Rapid Planning of an Assembly Path by Reusing the Prior Path
Abstract
:1. Introduction
2. Establishment of Prior Path Space
2.1. Segmentation of the Assembly Path
2.2. Transformation from Assembly Space to Configuration Space
3. The Path Planning Algorithm Based on PPR
3.1. Prior Path Reuse in the PPR Algorithm
Algorithm 1. PPR algorithm |
Input: Cplan, Cobstacle, Cprior, xstart, xend, S, N, Tprior, Texploring Result: A path Γ with the minimum cost from xstart to xend Texploring.init(); //Initialize the exploring tree Texploring Ψ.init(); //Initialize the prior path set Ψ for n = 1 to N do //Sample N times { xrand←Sample(Cplan); //Generate a random node xrand in the configuration space Cplan xnear←Near(xrand, Texploring); //Discover the nearest node xnear near xrand on Texploring xnew←Steer(xrand, xnear, S); //Generate a new node xnew between xrand and xnear with step S if CollisionFree(Cobstacle, xnew) then //Determine whether xnew is in the obstacle space Cobstacle { Xnear←Near (xnew, Texploring); //Create a set Xnear with the nodes on Texploring near xnew xmin←SelectParentNode(Xnear, xnear, xnew); //Select the minimum cost parent node of xnew Texploring.AddEdge(Edge(xmin, xnew)); //Add the new branch Edge(xmin, xnew) to Texploring Texploring.Rewire(); //Rewire the local part of the exploring tree near xnew for lower cost if InPriorSpace(Cprior, xnew) then //Determine whether xnew is in the prior space Cprior { xconnect, pconnect←ConnectNode(Texploring, Tprior, xnew); //Obtain the connection nodes pconnect, xconnect Texploring.AddEdge(xconnect, pconnect); //Add the new branch Edge(xconnect, pconnect) to Texploring Γi←PathBacktrack(Texploring, Tprior, xconnect, pconnect); //Obtain a path Γi by path backtracking Ψ.AddPath(Γi); //Add Γi to Ψ } } } Γmin←MinCostPath(Ψ); //Obtain the minimum cost path Γmin return Γmin; //Retrieve Γmin as the final path Γ |
3.2. Dual-Tree Fusion Strategy
3.3. The Optimal Path Selection Strategy
4. Examples and Comparison
4.1. Comparison of Results of PPR Algorithm with Different Numbers of Sampling Points
4.2. The Comparison of Results of RRT * and PPR
- (1)
- The comparison of average values of results
- (2)
- The comparison of success rates of results
- (3)
- The comparison of the minimum number of sampling points
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qiu, C.; Zhou, S.; Liu, Z.; Gao, Q.; Tan, J. Digital assembly technology based on augmented reality and digital twins: A review. Virtual Real. Intell. Hardw. 2019, 1, 597–610. [Google Scholar] [CrossRef]
- Yi, Y.; Yan, Y.; Liu, X.; Ni, Z.; Feng, J.; Liu, J. Digital twin-based smart assembly process design and application framework for complex products and its case study. J. Manuf. Syst. 2020. [Google Scholar] [CrossRef]
- Li, T.; Lockett, H.; Lawson, C. Using requirement-functional-logical-physical models to support early assembly process planning for complex aircraft systems integration. J. Manuf. Syst. 2020, 54, 242–257. [Google Scholar] [CrossRef]
- Wallis, R.; Erohin, O.; Klinkenberg, R.; Deuse, J.; Stromberger, F. Data Mining-supported Generation of Assembly Process Plans. Procedia CIRP 2014, 23, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Bilberg, A.; Malik, A.A. Digital twin driven human–robot collaborative assembly. CIRP Ann. 2019, 68, 499–502. [Google Scholar] [CrossRef]
- Maset, E.; Scalera, L.; Zonta, D.; Alba, I.M.; Crosilla, F.; Fusiello, A. Procrustes analysis for the virtual trial assembly of large-size elements. Robot. Comput. Integr. Manuf. 2020, 62, 101885. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, T.; Yang, H. An Analysis of the Assembly Path Planning of Decelerator Based on Virtual Technology. Phys. Procedia 2012, 25, 170–175. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Wu, D.L.; Zhu, H.M.; Bao, J.S.; Wei, Z.H. Assembly operation process planning by mapping a virtual assembly simulation to real operation. Comput. Ind. 2013, 64, 869–879. [Google Scholar] [CrossRef]
- Channarong, T.; Suthep, B. Virtual reality barrel shaft design and assembly planning accompany with CAM. Procedia Manuf. 2019, 30, 677–684. [Google Scholar] [CrossRef]
- Müller, R.; Hörauf, L.; Vette, M.; Speicher, C. Planning and Developing Cyber-physical Assembly Systems by Connecting Virtual and Real Worlds. Procedia CIRP 2016, 52, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Müller, R.; Vette, M.; Hörauf, L.; Speicher, C. Consistent data Usage and Exchange Between Virtuality and Reality to Manage Complexities in Assembly Planning. Procedia CIRP 2016, 44, 73–78. [Google Scholar] [CrossRef] [Green Version]
- Ong, S.K.; Pang, Y.; Nee, A.Y.C. Augmented Reality Aided Assembly Design and Planning. CIRP Ann. 2007, 56, 49–52. [Google Scholar] [CrossRef]
- Dalvi, S.D. Optimization of Assembly Sequence Plan Using Digital Prototyping and Neural Network. Procedia Technol. 2016, 23, 414–422. [Google Scholar] [CrossRef] [Green Version]
- Ghandi, S.; Masehian, E. Review and taxonomies of assembly and disassembly path planning problems and approaches. Comput. Aided Des. 2015, 67, 58–86. [Google Scholar] [CrossRef]
- Ghandi, S.; Masehian, E. Assembly sequence planning of rigid and flexible parts. J. Manuf. Syst. 2015, 36, 128–146. [Google Scholar] [CrossRef]
- Lelyukhin, V.; Kolesnikova, O. Approach to Determining Order of Production of Parts and Assembly Units of Engineering Products in Production Process Planning. Procedia Eng. 2017, 206, 1515–1521. [Google Scholar] [CrossRef]
- Chen, R.S.; Lu, K.Y.; Yu, S.C. A hybrid genetic algorithm approach on multi-objective of assembly planning problem. Eng. Appl. Artif. Intell. 2002, 15, 447–457. [Google Scholar] [CrossRef] [Green Version]
- Pellegrinelli, S.; Pedrocchi, N.; Tosatti, L.M.; Fischer, A.; Tolio, T. Multi-robot spot-welding cells for car-body assembly: Design and motion planning. Robot. Comput. Integr. Manuf. 2017, 44, 97–116. [Google Scholar] [CrossRef]
- Hui, W.; Dong, X.; Guanghong, D.; Linxuan, Z. Assembly planning based on semantic modeling approach. Comput. Ind. 2007, 58, 227–239. [Google Scholar] [CrossRef]
- Wang, H.; Rong, Y.; Xiang, D. Mechanical assembly planning using ant colony optimization. Comput. Aided Des. 2014, 47, 59–71. [Google Scholar] [CrossRef]
- Hadj, R.B.; Belhadj, I.; Trigui, M.; Aifaoui, N. Assembly sequences plan generation using features simplification. Adv. Eng. Softw. 2018, 119, 1–11. [Google Scholar] [CrossRef]
- Pan, W.; Wang, Y.; Chen, X.D. Domain knowledge based non-linear assembly sequence planning for furniture products. J. Manuf. Syst. 2018, 49, 226–244. [Google Scholar] [CrossRef]
- Morato, C.; Kaipa, K.N.; Gupta, S.K. Improving assembly precedence constraint generation by utilizing motion planning and part interaction clusters. Comput. Aided Des. 2013, 45, 1349–1364. [Google Scholar] [CrossRef] [Green Version]
- Ladeveze, N.; Fourquet, J.Y.; Puel, B. Interactive path planning for haptic assistance in assembly tasks. Comput. Graph. 2010, 34, 17–25. [Google Scholar] [CrossRef]
- Yan, Y.; Poirson, E.; Bennis, F. An interactive motion planning framework that can learn from experience. Comput. Aided Des. 2015, 59, 23–38. [Google Scholar] [CrossRef]
- Sierla, S.; Kyrki, V.; Aarnio, P.; Vyatkin, V. Automatic assembly planning based on digital product descriptions. Comput. Ind. 2018, 97, 34–46. [Google Scholar] [CrossRef]
- Kardos, C.; Váncza, J. Application of Generic CAD Models for Supporting Feature Based Assembly Process Planning. Procedia CIRP 2018, 67, 446–451. [Google Scholar] [CrossRef]
- Michniewicz, J.; Reinhart, G.; Boschert, S. CAD-Based Automated Assembly Planning for Variable Products in Modular Production Systems. Procedia CIRP 2016, 44, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Qian, C.; Zhang, Y.; Jiang, C.; Pan, S.; Rong, Y. A real-time data-driven collaborative mechanism in fixed-position assembly systems for smart manufacturing. Robot. Comput. Integr. Manuf. 2020, 61, 101841. [Google Scholar] [CrossRef]
- Hassan, S.; Yoon, J. Haptic assisted aircraft optimal assembly path planning scheme based on swarming and artificial potential field approach. Adv. Eng. Softw. 2014, 69, 18–25. [Google Scholar] [CrossRef]
- Lee, D.; Kim, M.Y.; Cho, H. Path planning for micro-part assembly by using active stereo vision with a rotational mirror. Sens. Actuators A Phys. 2013, 193, 201–212. [Google Scholar] [CrossRef]
- Wei, H.X.; Mao, Q.; Guan, Y.; Li, Y.D. A centroidal Voronoi tessellation based intelligent control algorithm for the self-assembly path planning of swarm robots. Expert Syst. Appl. 2017, 85, 261–269. [Google Scholar] [CrossRef]
- Gaisbauer, F.; Lehwald, J.; Agethen, P.; Otto, M.; Rukzio, E. A Motion Reuse Framework for Accelerated Simulation of Manual Assembly Processes. Procedia CIRP 2018, 72, 398–403. [Google Scholar] [CrossRef]
- Li, B.; Liu, H.; Su, W. Topology optimization techniques for mobile robot path planning. Appl. Soft Comput. 2019, 78, 528–544. [Google Scholar] [CrossRef]
- Song, P.C.; Pan, J.S.; Chu, S.C. A parallel compact cuckoo search algorithm for three-dimensional path planning. Appl. Soft Comput. 2020, 94, 106443. [Google Scholar] [CrossRef]
- Sun, Z.; Shao, Z.F.; Li, H. An eikonal equation based path planning method using polygon decomposition and curve evolution. Def. Technol. 2019. [Google Scholar] [CrossRef]
- Sung, I.; Choi, B.; Nielsen, P. On the training of a neural network for online path planning with offline path planning algorithms. Int. J. Inf. Manag. 2020. [Google Scholar] [CrossRef]
- Heinemann, T.; Riedel, O.; Lechler, A. Generating Smooth Trajectories in Local Path Planning for Automated Guided Vehicles in Production. Procedia Manuf. 2019, 39, 98–105. [Google Scholar] [CrossRef]
- Terh, S.H.; Cao, K. GIS-MCDA based cycling paths planning: A case study in Singapore. Appl. Geogr. 2018, 94, 107–118. [Google Scholar] [CrossRef]
- Zhao, Y.; Zheng, Z.; Liu, Y. Survey on computational-intelligence-based UAV path planning. Knowl. Based Syst. 2018, 158, 54–64. [Google Scholar] [CrossRef]
- Jain, G.; Yadav, G.; Prakash, D.; Shukla, A.; Tiwari, R. MVO-based path planning scheme with coordination of UAVs in 3-D environment. J. Comput. Sci. 2019, 37, 101016. [Google Scholar] [CrossRef]
- Li, K.; Ge, F.; Han, Y.; Wang, Y.a.; Xu, W. Path planning of multiple UAVs with online changing tasks by an ORPFOA algorithm. Eng. Appl. Artif. Intell. 2020, 94, 103807. [Google Scholar] [CrossRef]
- Mahmud, M.S.A.; Abidin, M.S.Z.; Mohamed, Z.; Rahman, M.K.I.A.; Iida, M. Multi-objective path planner for an agricultural mobile robot in a virtual greenhouse environment. Comput. Electron. Agric. 2019, 157, 488–499. [Google Scholar] [CrossRef]
- Kavraki, L.E.; Svestka, P. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 1996, 12, 566. [Google Scholar] [CrossRef] [Green Version]
- Elbanhawi, M.; Simic, M. Sampling-Based Robot Motion Planning: A Review. IEEE Access 2014, 2, 56–77. [Google Scholar] [CrossRef]
- Wang, W.; Deng, H.; Wu, X. Path planning of loaded pin-jointed bar mechanisms using Rapidly-exploring Random Tree method. Comput. Struct. 2018, 209, 65–73. [Google Scholar] [CrossRef]
- Yuan, C.; Liu, G.; Zhang, W.; Pan, X. An efficient RRT cache method in dynamic environments for path planning. Robot. Auton. Syst. 2020, 131, 103595. [Google Scholar] [CrossRef]
- Cao, X.; Zou, X.; Jia, C.; Chen, M.; Zeng, Z. RRT-based path planning for an intelligent litchi-picking manipulator. Comput. Electron. Agric. 2019, 156, 105–118. [Google Scholar] [CrossRef]
- Qian, K.; Liu, Y.; Tian, L.; Bao, J. Robot path planning optimization method based on heuristic multi-directional rapidly-exploring tree. Comput. Electr. Eng. 2020, 85, 106688. [Google Scholar] [CrossRef]
- Li, Y.; Wei, W.; Gao, Y.; Wang, D.; Fan, Z. PQ-RRT*: An improved path planning algorithm for mobile robots. Expert Syst. Appl. 2020, 152, 113425. [Google Scholar] [CrossRef]
- Chao, N.; Liu, Y.K.; Xia, H.; Peng, M.J.; Ayodeji, A. DL-RRT* algorithm for least dose path Re-planning in dynamic radioactive environments. Nucl. Eng. Technol. 2019, 51, 825–836. [Google Scholar] [CrossRef]
- Xiong, J.; Hu, Y.M.; Wu, B.; Duan, X.K. Minimum-cost rapid-growing random trees for segmented assembly path planning. Int. J. Adv. Manuf. Technol. 2015, 77, 1043–1055. [Google Scholar] [CrossRef]
- Rosell, J.; Iniguez, P. Path planning using Harmonic Functions and Probabilistic Cell Decomposition. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 1803–1808. [Google Scholar] [CrossRef] [Green Version]
- Borenstein, J.; Koren, Y. The vector field histogram-fast obstacle avoidance for mobile robots. IEEE Trans. Robot. Autom. 1991, 7, 278–288. [Google Scholar] [CrossRef] [Green Version]
Algorithm | Number of Sampling Points | Path Length | Running Time (s) |
---|---|---|---|
RRT * | 1104 | 384 | 1.26 |
PPR | 330 | 248 | 0.356 |
Algorithm | Minimum Number of Sampling Points | Total Running Time (s) |
---|---|---|
RRT * | 12,000 | 137.56 |
PPR | 2500 | 24.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, G.; Zhou, C.; Cao, Y.; Hu, H. Rapid Planning of an Assembly Path by Reusing the Prior Path. Appl. Sci. 2021, 11, 633. https://doi.org/10.3390/app11020633
Yi G, Zhou C, Cao Y, Hu H. Rapid Planning of an Assembly Path by Reusing the Prior Path. Applied Sciences. 2021; 11(2):633. https://doi.org/10.3390/app11020633
Chicago/Turabian StyleYi, Guodong, Chuanyuan Zhou, Yanpeng Cao, and Hangjian Hu. 2021. "Rapid Planning of an Assembly Path by Reusing the Prior Path" Applied Sciences 11, no. 2: 633. https://doi.org/10.3390/app11020633
APA StyleYi, G., Zhou, C., Cao, Y., & Hu, H. (2021). Rapid Planning of an Assembly Path by Reusing the Prior Path. Applied Sciences, 11(2), 633. https://doi.org/10.3390/app11020633