Three-Dimensional Mapping of Forest Soil Carbon Stocks Using SCORPAN Modelling and Relative Depth Gradients in the North-Eastern Lowlands of Germany
Abstract
:1. Introduction
2. Material and Methods
2.1. Inventory Data
2.2. Environmental Covariates
2.3. Regression Analysis of Total Solum SOC
2.4. Geostatistical Analysis
2.5. Depth Gradients
2.6. Mapping of Relative Depth Gradient Types
3. Results
3.1. Mapping Total Solum SOC
3.2. Geostatistical Analysis of Residuals
3.3. Depth Gradients
3.4. Mapping of Relative Depth Gradient Types
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renger, M. Berechnung der Austauschkapazität der organischen und anorganischen Anteile der Böden. Z. Pflanzenernähr. Düng. Bodenkd. 1965, 110, 10–26. [Google Scholar] [CrossRef]
- Curtin, D.; Rostad, H. Cation exchange and buffer potential of Saskatchewan soils estimated from texture, organic matter and pH. Can. J. Soil Sci. 1997, 77, 621–626. [Google Scholar] [CrossRef]
- Horn, A.L.; Düring, R.A.; Gäth, S. Comparison of the prediction efficiency of two pedotransfer functions for soil cation-exchange capacity. J. Plant Nutr. Soil Sci. 2005, 168, 372–374. [Google Scholar] [CrossRef]
- Kaur, R.; Kumar, S.; Gurung, H.P. A pedo-transfer function (PTF) for estimating soil bulk density from basic soil data and its comparison with existing PTFs. Aust. J. Soil Res. 2002, 40, 847–858. [Google Scholar] [CrossRef]
- De Vos, B.; Van Meirvenne, M.; Quataert, P.; Deckers, J.; Muys, B. Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci. Soc. Am. J. 2005, 69, 500–510. [Google Scholar] [CrossRef]
- Hollis, J.M.; Hannam, J.; Bellamy, P.H. Empirically-derived pedotransfer functions for predicting bulk density in European soils. Eur. J. Soil Sci. 2012, 63, 96–109. [Google Scholar] [CrossRef]
- Beke, G.J.; MacCormick, M.J. Predicting volumetric water retentions for subsoil materials from Colchester County, Nova Scotia. Can. J. Soil Sci. 1985, 65, 233–236. [Google Scholar] [CrossRef]
- Vereecken, H.; Maes, J.; Feyen, J.; Darius, P. Estimating the soil moisture retention characteristic from texture, bulk density and carbon content. Soil Sci. 1989, 148, 389–403. [Google Scholar] [CrossRef]
- Zacharias, S.; Wessolek, G. Excluding organic matter content from pedotransfer predictors of soil water retention. Soil Sci. Soc. Am. J. 2007, 71, 43–50. [Google Scholar] [CrossRef]
- Rawls, W.J.; Pachepsky, Y.A.; Ritchie, J.C.; Sobecki, T.M.; Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 2003, 116, 61–76. [Google Scholar] [CrossRef]
- Bisdom, E.; Dekker, L.; Schoute, J. Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma 1993, 56, 105–118. [Google Scholar] [CrossRef]
- Buczko, U.; Bens, O.; Fischer, H.; Hüttl, R.F. Water repellency in sandy luvisols under different forest transformation stages in northeast Germany. Geoderma 2002, 109, 1–18. [Google Scholar] [CrossRef]
- Greiffenhagen, A.; Wessolek, G.; Facklam, M.; Renger, M.; Stoffregen, H. Hydraulic functions and water repellency of forest floor horizons on sandy soils. Geoderma 2006, 132, 182–195. [Google Scholar] [CrossRef]
- Wessolek, G.; Schwarzel, K.; Greiffenhagen, A.; Stoffregen, H. Percolation characteristics of a water-repellent sandy forest soil. Eur. J. Soil Sci. 2008, 59, 14–23. [Google Scholar] [CrossRef]
- Schonsky, H.; Peters, A.; Wessolek, G. Effect of soil water repellency on energy partitioning between soil and atmosphere: A conceptual approach. Pedosphere 2014, 24, 498–507. [Google Scholar] [CrossRef]
- Ballabio, C. Spatial prediction of soil properties in temperate mountain regions using support vector regression. Geoderma 2009, 151, 338–350. [Google Scholar] [CrossRef]
- Malone, B.; McBratney, A.; Minasny, B. Empirical estimates of uncertainty for mapping continuous depth functions of soil attributes. Geoderma 2011, 160, 614–626. [Google Scholar] [CrossRef]
- Moore, I.D.; Gessler, P.E.; Nielsen, G.A.; Peterson, G.A. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J. 1993, 57, 443–452. [Google Scholar] [CrossRef]
- Bui, E.; Henderson, B.; Viergever, K. Using knowledge discovery with data mining from the Australian Soil Resource Informationen System database to inform soil carbon mapping in Australia. Glob. Biogeochem. Cycles 2009, 23, 1–15. [Google Scholar] [CrossRef]
- Grimm, R.; Behrens, T.; Maerker, M.; Elsenbeer, H. Soil organic carbon concentrations and stocks on Barro Colorado Island - Digital soil mapping using Random Forests analysis. Geoderma 2008, 146, 102–113. [Google Scholar] [CrossRef]
- Collard, F.; Saby, N.; Richer de Forges, A.; Lehmann, S.; Paroissien, J.B.; Arrouays, D. Spatial prediction of soil organic carbon at different depths using digital soil mapping. In GlobalSoilMap—Basis of the Global Spatial Soil Information System; Arrounays, D., McKenzie, N., Hempel, J., Richer de Forges, A., McBratney, A.B., Eds.; CRC Press; Taylor & Francis Group: Boca Raton, FL, USA, 2014; pp. 181–184. [Google Scholar] [CrossRef]
- McBratney, A.; Mendonça-Santos, M.; Minasny, B. On digital soil mapping. Geoderma 2003, 117, 3–52. [Google Scholar] [CrossRef]
- Jenny, H. Factors of Soil Formation: A System of Quantitative Pedology, 1st ed.; McGraw-Hill: New York, NY, USA, 1941; p. 281. [Google Scholar]
- Keskin, H.; Grunwald, S. Regression kriging as a workhorse in the digital soil mapper’s toolbox. Geoderma 2018, 326, 22–41. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using deep learning for digital soil mapping. Soil 2019, 5, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Roudier, P.; Burge, O.R.; Richardson, S.J.; McCarthy, J.K.; Grealish, G.J. National scale 3D mapping of soil pH using a data augmentation approach. Remote Sens. 2020, 12, 2872. [Google Scholar] [CrossRef]
- Orton, T.; Pringle, M.; Bishop, T.; Menzies, N.; Dang, Y. Increment-averaged kriging for 3-D modelling and mapping soil properties: Combining machine learning and geostatistical methods. Geoderma 2020, 361, 114094. [Google Scholar] [CrossRef]
- Lark, R.M.; Bishop, T.F.A. Cokriging particle size fractions of the soil. Eur. J. Soil Sci. 2007, 58, 763–774. [Google Scholar] [CrossRef]
- Vanguelova, E.I.; Bonifacio, E.; De Vos, B.; Hoosbeek, M.R.; Berger, T.W.; Vesterdal, L.; Armolaitis, K.; Celi, L.; Dinca, L.; Kjønaas, O.J.; et al. Sources of errors and uncertainties in the assessment of forest soil carbon stocks at different scales–Review and recommendations. Environ. Monit. Assess. 2016, 188, 630. [Google Scholar] [CrossRef] [PubMed]
- Minasny, B.; Stockmann, U.; Hartemink, A.E.; McBratney, A.B. Digital Soil Morphometrics; Progress in Soil Science; Springer: Cham, Switzerland, 2016; Chapter Measuring and Modelling Soil Depth Functions; pp. 225–240. [Google Scholar] [CrossRef]
- Bishop, T.; McBratney, A.; Laslett, G. Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma 1999, 91, 27–45. [Google Scholar] [CrossRef]
- Malone, B.P.; McBratney, A.B.; Minasny, B.; Laslett, G.M. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 2009, 154, 138–152. [Google Scholar] [CrossRef]
- Dorji, T.; Odeh, I.O.; Field, D.J.; Baillie, I.C. Digital soil mapping of soil organic carbon stocks under different land use and land cover types in montane ecosystems, Eastern Himalayas. For. Ecol. Manag. 2014, 318, 91–102. [Google Scholar] [CrossRef]
- Odgers, N.P.; Libohova, Z.; Thompson, J.A. Equal-area spline functions applied to a legacy soil database to create weighted-means maps of soil organic carbon at a continental scale. Geoderma 2012, 189, 153–163. [Google Scholar] [CrossRef]
- Ma, Y.; Minasny, B.; McBratney, A.; Poggio, L.; Fajardo, M. Predicting soil properties in 3D: Should depth be a covariate? Geoderma 2021, 383, 114794. [Google Scholar] [CrossRef]
- Mishra, U.; Lal, R.; Slater, B.; Calhoun, F.; Liu, D.; Van Meirvenne, M. Predicting soil organic carbon stock using profile depth distribution functions and ordinary kriging. Soil Sci. Soc. Am. J. 2009, 73, 614–621. [Google Scholar] [CrossRef] [Green Version]
- Kempen, B.; Brus, D.J.; Stoorvogel, J.J. Three-dimensional mapping of soil organic matter content using soil type-specific depth functions. Geoderma 2011, 162, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Hengl, T.; Heuvelink, G.B.M.; Rossiter, D.G. About regression-kriging: From equations to case studies. Comput. Geosci. 2007, 33, 1301–1315. [Google Scholar] [CrossRef]
- Wellbrock, N.; Ahrends, B.; Bögelein, R.; Bolte, A.; Eickenscheidt, N.; Grüneberg, E.; König, N.; Schmitz, A.; Fleck, S.; Ziche, D. Status and Dynamics of Forests in Germany–Results of the National Forest Monitoring; Springer: Cham, Switzerland, 2019; Chapter Concept and Methodology of the National Forest Soil Inventory; pp. 1–28. [Google Scholar] [CrossRef] [Green Version]
- Russ, A. Regionalisierung des Wasser—und Kohlenstoffhaushalts für die Waldfläche Brandenburgs—Entwicklung von Regionalisierungsansätzen unter besonderer Berücksichtigung der forstlichen Standortskarte; Bodenökologie und Bodengenese, Selbstverlag Technische Universität: Berlin, Germany, 2015; Volume 44, p. 164. [Google Scholar] [CrossRef]
- GAFA. Handbuch Forstliche Analytik—Eine Loseblatt-Sammlung der Analysemethoden im Forstbereich; Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft: Bonn, Germany, 2014.
- Kopp, D.; Jäger, K.D.; Succow, M. Naturräumliche Grundlagen der Landnutzung; Akademie-Verlag: Berlin, Germany, 1982; p. 339. [Google Scholar]
- Kopp, D.; Schwanecke, W. Standörtlich-naturräumliche Grundlagen ökologiegerechter Forstwirtschaft; Deutscher Landwirtschaftsverlag: Berlin, Germany, 1994; p. 248. [Google Scholar]
- Russ, A.; Riek, W.; Wessolek, G. Entwicklung statistischer Vorhersagemodelle zur Identifizierung von Legendeneinheiten forstlicher Standortskarten–Beispiel Nordostdeutsches Tiefland. In Gefährdungen der Ökosystemdienstleistungen von Wäldern. Fachtagung vom 9. bis 10 Oktober 2014 in Göttingen; Beiträge aus der NW-FVA; Universitätsverlag Göttingen: Göttingen, Germany, 2016; Volume 14, pp. 133–146. [Google Scholar] [CrossRef]
- Meersmans, J.; De Ridder, F.; Canters, F.; De Baets, S.; Van Molle, M. A multiple regression approach to assess the spatial distribution of Soil Organic Carbon (SOC) at the regional scale (Flanders, Belgium). Geoderma 2008, 143, 1–13. [Google Scholar] [CrossRef]
- Hannappel, S.; Riek, W. Berechnung des Flurabstandes des oberflächennahen Grundwassers der Waldfläche Brandenburgs für hydrologisch typische Zeiträume. Hydrol. Und Wasserwirtsch. 2011, 55, 4–15. [Google Scholar]
- Riek, W.; Kallweit, R.; Russ, A. Analyse der Hauptkomponenten des Wärmehaushalts brandenburgischer Wälder auf der Grundlage von regionalen Klimaszenarien. Wald. Landschaftsforschung Und Naturschutz 2013, 13, 17–32. [Google Scholar]
- Ramann, E. Bodenkunde, 3rd ed.; Julius Springer: Berlin, Germany, 1911; p. 619. [Google Scholar]
- Keil, M.; Bock, M.; Esch, T.; Metz, A.; Nieland, S.; Pfitzner, A. CORINE Land Cover Aktualisierung 2006 für Deutschland; Deutsches Zentrum für Luft- und Raumfahrt: Oberpfaffenhofen, Germany, 2010; p. 55. [Google Scholar]
- Zevenbergen, L.W.; Thorne, C.R. Quantitative analysis of land surface topography. Earth Surf. Process. Landf. 1987, 12, 47–56. [Google Scholar] [CrossRef]
- Guisan, A.; Weiss, S.B.; Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecol. 1999, 143, 107–122. [Google Scholar] [CrossRef]
- Seibert, J.; Stendahl, J.; Sørensen, R. Topographical influences on soil properties in boreal forests. Geoderma 2007, 141, 139–148. [Google Scholar] [CrossRef]
- Yokoyama, R.; Michio, S.; Pike, R.J. Visualizing topography by openness: A new application of image processing to digital elevation models. Photogramm. Eng. Remote Sens. 2002, 68, 257–265. [Google Scholar]
- Böhner, J.; Antonić, O. Land-Surface Parameters Specific to Topo–Climatology; Geomorphometry—Concepts, Software, Applications; Developments in Soil Science; Hengl, T., Reuter, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 195–226. [Google Scholar] [CrossRef]
- Dozier, F.; Frew, J. Rapid caculation of terrain parameters for radiation modeling from digital elevation data. IEEE Trans. Geosci. Remote Sens. 1990, 28, 963–969. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates, 2nd ed.; Methuen: London, UK; New York, NY, USA, 1987; p. 435. [Google Scholar]
- Weiss, A.D. Topographic position and landforms analysis. In Proceedings of the ESRI International User Conference, San Diego, CA, USA, 26–30 June 2000. [Google Scholar]
- Riley, J.S.; DeGloria, S.D.; Elliot, R. A Terrain Ruggedness Index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Seibert, J.; McGlynn, B.L. A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resour. Res. 2007, 43, W04501. [Google Scholar] [CrossRef] [Green Version]
- Renard, K.; Foster, G.; Wessies, G.; McCool, D.; Yoder, D. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). In Agriculture Handbook; United States Department of Agriculture: Washington, DC, USA, 1996; Volume 703. [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [Google Scholar] [CrossRef]
- O’Callaghan, J.F.; Mark, D.M. The extraction of drainage networks from digital elevation data. Comput. Vision Graph. Image Process. 1984, 28, 323–344. [Google Scholar] [CrossRef]
- Muckell, J.; Andrade, M.; Franklin, W.R.; Cutler, B.; Inanc, M.; Xie, Z.; Tracy, D.M. Drainage network and watershed reconstruction on simplified terrain. In 17th Fall Workshop on Computational Geometry; IBM T.J. Watson Research Center: Hawthorne, NY, USA, 2007. [Google Scholar]
- Zirlewagen, D. Regionalisierung Bodenchemischer Eigenschaften in Topographisch Stark Gegliederten Waldlandschaften; Freiburger Forstliche Forschung Volume 19; Forstliche Versuchs- und Forschungsanstalt Baden-Württemberg: Freiburg im Breisgau, Germany, 2003; p. 154. [Google Scholar]
- Böhner, J.; Köthe, R. Bodenregionalisierung und Prozessmodellierung: Instrumente für den Bodenschutz. Petermanns Geogr. Mitteilungen 2003, 147, 72–82. [Google Scholar]
- Möller, M.; Volk, M.; Friedrich, K.; Lymburner, L. Placing soil-genesis and transport processes into a landscape context: A multiscale terrain-analysis approach. J. Plant Nutr. Soil Sci. 2008, 171, 419–430. [Google Scholar] [CrossRef]
- Grimm, R.; Behrens, T. Uncertainty analysis of sample locations within digital soil mapping approaches. Geoderma 2010, 155, 154–163. [Google Scholar] [CrossRef]
- Rubinfeld, D.L. Reference Manual on Scientific Evidence; The National Academies Press: Washington, DC, USA, 2011; Chapter Reference Guide on Multiple Regression; pp. 303–357. [Google Scholar] [CrossRef]
- Browne, M.W. Cross-Validation Methods. J. Math. Psychol. 2000, 44, 108–132. [Google Scholar] [CrossRef] [Green Version]
- Burman, P. A comparative study of ordinary cross-validation, v-fold cross-validation and the repeated learning-testing methods. Biometrika 1989, 76, 503–514. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.I.K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Zirlewagen, D.; von Wilpert, K. Regionalization of soil physical input variables for soil hydraulic pedotransfer functions. For. Ecol. Landsc. Res. Nat. Conserv. 2011, 12, 73–83. [Google Scholar]
- Arbeitsgruppe Boden. Bodenkundliche Kartieranleitung, 5th ed.; Schweizerbart’sche Verlagsbuchhandlung: Stuttgart, Germany, 2005; p. 437. [Google Scholar]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; Statistics in Practice; John Wiley & Sons, Ltd.: Chichester, UK, 2007; p. 315. [Google Scholar]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Backhaus, K.; Erichson, B.; Plinke, W.; Weiber, R. Multivariate Analysemethoden: Eine anwendungsorientierte Einführung, 13th ed.; Springer: Berlin, Germany, 2011; p. 583. [Google Scholar]
- Mojena, R. Hierarchical grouping methods and stopping rules: An evaluation. Comput. J. 1977, 20, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Blashfield, R.K.; Aldenderfer, M.S. Computer programs for performing iterative partitioning cluster analysis. Appl. Psychol. Meas. 1978, 2, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; The Wadsworth Statistics/Probability Series; Wadsworth: Belmont, CA, USA, 1984; p. 358. [Google Scholar]
- Kass, G.V. An exploratory technique for investigating large quantities of categorical data. J. R. Stat. Soc. Ser. C Appl. Stat. 1980, 29, 119–127. [Google Scholar] [CrossRef]
- Gini, C. Sulla Misura Della Concentrazione e Della Variabilità dei Caratteri. In Variabilità e Concentrazione; Memorie di Metodologia Statistica; Gini, C., Ed.; Dott. A. Giuffrè: Milano, Italy, 1939; Volume I, pp. 359–408, Reprint of: Atti del Instituto Veneto di Science, Lettere ed Arti, 1913–1914. Tomo LXXIII, Parte, II, page 1202–1248. [Google Scholar]
- Light, R.J.; Margolin, B.H. An analysis of variance for categorical data. J. Am. Stat. Assoc. 1971, 66, 534–544. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Mikesell, L.R.; Velbel, M.A. Soil characteristics related to weathering and pedogenesis across a geomorphic surface of uniform age in Michigan. Phys. Geogr. 2006, 27, 170–188. [Google Scholar] [CrossRef]
- Schaetzl, R.J.; Luehmann, M.D.; Rothstein, D. Pulses of podzolization: The relative importance of spring snowmelt, summer storms, and fall rains on Spodosol development. Soil Sci. Soc. Am. J. 2015, 79, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Oades, J.M. The retention of organic matter in soils. Biogeochemistry 1988, 5, 35–70. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J.A. On the temperature dependence of soil respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Curtin, D.; Beare, M.H.; Hernandez-Ramirez, G. Temperature and moisture effects on microbial biomass and soil organic matter mineralization. Soil Sci. Soc. Am. J. 2012, 76, 2055–2067. [Google Scholar] [CrossRef]
- Johnson, D.; Walker, R.; Glass, D.; Miller, W.; Murphy, J.; Stein, C. The effect of rock content on nutrients in a Sierra Nevada forest soil. Geoderma 2012, 173–174, 84–93. [Google Scholar] [CrossRef]
- Nielsen, D.R.; Wendroth, O. Spatial and Temporal Statistics: Sampling Field Soils and Their Vegetation; GeoEcology Textbook; Catena Verlag: Reiskirchen, Germany, 2003; p. 398. [Google Scholar]
- Zirlewagen, D.; von Wilpert, K. Upscaling of environmental information: Support of land-use management decisions by spatio-temporal regionalization approaches. Environ. Manag. 2010, 46, 878–893. [Google Scholar] [CrossRef]
- Lippstreu, L.; Brose, F.; Marcinek, J. Brandenburg. In Das Quartär Deutschlands; Benda, L., Ed.; Gebrüder Bornträger: Berlin, Germany, 1995; pp. 116–147. [Google Scholar]
- LGRB. Geologische Übersichtskarte des Landes Brandenburg 1:300,000; Landesamt für Geowissenschaften und Rohstoff Brandenburg in Zusammenarbeit mit Landesvermessungsamt Brandenburg; Landesvermessungsamt Brandenburg: Potsdam, Germany, 1997.
- Marquardt, D.W. An algorithm for least-squares estimation of on nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Milnik, A.; Heyde, M.; Schult, R.; Bormeister, H.J.; Helbig, K.; Köhler, J.; Römpler, W.; Schwartz, E.; Wagenknecht, E.; Weber, T. Verantwortung für den Wald—Die Geschichte der Forstwirtschaft in der Sowjetischen Besatzungszone und der DDR; Brandenburgisches Ministerium für Ernährung, Landwirtschaft und Forsten: Potsdam, Germany, 1998. [Google Scholar]
- Manjaiah, K.M.; Kumar, S.; Sachdev, M.S.; Sachdev, P.; Datta, S.C. Study of clay–organic complexes. Curr. Sci. 2010, 98, 915–921. [Google Scholar]
- Schöning, I.; Grüneberg, E.; Sierra, C.A.; Hessenmöller, D.; Schrumpf, M.; Weisser, W.W.; Schulze, E.D. Causes of variation in mineral soil C content and turnover in differntly managed beech dominated forests. Plant Soil 2013, 370, 625–639. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data—Principles and Practices, 2nd ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009; p. 183. [Google Scholar]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.Y.; Zhao, Y.; Horn, R. Soil wettability as affected by soil characteristics and land use. Pedosphere 2010, 20, 43–54. [Google Scholar] [CrossRef]
- Zushi, K. Spatial distribution of soil carbon and nitrogen storage and forest productivity in a watershed planted to Japanese cedar (Cryptomeria japonica D. Don). J. For. Res. 2006, 11, 351–358. [Google Scholar] [CrossRef]
- Baritz, R.; Zirlewagen, D.; Van Ranst, E. Multi-Source Inventory Methods for Quantifying Carbon Stocks and Stock Changes in European Forests—CarboInvent—Final Report to the EC: Methodological Standards to Detect Forest Soil Carbon Stocks and Stock Changes Related to Land Use Change and Forestry: Part II—Landscape Level; Joanneum Research: Graz, Austria, 2006. [Google Scholar]
- Bonfatti, B.R.; Hartemink, A.E.; Giasson, E.; Tornquist, C.G.; Adhikari, K. Digital mapping of soil carbon in a viticultural region of Southern Brazil. Geoderma 2016, 261, 204–221. [Google Scholar] [CrossRef]
- Nussbaum, M.; Papritz, A.; Baltensweiler, A.; Walthert, L. Estimating soil organic carbon stocks of Swiss forest soils by robust external-drift kriging. Geosci. Model Dev. 2014, 7, 1197–1210. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, N.J.; Ryan, P.J. Spatial prediction of soil properties using environmental correlation. Geoderma 1999, 89, 67–94. [Google Scholar] [CrossRef]
- Hoffmann, U.; Hoffmann, T.; Jurasinski, G.; Glatzel, S.; Kuhn, N. Assessing the spatial variability of soil organic carbon stocks in an alpine setting (Grindelwald, Swiss Alps). Geoderma 2014, 232–234, 270–283. [Google Scholar] [CrossRef]
- Pouladi, N.; Møller, A.B.; Tabatabai, S.; Greve, M.H. Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging. Geoderma 2019, 342, 85–92. [Google Scholar] [CrossRef]
Topographic Indices Derived by Evaluating the 3 × 3 Altitude Submatrix or Elevations Within Search Radii | |
---|---|
slope [50] | |
north, east | northness and eastness derived from cosine and sine transformation [51] of aspect [50] |
d | downslope index [52] |
C, Cplan, Cprof | isotropic, planform, and profile curvature [50] |
negative openness (radii 100, 250, 500 m in [53]) | |
S | sky-view factor [54] |
T | terrain configuration factor [55] |
wte | wind exposition [54] |
direct solar beam irradiance [56] | |
TPI | topographic position index (radii 25, 125, 500 m in [57]) |
TRI | terrain ruggedness index (radii 50, 300 m in [58]) |
Topographic Indices Calculated at the Catchment Scale | |
AC | catchment area [59] |
C | average slope [50] within catchment |
L, S, LS | slope length, slope steepness, and topographic factors from the Revised Universal Soil Loss Equation (RUSLE in [60]) |
TWI | topographic wetness index [61] |
SPI | stream power index [62] |
Terrain Attributes Derived from Drainage (DN) and Ridge Networks (RL) [63,64] at Different Spatial Scales (Large Scale , Small Scale ) | |
, , | uphill slope angle (to ridge network), downhill slope angle (to drainage network), and total slope angle (slope from ridgeline to drainage network) [65] |
sRL, sDN, stot, | horizontal distances to ridgeline and drainage networks and total slope length (distance from ridgeline to drainage network) [65] |
zDN | elevation above the thalweg [66] |
RSP | relative slope position [65] |
MBI | mass balance index [67] |
Submodel for Terrestrial Soils (zGW > 200 cm) | ||||||||
---|---|---|---|---|---|---|---|---|
120,171.553 | 23,687.729 | 5.073 | 0.000 | 73,589.574 | 166,753.532 | |||
RSP(s) | 21,833.983 | 3433.882 | 0.316 | 6.358 | 0.000 | 15,081.245 | 28,586.720 | 0.489 |
z | 56.971 | 6.384 | 0.354 | 8.923 | 0.000 | 44.416 | 69.526 | 0.768 |
−83.837 | 11.125 | −0.267 | −7.536 | 0.000 | −105.714 | −61.960 | 0.962 | |
C | 3523.879 | 351.225 | 0.452 | 10.033 | 0.000 | 2833.195 | 4214.564 | 0.596 |
SPI | −724.272 | 102.116 | −0.281 | −7.093 | 0.000 | −925.084 | −523.460 | 0.771 |
Pwin | 350.321 | 61.723 | 0.207 | 5.676 | 0.000 | 228.942 | 471.700 | 0.907 |
sDN(s) | −157.999 | 32.076 | −0.247 | −4.926 | 0.000 | −221.076 | −94.922 | 0.482 |
CF | −986.206 | 229.538 | −0.157 | −4.296 | 0.000 | −1437.593 | −534.819 | 0.906 |
east× | 1385.928 | 330.355 | 0.165 | 4.195 | 0.000 | 736.285 | 2035.571 | 0.781 |
pdeciduous | −65.345 | 21.793 | −0.126 | −2.999 | 0.003 | −108.200 | −22.490 | 0.685 |
seriesI | 4550.659 | 2083.234 | 0.092 | 2.184 | 0.030 | 453.973 | 8647.344 | 0.674 |
Submodel for Soil with a Near-Surface Groundwater Table (zGW ≤ 300 cm) | ||||||||
467,508.956 | 46,026.281 | 10.157 | 0.000 | 376,026.739 | 558,991.173 | |||
−74,129.674 | 9063.024 | −0.613 | −8.179 | 0.000 | −92,143.415 | −56,115.933 | 0.957 | |
AC | 0.718 | 0.158 | 0.342 | 4.541 | 0.000 | 0.404 | 1.033 | 0.950 |
z | 68.062 | 33.571 | 0.154 | 2.027 | 0.046 | 1.336 | 134.789 | 0.937 |
MBI(l) | −356,426.489 | 196,452.978 | −0.135 | −1.814 | 0.073 | −746,898.055 | 34,045.078 | 0.975 |
Layer | N | J | p | RMSE | CCC | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
floor * | 424 | 18 | 0.500 | 0.478 | 1.2 | 1.7 | 22.5 | 0.00 | 0.50 (±0.01) | 1.21 (±0.01) | 0.51 (±0.01) | 0.67 (±0.01) |
0–5 cm | 424 | 18 | 0.296 | 0.265 | 16.0 | 18.6 | 9.5 | 0.00 | 0.26 (±0.02) | 16.48 (±0.35) | 0.37 (±0.02) | 0.48 (±0.02) |
5–10 cm | 424 | 18 | 0.487 | 0.464 | 9.9 | 13.8 | 21.4 | 0.00 | 0.46 (±0.02) | 10.10 (±0.18) | 0.42 (±0.01) | 0.61 (±0.01) |
10–30 cm | 424 | 18 | 0.554 | 0.534 | 4.9 | 7.3 | 27.9 | 0.00 | 0.53 (±0.02) | 5.05 (±0.08) | 0.45 (±0.01) | 0.65 (±0.01) |
30–60 cm | 424 | 18 | 0.286 | 0.254 | 2.9 | 3.4 | 9.0 | 0.00 | 0.28 (±0.01) | 2.91 (±0.02) | 0.26 (±0.01) | 0.42 (±0.01) |
60–90 cm | 424 | 18 | 0.229 | 0.194 | 2.9 | 3.2 | 6.7 | 0.00 | 0.18 (±0.03) | 2.92 (±0.03) | 0.10 (±0.01) | 0.19 (±0.02) |
0–90 cm | 424 | 18 | 0.638 | 0.622 | 2.6 | 4.3 | 39.7 | 0.00 | 0.59 (±0.03) | 2.76 (±0.08) | 0.54 (±0.02) | 0.72 (±0.02) |
mineral | 2120 | 19 | 0.719 | 0.717 | 12.7 | 24.0 | 339.9 | 0.00 | 0.70 (±0.01) | 9.12 (±0.17) | 0.75 (±0.01) | 0.83 (±0.01) |
Carbon Storage in NFSI Depth Increments (109 kg) | Sums (109 kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Floor | 0–5 cm | 5–10 cm | 10–30 cm | 30–60 cm | 60–90 cm | 0–90 cm | Solum | ||
Hydro. | (1302 km2) | 6.073 | 3.576 | 2.087 | 4.084 | 2.321 | 1.075 | 13.143 | 19.216 |
Terr. | (9139 km2) | 26.373 | 13.921 | 7.971 | 15.197 | 8.668 | 4.078 | 49.834 | 76.207 |
Total | (10,441 km2) | 32.447 | 17.497 | 10.058 | 19.281 | 10.988 | 5.153 | 62.977 | 95.424 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russ, A.; Riek, W.; Wessolek, G. Three-Dimensional Mapping of Forest Soil Carbon Stocks Using SCORPAN Modelling and Relative Depth Gradients in the North-Eastern Lowlands of Germany. Appl. Sci. 2021, 11, 714. https://doi.org/10.3390/app11020714
Russ A, Riek W, Wessolek G. Three-Dimensional Mapping of Forest Soil Carbon Stocks Using SCORPAN Modelling and Relative Depth Gradients in the North-Eastern Lowlands of Germany. Applied Sciences. 2021; 11(2):714. https://doi.org/10.3390/app11020714
Chicago/Turabian StyleRuss, Alexander, Winfried Riek, and Gerd Wessolek. 2021. "Three-Dimensional Mapping of Forest Soil Carbon Stocks Using SCORPAN Modelling and Relative Depth Gradients in the North-Eastern Lowlands of Germany" Applied Sciences 11, no. 2: 714. https://doi.org/10.3390/app11020714
APA StyleRuss, A., Riek, W., & Wessolek, G. (2021). Three-Dimensional Mapping of Forest Soil Carbon Stocks Using SCORPAN Modelling and Relative Depth Gradients in the North-Eastern Lowlands of Germany. Applied Sciences, 11(2), 714. https://doi.org/10.3390/app11020714