, there has been a significant development of methods that take into account the
multi-scale nature of materials. An example can be the work [17], where the authors
describe the developed element containing an opening and a crack simultaneously. In this
work, according to the presented examples, the authors confirm the reduction of finite
element number and prove that it has an influence on improved numerical calculations
and obtaining a satisfactory accuracy of the results. This is in line with the current trend of
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searching for methods aimed at limiting the number of finite elements used in calculations.
As another example, we mention the work [18], where the numerical implementation of the
element with an elliptical hole and crack with a different number of nodes on the edge of
the element was presented. In these elements, Trefftz functions were used as test functions
for stresses and strains that meet the appropriate differential equations and boundary
conditions in advance. These functions make it possible to calculate the stiffness matrix of
a finite element by means of integration along the border (edge) of a finite element.

Wang and Qin [19] used a hybrid elements with elliptical holes in the calculations of
plates in a plane stress state. A plate with a single horizontal, sloping elliptical hole and
with two horizontal elliptical holes was analysed. In the work [20], the modified stress
functions were presented, that were used in the calculation of the stress distribution in
a constrained (finite) plate with a rectangular hole subjected to uniaxial tension. A finite
area containing a rectangular opening has been mapped to a finite area containing a single
circular opening using the so-called mapping function.

The aim of development and implementation of all mentioned elements and also
presented in the paper multi-area elements is striving for reduction of elements and nodes
number in calculation models.

The basic type of possible finite element in which the conception of developed multi-
area element can be implemented is 1-D double-hinged linear element. An example of a
one-dimensional element in which the multi-area elements can be applied has been shown
in Figure 1b. This type of elements was chosen because it is the clearest and understandable
way to explain the presented method.
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Figure 1. Example of multi-area elements for 2-D and 1-D case. (a) Heterogeneous multi-area
structure; (b) One-dimensional finite element.

To obtain the multi-area element, a simple technique of stiffness summation [21] has
been applied, according to the Formula (1).

Ke =
n

∑
k=1

Kk(χ), where χ = f (σ, E, t . . .) (1)

Expression (1) shows that the stiffness redistribution inside a finite element is further
modified by the parameter χ. The parameter χ for example can be a function of the state
of effort σ, material parameter such as Young’s modulus E or element geometry such as
thickness t. The explanations and determination of parameter χ have been described in
Section 3. In Equation (1) index k denotes the number of particular sub-area, n means total
number of sub-areas included in finite element.

At this point it is necessary to comment simply technique of the stiffness summation,
which is often used in similar cases. As the authors show in the next section, this technique
is inadequate, especially when the differences in stiffness of sub-areas are considerable.
Hence the proposed method described by Formula (1) has been developed.
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2. Research Problem

As an object of analysis, damaged posttensioned concrete girder KBOS-24 [22] has
been chosen. In this case, cracks were observed between the column and the top chord of
girder, which has been shown in Figure 2b.
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Figure 2. Posttensioned concrete girder KBOS-24: (a) View of erected roof construction; (b) Damage of the column; (c) View
(span) of whole girder.

Analyzing the problem, it was found that the valid girder model can and should
take into account hinge connections at both ends of column. This means at the places of
connection with rigid top and bottom chord. In Figure 2b, an extreme case of concrete
discontinuity between the column and the top chord of the girder has been shown. The
same damages (but much smaller) have been also noticed on the other columns of the
girder KBOS-24 as well. According to the research, these cracks are mainly caused by
the technology of realization. It should be mentioned that such a types of girders were
produced and assembled in Poland in the 60’s of the last century, when the Polish economy
was still recovering from the war damage.

Potential calculation models have been illustrated in Figure 3. First model, presented
in Figure 3a, is a typical 3D model made in professional computer program. The second,
shown in Figure 3b, is the computational model that was made using the “ORCAN”
Structure Analysis System (Version 0.98, Bialystok University of Technology, Bialystok,
Poland) [23]. The former model, apart from a lot advantages, also has disadvantages like
quite problematic geometry or difficulties in finding the internal forces (shear or normal).
The latter model is simplified but based on calculations made during the design process of
posttensioned girders. In this model the columns were modeled using multi-area double-
hinged linear elements. The theoretical assumptions of multi-area elements have been
described in the next chapter.
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Figure 3. Calculation models of posttensioned concrete girder KBOS-24: (a) Geometry of model prepared in Ansys;
(b) Equivalent simplified model.

In case of construction damage shown in Figure 2b, analysis of the crack propagation
can be done in many different methods. The most obvious is the rearrangement of the
mesh discretization in the calculation, computational model. This method of analysis is
effective but computationally expensive. It also requires complex calculation algorithms
regarding nonlinear analysis. Of course, nonlinear analysis can be modeled using the
Gauss integration points in the finite element. However, in relation to the rearrangement
of the mesh discretization method, this solution can be less precise. This is caused by the
necessity of approximation for results obtained in the Gauss points, e.g., transmission of
strain values to the nodes of finite element.

In the performed analysis, the authors decided to use one-dimensional multi-area
elements as girder columns, shown in Figure 3b. This is justified as follows:

• The girder column can be modeled using single one-dimensional double-hinge ele-
ment, because it is proved by the practical aspects concerning erection of the concrete
posttensioned girders; lack of concrete continuity in the area of column connections
with girder chords was observed very often.

• In the procedure of the integration in sub-areas (described in the next section), the
width of crack can be easily adjusted, and the localization of crack occurrence can be
chosen as well. This second aspect is especially relevant in transient processes, where
the location of damage is unknown in advance and depends on the state of structure
response.

• There is an opportunity whereby elastic elements with significant differences of
stiffness characteristics can be connected in series and described by a single finite
element.

The adequacy of the proposed method has been checked exactly on the example of
the girder column. For this purpose, the single column was separated and the tension force
P was applied, as shown in Figure 4. The value of the displacement in form of extension
of such a rod (bar element) was calculated. Calculations have been made using Maxima
program [24], in two variants:

• according to standard stiffness summation—integration in sub-areas.
• according to stiffness summation—integration in sub-areas with χ parameter—a

multi-area element.
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Figure 4. Calculation model of the column—single multi-area element.

In both variants the calculations have been performed using FEM and only one finite
element has been applied. The stiffness matrix for the element has been obtained using
the integration in sub-areas procedure. The main difference between these two variants is
the distribution of shape functions inside the finite element, which has been explained in
Section 3.

The calculation results have been presented in the Table 1. As a variable parameter the
crack width ls was established in the range from 1 mm to 50 mm. As a reference solution,
the values of displacement obtained from FEM calculations with discretization in form of
three separate finite elements have been taken. The diagram presenting calculation error
has been shown in Figure 5.

Table 1. Comparison of the displacement values [mm], Figure 5.

Applied Method Width of the Crack ls

ls = 1 mm ls = 5 mm ls = 10 mm ls = 20 mm ls = 50 mm

Reference solution—FEM three
separate elements 0.754 0.815 0.891 1.042 1.498

Stiffness summation from sub-areas—FEM one
finite element integrated in sub-areas 0.739 0.742 0.746 0.753 0.776

Calculation error of stiffness summation from
sub-areas [%] 1.9 8.9 16.3 27.8 48.2

Multi-area elements—FEM one finite element
integrated in sub-areas with modification of

strain field
0.754 0.815 0.891 1.042 1.498

Calculation error of multi-area elements [%] 0.0 0.0 0.0 0.0 0.0
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According to the presented results, it can be noticed that the calculations with the
application of only a standard stiffness summation procedure are insufficient. Therefore,
multi-area elements should be used. In the case of 1-D elements, the use of multi-area
elements completely eliminated the calculation error.

3. General Theoretical Assumptions of One-Dimensional Multi-Area Elements

The conception of multi-area finite element has been presented and explained in
Figure 6, on the example of one-dimensional element. Comparison between standard
solution (Figure 6a) and multi-area elements (Figure 6b) shows that the deformation field in
both cases is described by the shape functions [25,26]. However, in multi-area elements, the
shape function distribution is modified by the χ parameter. This modification (χ) causes
that stiffness is redistributed inside the finite element. Therefore, the basic assumption of
multi-area conception is appropriate adjustment of shape function distribution to changes
of stiffness characteristics in sub-areas, as shown in Figure 6b. Shape functions modified in
this way could be described for example using spline functions. Theoretical considerations
concerning spline functions are included in chapters 14 and 15 of the work [27]. The use of
spline functions in FEM calculations is presented in chapter 18 of work [28].
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However, the authors propose quite uncomplicated solution in form of modified
stiffness summation from sub-areas, as it is described by Formula (1). The advantage of
this solution is that there is no need for homogenization process.

The stiffness matrix of a single sub-area is determined from the Formula (2).

Kk(χ) =
∫
vk

Bk(χ)·Dk·Bk(χ)·dvk (2)

Global coordinates x and generalized dimensionless coordinates ξ are enclosed in the
following intervals:

x ∈ 〈− L
2

,+
L
2
〉, ξ ∈ 〈−1,+1〉, where: ξ =

2
L

x. (3)

Shape functions expressed in natural coordinates ξ have the following forms for i and
j node, respectively:

Ni
k =

χl+1·ml+1−χl ·ml
ξl+1−ξl

·(ξ − ξl) + χl ·ml

N j
k = 1− Ni

k

(4)

The strain field:

Bk = L·Nk =
∣∣∣ d

dξ

∣∣∣·∣∣∣ Ni
k N j

k

∣∣∣ =
=
∣∣∣ χl+1·ml+1−χl ·ml

ξl+1−ξl
− χl+1·ml+1−χl ·ml

ξl+1−ξl

∣∣∣ = ∣∣ b −b
∣∣ (5)

After substituting to the Equation (2), final formula has been obtained:

Kk(χ) =
∫
vk

Bk(χ)·Dk·Bk(χ)·dvk =

ξl+1∫
ξl

∣∣∣∣ b
−b

∣∣∣∣·|Ek|·
∣∣ b −b

∣∣·J·dξ (6)

where:

Bk—strain matrix of sub-area k,
Dk—material matrix, De

k = [Ek],
Nk—shape function matrix of sub-area k,
J—Jakobian matrix equals 2/L,
L—length of the whole element.

After transformations, stiffness matrix of the component sub-area has the following
explicit form:

/Kk(χ) = (EA)k·
(
(χl+1·ml+1−χl ·ml)

(ξl+1−ξl)

)2
·

ξl+1∫
ξl

[
1 −1
−1 1

]
·J·dξ=

 2(EA)k
L

(χl+1·ml+1−χl ·ml)
2

(ξl+1−ξl)
− 2(EA)k

L
(χl+1·ml+1−χl ·ml)

2

(ξl+1−ξl)

− 2(EA)k
L

(χl+1·ml+1−χl ·ml)
2

(ξl+1−ξl)
2(EA)k

L
(χl+1·ml+1−χl ·ml)

2

(ξl+1−ξl)

 (7)

or the same stiffness matrix can be written in a different way:

Kk(χ) =
2(EA)k

L

[
c −c
−c c

]
, where: c =

(χl+1·ml+1 − χl ·ml)
2

(ξl+1 − ξl)
(8)

The essence of the presented multi-area elements is the use of modified shape functions
described by proper parameters. These parameters are of course the dimension of the
sub-area ξ and the distribution of the deformation field—parameter χ.

If the stiffness matrix of one-dimensional multi-area element is concerned, the strain
field distribution is adapted to stiffness changes of sub-areas inside the finite element exactly
by the use of parameter χ. Formulation of this parameter χ is based on the assumption
that the sub-areas create a system of springs connected in series, as shown in Figure 7.
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Figure 7. Modification of shape function distribution in case of integration in sub-areas—parameter χ.

The value of adaptive shape function χl ·ml is calculated according following formula:

χl ·ml =
k
kl

(9)

where:
k—resultant stiffness for total spring system (Figure 7):

k =
1

∑n
ii=1

1
kii

(10)

and kl—resultant stiffness for the part of spring system (Figure 7) to the point where value
ml is calculated:

kl =
1

∑n
ii=l

1
kii

(11)

In the Formulas (10) and (11), kii denotes stiffness of single sub-area and index n is
total number of sub-areas in the finite element. In Figure 7, the stiffness of single sub-area
is marked respectively as: k1, k2, k3 and the total number of sub-areas is n = 3.

4. Directions of Potential Application
Calculation Test—Subsidence of the Ground Subsoil

Apart from presented in the Section 2, previous example of concrete girder KBOS-24
column calculation, the developed method of one-dimensional special finite elements has
been implemented in the calculation of ground subsoil subsidence. This concerns mainly
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the calculation of the multi-layered subsoil, where each layer is characterized by different
thickness and strain modulus [29]. One of the examples where subsidence values have
been calculated is the analysis of a layered subsoil under a building wall. In the presented
case the calculations are limited to one-dimensional elastic model of subsoil [30].

In the computational test, the subsidence values for the multi-layered subsoil under
the wall of a 5-storey building were compared, as shown in Figure 8. For calculation a
reinforced concrete wall measuring 9.6 m × 14.0 m × 0.15 m, loaded by the floor ceilings
and dead load has been taken. Calculations were made in three variants, using different
calculation methods.
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In the variant I the calculations were carried out according to hypothesis of the elastic
subsoil parameters (Winkler’s hypothesis) and the formulas given in [30]. The problem
of modeling the multi-layered subsoil using the hypothesis of the elastic subsoil is to
determine the stiffness of the layer (as a spring). The solution is to use exactly the Winkler’s
hypothesis, according to which the subsidence of the elastic subsoil s is proportional to the
acting load q, as in the following Expression (12):

q = kz·s (12)

The value of flexibility coefficient kz for homogeneous soil to the depth z [30] can be
determined according to the formula:

kz =
E0

ω·B·(1− ν2)
(13)

On the other hand, in case of the multi-layered subsoil, the coefficient kz is the sum of
the flexibility coefficients for the individual layers of the subsoil. For a single layer i, this
coefficient is determined from the following expression:

ki
z =

Ei
0

∆ωi·B·(1− ν2)
and ∆ωi = ωi −ωi−1, (14)
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where:

q—acting load,
E0—strain modulus of the subsoil,
B—the width of the loaded area (foundation),
ν—coefficient of the lateral expansion of the ground,
ωi (∆ωi)—influence coefficient, depending on the shape of the loaded area (foundation)
determined according to the corresponding tables and nomograms [30].

In the variant II, calculations have been made using a two-dimensional FEM model
in order to compare and control the results. For plane elements, that were implemented
in ground subsoil modelling, a transformation of the strain modulus has been applied in
order to use the flexibility of the subsoil as in Winkler’s hypothesis:

Ei = Ei
0·

hi
∆ωi

(15)

where:

Ei
0—strain modulus for particular layer of the ground,

hi—the thickness of the particular layer,
∆ωi—influence coefficient, depending on the shape of the loaded area (foundation) deter-
mined according to the corresponding tables and nomograms [30].

In the variant III, calculations have been performed using special one-dimensional
finite elements integrated in sub-areas, presented in the paper and implemented in the
authors’ analysis system “ORCAN” [23].

As a results of the calculations, the following subsidence values have been obtained.
Variant I: Winkler’s hypothesis:

s1 =
q·∆ω1·B·(1−ν2)

E1
0

=
189.19 kN/m · 0.86·1.0m·(1−0.32)

80,000 kPa = 1.851·10−3 m

s2 =
q·∆ω2·B·(1−ν2)

E2
0

=
189.19 kN/m · 0.337·1.0m·(1−0.32)

20,000 kPa = 2.901·10−3 m

s3 =
q·∆ω3·B·(1−ν2)

E3
0

=
189.19 kN/m · 0.259·1.0m·(1−0.32)

130,000 kPa = 0.343·10−3 m

Total subsidence: s = s1 + s2 + s3 = 5.095·10−3 m = 5.095mm

Variant II: FEM model for the entire ground cross-section with the use of plane two-
dimensional elements. The following values of the strain modulus respectively for first,
second and third layer (Formula (15)) has been applied:

E1 = E1
0 ·

h1

∆ω1
= 80, 000 kPa·2.0 m

0.86
= 186046.51 kPa

E2 = E2
0 ·

h2

∆ω2
= 20, 000 kPa·2.0 m

0.337
= 118694.36 kPa

E3 = E3
0 ·

h3

∆ω3
= 130, 000 kPa·2.0 m

0.259
= 1003861.00 kPa

Total subsidence: s = 5.429·10−3 m = 5.429 mm

Total subsidence after blocking of the ground lateral expansion possibility :
s = 5.116·10−3 m = 5.116 mm

Variant III: Special one-dimensional multi-area elements (replacement of the entire
ground cross section by single springs). After the discretization, along the foundation
50 nodes were established, so the length assigned to single spring is equal:
11.6 m÷ 50 springs = 0.232 m.
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The flexibility coefficients for the individual layers of the subsoil are following:

k1
s =

E1
0

∆ω1·B·(1−ν2)
·A = 80,000 kPa

0.86·1 m·(1−0.32)
·(1 m·0.232 m) = 23715.82 kN

m

k2
s =

E2
0

∆ω2·B·(1−ν2)
·A = 80,000 kPa

0.337·1 m·(1−0.32)
·(1 m·0.232 m) = 15130.27 kN

m

k3
s =

E3
0

∆ω3·B·(1−ν2)
·A = 80,000 kPa

0.259·1 m·(1−0.32)
·(1 m·0.232 m) = 127964.70 kN

m

According to flexibility coefficients assigned to each ground layer, resultant stiffness
for the single special one-dimensional multi-area element (single spring) was calculated:

ks =
1

1
k1
s
+ 1

k2
s
+ 1

k3
s

= 1
1

23715.82 kN/m+ 1
15130.27 kN/m+ 1

127964.70 kN/m
= 8615.25 kN

m

Total subsidence : s = 5.156·10−3 m = 5.156 mm

Comparison of the values of subsoil subsidence obtained from three, different calcula-
tion variants has been presented in the Table 2.

Table 2. Comparison of the subsoil subsidence values [mm], Figure 8

Calculation Variant Value of Subsoil Subsidence s

Variant I—Winkler’s hypothesis 0.005095 m = 5.095 mm

Variant II—FEM model for the entire ground cross-section
with the use of plane two-dimensional elements.

0.005429 m = 5.429 mm
0.005116 m = 5.116 mm 1

Variant III—special one-dimensional multi-area elements
(replacement of the entire ground cross section by

single springs)
0.005156 m = 5.156 mm

1 After blocking of the ground lateral expansion possibility.

5. Discussion

The aim of this paper was to present a new type of finite element, which allow to
perform calculations of heterogeneous, multi-coherent structures using less number of
finite elements and provide proper accuracy of the results.

The idea and the main assumptions of the special multi-area finite elements have
been explained on the example of one-dimensional (linear) element. The results of the
computational tests have been presented in order to confirm the suitability of these elements
in calculations of structures containing areas with different physical and geometrical
parameters.

The computational calculations and results presented in the Table 1, confirm that the
use of elements integrated in sub-areas in a standard way (without strain field modification
inside the element) can lead to incorrect results. The greater difference between the
subdivision stiffness, the greater computational error is. Therefore, the displacement field
modification is necessary. Using multi-area special elements it is possible to obtain the
reference solution even for significant differences in the stiffness of the component sub-
areas. Reference solution means the results obtained from FEM calculations with fine mesh
discretization where each sub-area is described by separate finite element.

According to the presented examples and obtained results (Tables 1 and 2), it can
be noticed that the application of special one-dimensional (linear) finite elements in the
calculations of structures with variable stiffness and geometric parameters, provides results
that are consistent with reference solution or are very close to the expected solution.
Simultaneously the number of finite elements used in calculations has been decreased.

The conception is based on the assumption that area of the structure with different stiff-
ness and geometrical parameters is described by a single element integrated in subdivisions
(sub-areas). However, the main idea of the special multi-area elements, that makes them
different from the typical elements integrated in sub-areas with a linear distribution of the
shape functions, is the application of the modification of the strain field distribution within
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the finite element, depending on the changes of geometrical and material parameters. For
this purpose the original functional for modification of the linear distribution of the shape
functions has been developed. The stiffness matrix for the multi-area elements has been
determined in the explicit form. This increases the computational efficiency compared to
the numerical integration.

6. Conclusions

The research presented in the paper allows to define the following conclusions:

• An original conception, which has been used in FEM calculations, for the analysis of
multi-coherent structures consisted of areas with different geometrical and material
properties was developed and presented.

• According to the developed method, a special stiffness matrix for one-dimensional
multi-area finite element has been derived. As the finite element consists of parts with
different stiffness parameters, in the formulation of the stiffness matrix, the integration
in sub-areas procedure has been applied.

• The conducted research shows that integration in sub-areas is insufficient when linear
continuous distribution of shape functions is assumed. The necessary is modification
of shape functions distribution. The authors developed this modification in the form
of adaptive shape functions. According this approach, the special multi-area elements
have been formulated.

• The performed calculations confirm that the use of multi-area elements provides
results that are consistent or are very close to the expected solution.

• The use of special multi-area elements helps to reduce the number of finite elements
and thereby to reduce the computational calculation time.

• The obtained proper results in the case of one-dimensional finite elements provide the
opportunity to continue research on 2D and 3D elements.
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23. Chyży, T.; Mackiewicz, M.; Matulewicz, S. Modern Graphic Language for Description of Building Structures, Orcan ver. 0.91; Publishing
House of the Białystok University of Technology: Białystok, Poland, 2014. (In Polish)

24. Maxima, a Computer Algebra System. Available online: http://maxima.sourceforge.net (accessed on 9 January 2021).
25. Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J. Concepts and Applications of Finite Element Analysis; John Wiley&Sons: New York,

NY, USA, 2001.
26. Liu, G.R.; Quek, S.S. Finite Element Method. A Practical Course; Elsevier, Butterworth-Heinemann: Oxford, UK, 2003.
27. Farouki, R.T. Pythagorean—Hodograph Curves: Algebra and Geometry Inseparable; Springer: Berlin/Heidelberg, Germany, 2008.
28. Long, Y.Q.; Cen, S.; Long, Z.F. Advanced Finite Element Method in Structural Engineering; Springer: Berlin/Heidelberg,

Germany, 2009.
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