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Abstract: Electron pumping through energy-gapped systems is restricted for vanishing local density
of states at the Fermi level. In this paper, we propose a topological Su–Schrieffer–Heeger (SSH) chain
between unbiased leads as an effective electron pump. We analyze the electron transport properties
of topologically trivial and nontrivial systems in the presence of external time-dependent forces in
the form of one-Gaussian or two-Gaussian perturbations (train impulses). We have found that the
topologically trivial chain stands for much better charge pump than other normal or nontrivial chains.
It is important that, during the perturbation, electrons are pumped through the mid-gap temporary
states or through the induced sidebands states outside the energy gap. We also analyze the local
density of states dynamics during the quench transition between different topological phases of the
SSH chain. It turns out that after the quench, the edge topological states migrate through other sites
and can temporarily exist in a topologically trivial part of the system. The tight-binding Hamiltonian
and the evolution operator technique are used in our calculations.

Keywords: quantum dots; charge pumping; topology; atomic chains

1. Introduction

Atomic wires are the thinnest electrical conductors, and they can be used in plenty
of applications [1–4]. Many new quantum effects were observed in such systems as spin-
charge separation [5], charge-density waves [6] or Majorana topological states [7,8]. Non-
equilibrium one-dimensional (1D) systems reveal much richer physics and in the presence
of time-dependent perturbations the turnstile effect, photon-assisted tunneling, or coherent
destruction of tunneling [9–14] can appear. Dynamical phenomena in 1D structures can
also lead to novel solid-state phases such as the Floquet topological insulators [15], time
crystals [16–18] or transient crystals [19].

For a quantum system between unbiased leads the electron current does not flow
in the stationary case. However, in the presence of non-equilibrium phenomena (e.g.,
time-dependent forces or perturbations) electrons can be transferred between leads even
without the source-drain voltage which leads to the electron pumping effect. This effect
has been the subject of many theoretical and experimental works [18,20–25]—it was ob-
served in single and double quantum dot (QD) systems for periodical changes of two or
more device-control parameters [20,26] which were responsible for the left-right spatial
symmetry breaking of the whole system. Please note that in the presence of the spatial
symmetry the probability of electron tunneling from the central system to the left or to the
right lead is exactly the same. The pumping current can be also generated for breaking
the time-reversal symmetry in the system e.g., by adding the second harmonic to the
driving potential or in the presence of time-dependent dipole-like forces [25]. In particular,
single-parametric pumping or train-impulse pumps are especially interesting due to their
potential applications in nanoelectronics [27–29]. For larger one-dimensional systems
electron pumping effects were studied for different time-periodic perturbations (delta-like,
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harmonic or pulsed) [30–34], where the net electron current flows between unbiased leads.
From the local electronic properties point of view this current can appear if the system
is characterized by finite spectral density function (Local Density of States, LDOS) near
the Fermi energy. In such a case an electron can flow from the lead to the unoccupied
LDOS state of the central system and then pass to the second lead. On the other hand,
the presence of an energy gap in the structure of the central system strongly restricts the
pumping effect. However, this conclusion can be invalid for the new state of matter i.e., for
topological insulators where energy gaps appear inside the system. These structures are
also characterized by collective edge states (topological states) at the system boundaries.
Please note that the quantization of particle transport in such structures were studied
for Thouless pumping [35], Moire pumping [36], for quantum spin-Hall insulator [37],
for twisted bilayer graphene [38], coupled fermionic chains [39], nonadiabatic Floquet
structures [40] or others. Topological phases in one-dimensional chains can be obtained
within a Su–Schrieffer–Heeger (SSH) model [41–43]. The model due its CT symmetry
possesses two different topological phases: the trivial phase with an energy gap along the
whole system, and the nontrivial one for which there exist spectrally isolated mid-gap states
localized at the system boundaries which are protected against local perturbations [41,42,44].

In this paper, we explore the possibility of electron pumping in the SSH chain under a
time-periodic driving in the form of external one-Gaussian or two-Gaussian perturbations
moving along the system (so called the train impulse) which in the nonadiabatic regime
can generate the pumping current between unbiased leads. Although plenty of studies
in the topic of electron pumping have been performed for single or double parameter
time-dependent potentials there is a lack of information in the literature about the electron
pumping through topological systems affected by the train-impulse perturbations. Such
a train-like impulse can drug electrons between unbiased electrodes in the same or also
in the opposite direction in comparison with the impulse propagation way which makes
these structures especially interesting. Thus, in this paper we consider trivial and nontrivial
SSH chains and concentrate on the time dynamics of the site occupancies and the electron
currents under the influence of external train perturbations. It allows us to find the net
electron charge which is transferred between unbiased leads. In our studies we also analyze
the spectral density dynamics during the external perturbation spreading along the system
and observe time evolution of the system quasiparticles. From these studies we can find
how electrons are transfer through various energy-gapped 1D systems. Moreover, we con-
sider dynamical transition processes (sudden quenches) between two different topological
phases of the SSH chain [45–47] and observe mid-gap topological states migration between
the system sites. We expect that topological states do not disappear immediately after the
quench, but they survive in nontopological systems for a longer time and can penetrate
even middle sites of the normal or trivial chain.

It is worth noting that new experimental techniques allow one to investigate quench
dynamics and different geometric configurations of such atomic systems within the scan-
ning tunneling microscope methods. Moreover, train-like perturbations can be realized
experimentally in many one-dimensional systems e.g., for a linear series of QDs with
fully controlled external electrodes, for atomic chains in the mechanically controlled break
junction geometry with periodical changes of the electrode position. Alternatively, one can
use fully controlled 1D optical lattices or atomic chains epitaxially grown on a surface and
change the atom-atom couplings using a piezoelectric substrate or laser impulses.

The paper is organized as follows. The theoretical model and the calculation methods
are described in Section 2. In Section 3, the main results of the paper are discussed for
electron pumping through the SSH chain. In Section 4 the spectral density dynamics for
train impulses and quenches is analyzed. The last Section 5 gives a short summary.

2. Theoretical Description

The physical model consists of the SSH chain composed of N sites that may be coupled
to the electron reservoir (substrate electrode) underneath or to the left and right leads via
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the edge sites as shown in Figure 1. This model corresponds to atomic chains on vicinal
surfaces (with the insulating or conducting substrate below the chain) or to the linear series
of QDs with fully controlled system parameters.

Figure 1. Model of atomic SSH chain composed of N sites on the insulating surface (which can stand for a gate electrode).
The nearest-neighbor couplings between sites are denoted by V and W and the couplings with the left and right electrodes
represent ΓL/R symbols.

The SSH chain is characterized by the two-site primitive cell with two different cou-
plings between sites inside each cell and between cells—V and W parameters, respectively.
The chain for V = W represents nontopological normal chain without an energy gap. For
the intracell couplings greater than intercell couplings we get a topological SSH chain in the
nontrivial phase i.e., with topological mid-gap states at both chain ends (SSH1), otherwise
we obtain a chain in the trivial topological phase with an energy gap but without the edge
states (SSH0).

The Hamiltonian describing the SSH chain composed of N sites coupled with the
electrodes can be written in terms of the second quantization notation as follows:

H =
N

∑
i=1

εia†
i ai +

N

∑
i=1

∑
~ki

(ε~ki
a†
~ki

a~ki
+ V~ki ,i

a†
~ki

ai) +
N

∑
i,j

Vi,j(t)a†
i aj + H.c. (1)

Here a†
i , ai are creation/annihilation operators respectively at i-th site, εi is the on-site

energy level and ε~k corresponds to possible electron energies in the leads. V~k,i stands for
the coupling between electrodes and corresponding chain atom and Vi,j is responsible for
the couplings between chain sites (note that Vi,j = V within the primitive cell and Vi,j = W
between the neighboring cells). These couplings can vary in time during the train-impulse
propagation or sudden quenches. For V~k,i = 0 except for i = 1 and i = N (i.e., for nonzero
V~k,L and V~k,R elements) the model corresponds to that from Figure 1.

In our paper time dynamics of the system is calculated within the interaction picture
using the evolution operator method for which the following equation of motion can be
written (h̄ = 1):

i
∂

∂t
U(t, t0) = V̂(t)U(t, t0) , (2)

where V̂(t) = U0(t, t0)V(t)U†(t, t0), U0(t, t0) = T exp
(

i
∫ t

t0
dt′H0(t′)

)
and T is the time

ordering operator. Here V(t) is the coupling part of the total Hamiltonian and H0(t)
represents the on-site energy part, H0 = ∑α εαa†

αaα. The physical properties of the system
are expressed by the evolution operator matrix elements obtained from Equation (2). The
local time-dependent charge occupancies, ni(t), can be found from the relation [48,49]:

ni(t) =
N

∑
j=1

nj(t0)|Ui,j(t, t0)|2 + ∑
j,~kj

n~kj
(t0)|Ui,~kj

(t, t0)|2 , (3)

where ni(t0) represents the initial filling of the corresponding single-particle state. As
we are not interested in the transient effects, which appear only for small t (t ≥ t0), we
assume empty initial occupancies of all chain sites. The evolution operator elements, which
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are necessary to obtain the occupancies, satisfy the following set of integro-differential
equations (t0 = 0 is assumed):

i
∂Ui,~kj

(t)

∂t
= ∑

i′
Vii′(t)e

i(εi′−εi)tUi′ ,~kj
(t)−Vi~kj

(t)e
i(εi−ε~kj

)t
(4)

− |Vi~kj
(t)|2

∫ t

0
dt′
∫

dεDj(ε)eiε(t−t′)eiεi(t−t′)Ui,~kj
(t′) ,

where Dj(ε) is the j-th lead’s spectral density function.
Assuming the wide-band approximation which is justified for flat leads DOS or

in the case when the lead’s DOS varies slowly in the vicinity of the central system
electron energies, the effective chain-electrode coupling can be expressed by Γi(ε) =
2π ∑~k |Vi~k|

2δ(ε− ε~k) = Γi, which is energy independent. Within this approach Equation (4)
for the left electrode takes the form:

dUi,kL(t)
dt

= −i ∑
i′

Vii′(t)e
i(εi′−εi)tUi′ ,~kL

(t)− iV1,~kL(t)e
i(ε1−ε~kL) t − ΓL

2
Ui,~kL(t) , (5)

and similar for the right lead.
The current flowing from the left electrode is obtained from the time derivative of the

total number of electrons in this reservoir:

jL(t) = −e
d
dt ∑

~kL

n~kL
(t) , (6)

where the occupancies n~kL
(t) can be expressed similarly to Equation (3) by the correspond-

ing evolution operator matrix elements. In this case, the spectral density function at each
chain site for the zero temperature satisfies the relation:

ρi(ε, t) = ∑
α

Dα(E)|Ui,α(ε, t)|2 , (7)

where Ui,α elements are calculated numerically from Equation (4) or Equation (5).
In this manuscript we use the unit of energy ΓL = Γ ≡ 1, the time unit is h̄/Γ, and the

current is expressed in the units of eΓ/h̄. Thus, for Γ = 1 meV the units of time and current
are 0.66 ps and 0.25µA, respectively. Please note that the reference energy point is the left
electrode Fermi energy, EF = 0.

3. Electron Pumping through SSH Chains

Topological chains seem to be very poor candidates for an effective quantum pump
due to their electronic structure i.e., energy gap at the Fermi level. However, for quan-
tum systems which are suddenly quenched the spectral density function at each site
changes/evolves and it takes some time for the system to obtain its new equilibrium state.
For a system with strong asymmetry in its LDOS this non-equilibrium processes can lead to
the pumping effect between unbiased leads. Here we propose a 1D topological chain as an
electron pump where the electron current direction can be controlled by means of the gate
voltage potential. In such systems a gate electrode can be provided by external auxiliary
electrodes or the substrate underneath the atomic chain. To avoid the electron leakage to
the substrate we consider the chain on the insulating surface with two electron reservoirs
at both chain ends (~k1 = ~kL and~kN = ~kR). It is assumed that the external perturbation
applied to the chain does not change the couplings homogeneously but there is a kind of the
wire inertia which introduces the phase shift between the couplings (depending on the site
position in the chain). In our investigations we consider the one-Gaussian or two-Gaussian
perturbations in the form of a train-impulse spreading through the chain, see Figure 2,
upper panels, where we show time-dependent perturbations, f0, fi and fN which are
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related to the couplings, V~kL, Vi and V~kR , respectively and Vi(t) = Vi fi(t). The analytical

relations for these perturbations can be written in the following form f j(t) = 1 + exp
(

t̃2

σ

)
for the one-Gaussian pulse and f j(t) = 1 + exp

(
t̃2

σ

)
− exp

(
[t̃−t1]

2

σ

)
for the two-Gaussian

perturbation, where t̃ = t − (t00 + jtx) and j = 0, 1, 2, · · · , N. Here t00 stands for the
time for the first Gaussian maximum, tx is responsible for the time shift of the external
perturbation between the nearest-neighbor couplings (for tx = 0 all couplings change
simultaneously in time in the same way), t1 stands for the time shift between the Gaussian
functions, and σ corresponds to the half-width of the Gaussian signal. Such train pulses
locally modify the site-site couplings and can change the system topology (depending
on the coupling differences between chain sites). This perturbation concerns only small
part of the whole chain, but it has a huge impact on the electron current flowing through
the system.
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Figure 2. One-Gaussian (left panel) and two-Gaussian (right panel) perturbations of the time-
dependent couplings: f0 (between the left electrode and first wire site, red lines), fi (between i-th and
(i + 1)-th sites, broken curves) and fN (between the last chain site and the right electrode, back solid
curves)—upper panels. Charge occupation of the first wire site (middle panels) and time-dependent
current flowing from the left electrode (bottom panels) for the SSH chain in the trivial phase (yellow
lines, V = 4, W = 1, SSH0) and for nontrivial phase (violet lines, V = 1, W = 4, SSH1). The other
parameters are: ε0 = 3, tx = 3, σ = 10, VL = VR = 4, t00 = 400, t1 = 4, N = 8.

The time-dependent occupancies are obtained from Equation (3) and the current
flowing through the system from Equation (6), which in the wide-band approximation we
calculate from the relation:

jL(t) = −ΓL f 2
0 (t)n1(t)− 2Im

{
∑
~kL

n~kL(0)V~kL f0(t)ei(ε~kL−ε0)tU1,~kL(t)

}
, (8)
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where the evolution operator matrix elements U1,~kL are obtained from Equation (5).
In the beginning in Figure 2 we analyze the time-dependent electron occupations

(middle panels) and the currents flowing from the left electrode (bottom panels) for the SSH
topological chain in the trivial phase (SSH0, V = 4, W = 1, yellow curves) and nontrivial
phase (SSH1, V = 1, W = 4, violet curves) for ε0 = 3. Before the train impulse starts (at
t ' 390) the system is in its equilibrium state – the occupancies do not change in time and
the currents do not flow between electrodes. The structure of LDOS is symmetrical with
respect to ε0 and in the first case (SSH0 chain) there is an energy gap around the Fermi
energy, thus the electron occupancy is almost 0.5 (middle panels) even for ε0 = 3. For the
one-Gaussian perturbation, in the first stage, the chain-lead coupling strength increases and
some charge from the chain leaks to the lead and the chain occupation locally decreases.
This is also the reason why in this case the current is negative (it flows from the chain to the
left electrode). In the second stage of this train perturbation the couplings between atomic
sites inside the chain increase and the lower sideband LDOS states move deeper below
the Fermi energy, thus the occupancy locally increases, and the current is positive. On the
other hand, in the presence of this perturbation, for the chain with topological states at
both edges (nontrivial phase) the empty LDOS states spread below the Fermi level and
the occupancy of the chain site increases rapidly (the current flows from the left electrode
to the chain). Please note that the perturbation (train impulse) goes through the chain
up to t = 420 units of time but the occupancies and the currents tend very fast to their
equilibrium values.

The situation changes for the two-Gaussian perturbation (right panels). In this case,
charge oscillations do not vanish rapidly, but they are visible also for larger t, i.e., even
for times for which the perturbation has passed through the system. The reason for such
long-time oscillations is very low value of the two-Gaussian perturbation for a short period
of time, f (t), which leads to almost vanishing site-site couplings in the system. Thus, the
chain sites are almost decoupled for a moment (like in the atomic limit) and then the system
needs much more time to reach the equilibrium state. Please note that after and before
the perturbation, the occupancies are exactly the same and from the careful inspection of
the currents flowing from the left electrode one can find the total charge pumped through
the chain. For the SSH1 chain and two-Gaussian impulse it is evident that most of the
violet curve is negative, thus one expects the net pumping charge in the system. For the
one-Gaussian impulse (left bottom panel) the currents for SSH0 and SSH1 chains oscillate
around the zero value, but they are asymmetrical and more detailed study is required to
classify these systems as electron pumps.

The total charge pumped through the chain is obtained by integrating the time-
dependent currents, NL/R =

∫
jL/R(t)dt, where in our system the condition NL = −NR

is always satisfied. Here, positive values of NL/R correspond to electrons flowing from
the electrode to the chain. In Figure 3 the pumped charge from the left lead is analyzed
as a function of ε0 (which corresponds to the gate voltage) for the one-Gaussian (upper
panel) and two-Gaussian perturbations (bottom panel) for both SSH0 (yellow curves) and
SSH1 (violet curves) chains. As one can see for symmetrical LDOS with respect to the
Fermi energy (ε0 = 0) the charge does not flow through the chain, independently on the
perturbation shape and topological phase of the chain. For ε0 6= 0 the shape of the train
impulse spreading through the chain plays a crucial role in the electron pumping effect in
topological systems. For the one-Gaussian perturbation the couplings between sites locally
increase leading to smaller difference between Vi parameters. In this case, the energy gap is
not closed. It is the reason that electrons do not flow through the SSH0 chain for ε0 smaller
than the energy gap width (here the gap appears for |ε− ε0| ≤ 3, cf. the inset in Figure 3,
bottom panel). Note that also for the chain in the nontrivial phase the pumping effect does
not occur for these values of ε0 although there is a topological state at the first chain site
(nonzero LDOS at the Fermi level, see the inset, violet curve). In this case, electrons which
flow out from the electrode cannot be transferred through the middle part of the chain
due to the energy gap at these middle sites. It means that the zero-energy edge states do
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not play a main role in the electron pumping through 1D systems—this problem will be
discussed in more details in the next section.
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Figure 3. Charge pumped through the 8-atom SSH chain as a function of ε0 for tx = 3. The
upper (lower) panel corresponds to the one-Gaussian (two-Gaussian) perturbation. The broken line
corresponds to the normal chain with V = 1. The other parameters are the same as in Figure 2. The
inset in the bottom panel shows the local DOS at the first site of the SSH chain in the trivial (SSH0)
and nontrivial (SSH1) phases.

For larger ε0 (beyond the energy gap) electrons are pumped in the system. In our
case for ε0 > 3 the bottom sideband peaks which are below the Fermi level (they are
occupied) change their positions in the presence of the one-Gaussian perturbation, and
thus the electron charge leaks out of the chain (the current is negative). Next, for larger
ε0 (ε0 ' 4.7) the bottom LDOS sideband is symmetrical with respect to the Fermi energy
and the current does not flow through the system (similarly as for ε0 = 0). The second
upper LDOS sideband lies too far from the Fermi level and does not influence the current.
For ε0 > 4.5 there are more LDOS peaks above the Fermi level and in the presence of the
perturbation they move below the Fermi energy. In that case electrons from the electrode
occupy these empty LDOS states and the current is positive. For larger and larger ε0 there
are no electron states near the Fermi level and the net charge cannot be pumped through
the system. Note that for the nontrivial chain (SSH1, violet curve upper panel) and the
one-Gaussian impulse the pumping current almost does not flow through the system which
is a consequence of relatively low LDOS in the upper and lower sidebands (cf. the violet
curve in the inset), and because the sidebands are responsible for the pumping current this
effect is marginal in the SSH1 chain. Thus, the shape of the pumping current as a function
of the gate voltage allows us to distinguish between the trivial and nontrivial phases of the
topological system.

In Figure 3 the results obtained for the SSH0 and SSH1 chains are compared also
with the normal chain of the same length (black broken curve, upper panel). There are
crucial differences between topological and normal systems. First, for the normal chain
the pumping current starts to flow for ε0 > 0 as there is no energy gap in the system
and even small asymmetry in its energetic structure leads to the electron pumping. The
maximal pumping current is observed for such ε0 for which the bottom of chain energy
band corresponds to the Fermi energy (here it is for ε0 = 2). For larger ε0 the pumping
current vanishes due to the lack of states at the Fermi level. It is also important that for the
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normal chain the pumping current is always positive (for ε0 > 0) whereas in the topological
chains one can control the direction of the current slightly tuning the gate voltage of the system.

The situation changes for the two-Gaussian perturbation (bottom panel) which mod-
ulates the coupling strengths along the chain in such a way that in the first stage the
couplings increase but then they decrease below their initial values. It leads to smaller
difference between the neighboring couplings in the chain which almost closes the energy
gap at the Fermi level. Thus, electrons can flow from the electrode to the chain (like in
the normal chain) even for small ε0. However, in the second stage of the perturbation
the couplings tend to zero and these electrons cannot back to the previous sites (they are
pushed toward the second electrode). In this case, the pumping current is always positive
and for larger and larger ε0 it vanishes. Moreover, the system in the trivial phase, SSH0,
more effectively pumps electrons through the chain due to its unique energetic structure
which will be analyzed in the next section. Please note that the pumping current curves are
not very smooth because they reflect the peaked structure of the sidebands (see the inset
figure) which for smaller couplings in the two-Gaussian mode tends to atomic limit and
the peaks are much more evident.

4. Spectral Density Dynamics

To explain the nature of the pumping process in topological chains in more details
we must study time-dependent LDOS along the chain during the perturbations. Please
note that within the evolution operator method which we use in our calculations one can
analyze simultaneously the occupancies, currents and time-dependent LDOS structures.
Detailed analysis of the spectral density dynamics during the pumping process or sudden
quenches allows one to observe time evolution of the system quasiparticles at a given site
as well as their time-migration along the system or between chain sites.

4.1. Train Impulses

Here, we are going to explain more precisely the electron transfer process through the
energy-gapped structure between unbiased leads. Thus, in Figure 4 we show the spectral
density functions related to four sites of the SSH0 chain during the propagation of the train
impulse (one-Gaussian perturbation, panel a, or two-Gaussian impulse, panel b). As one
can see the chain is characterized by the energy gap at the Fermi level, independent on
the site number (the total chain length is N = 8). The perturbation starts at t = 400 and it
leads to wider LDOS - the sidebands are shoved outside the Fermi energy due to larger
values of the coupling parameters. After some time, all LDOS peaks return to their initial
positions and the induced sideband structure follows the perturbation. When the train
impulse reaches the edge site the system evolves to its previous equilibrium state. In this
case, electrons are transferred through the LDOS sidebands which are outside the energy
gap of the chain.
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Figure 4. LDOS time evolution at i = 1, 3, 5 and 8 sites of the SSH trivial chain [V = 4, W = 1, panels
(a,b)] and nontrivial chain [V = 1, W = 4, panel (c)] composed of N = 8 sites. Panel (a) represents
the system disturbed by the one-Gaussian perturbation, panels (b,c) correspond to the two-Gaussian
impulse, the same as in Figure 2.

The situation changes for the two-Gaussian perturbation (panel b) as now some site-
site couplings decrease in time and at the same time some of them increase. It leads to
the induced sidebands outside the energy gap (like in the one-Gaussian impulse) but also



Appl. Sci. 2021, 11, 772 10 of 14

dynamical nonzero LDOS structure in the energy gap region is observed. Thus, for this
perturbation electrons can be pumped through these temporary mid-gap states. For the
nontrivial topological chain, SSH1, the LDOS dynamics during the two-Gaussian impulse
is analyzed in panel c. In this case, the sidebands outside the energy gap are slightly visible
and the main pumping process is realized only inside the energy gap region. Thus, one
expects lower values of the net pumping current in comparison with the trivial chain, as
one can see in Figure 3. The inside structure of LDOS during the perturbation is formed
from the mid-gap topological state localized at the first site—this state oscillates in time and
we observe a periodic emission of this state to other chain sites. These induced states also
follow the train-impulse propagation along the chain. Please note that sudden local change
of the site-site couplings disturbs both topological states related to the first and the last
chain sites for a moment (the difference between the nearest-neighbor couplings decreases
rapidly which influences the chain periodicity) but after some time the mid-gap states
are rebuilt again. It is also interesting that for the two-Gaussian pulse both topological
states have very high intensity for short period of time. This results from the fact that for a
moment the coupling between the first (last) chain site and its neighboring site decreases
and the energetic structure of LDOS tends to the atomic limit in this case.

From the detailed studies of time-dependent LDOS characteristics we have found that
electrons are transferred through the mid-gap temporary states in nontrivial topological
chains or through the induced sidebands outside the energy gap region in trivial chains.
The pumped current direction depends only on the relative position of the LDOS peaks
and the leads Fermi energy, cf. Figure 3. We have also checked that the spectral density
dynamics of the SSH chain coupled with a noninsulating surface underneath does not
reveal significant differences. In that case the chain-substrate coupling is responsible for
the half-width of the spectral density peaks and for larger couplings these LDOS peaks are
wider and smoother. It is important from the practical point of view, because it opens more
perspectives for experimental studies of such structures.

4.2. Quench Dynamics in SSH Chains

Topological chains which are characterized by an energy gap along the system can
transfer electrons through the induced mid-gap states as shown in the previous section.
This effect can be observed only for non-equilibrium processes such as in the presence of a
train impulse moving along the chain. Alternatively, after a sudden change of the system
parameters (so called the quantum quench) the system needs some time to reach its steady
state which opens a new possibility for coexistence of both trivial and nontrivial phases
simultaneously in the system. Thus, it is desirable to analyze the mid-gap topological
states dynamics between SSH1 and SSH0 (or normal) chains, which takes place not just for
a while (as during the train impulse) but which lasts for a long time after the quench.

Thus, in Figure 5 we analyze a segment of energy-dependent LDOS near the Fermi
energy (at sites from i = 1 to i = 10) as a function of time for topological chain of the
length N = 20. At a given time (t = 400) the quantum quench switches topological phase
from nontrivial to the trivial one (panel a) or to the normal chain (panel b) and we can
analyze the mid-gap state dynamics along the chain. As one can see before the transition
the system is characterized by wide topological states at the edge sites (i = 1, and the same
at i = 20) and the energy gap in all middle sites (panels a and b). For very large time after
the quench, we can notice that the system reaches its steady state i.e., trivial topological
state with energy-gapped LDOS (panel a) or normal nontopological chain with no energy
gap (panel b).
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Figure 5. LDOS time evolution at first 10 sites in the topologically nontrivial chain, SSH1 (V = 0.5, W = 2) quenched to the
trivial chain SSH0 [V = 2, W = 0.5, panel (a)] or to the normal chain [V = W = 2, panel (b)] at t = 400. The chain length is
N = 20 and the on-site energies ε0 = 0.

The most interesting physics happens just after the quench. Surprisingly, topological
state does not disappear immediately but rather moves into middle parts of the chain.
However, in the upper panel this state survives only on the first few boundary sites and
then it is blurred in time, but it is visible that at t ' 410 it reaches the middle site of the
chain. The same signal moves from the last chain site and they pass each other. Thus, the
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X-shaped LDOS is observed and as time evolves these states balance between the edges
with vanishing intensities. This process is more evident in the bottom panel where both
topological states migrate after the quench through the normal chain and they also form a
V-shaped LDOS dynamical structure. Note that in the normal chain the edge states travel
much faster and they reach the middle chain site just at t ' 403, i.e., only 3 time units after
the quench. It means that the travel speed of the mid-gap state strongly depends on the
energy-gapped structure in the spectral density function and for nonzero LDOS it moves
much faster along the chain. Please note that similar time evolution was observed for the
absolute value of the spinor component related to the Majorana mode in 1D topological
systems [50].

5. Conclusions

In this work we have studied electron transfer through the 1D topological systems
which are characterized by an energy gap and are expected to be poor electron pumps.
Using the evolution operator technique and the tight-binding Hamiltonian we have an-
alyzed the occupancies, currents and time-dependent LDOS along the SSH trivial and
nontrivial chains affected by external train impulses in the form of the one-Gaussian and
two-Gaussian perturbations. It turns out that such systems can work as effective electron
pumps and surprisingly, topological trivial chains can transfer more charge during one
cycle of such external perturbation than nontrivial SSH chains. This effect is explained
by strong asymmetry in the structure of LDOS for the edge sites (due to the absence of
topological states) and is crucial for the pumping effect. It is also important that for the
normal chain the pumping current is always positive (for positive on-site energies) whereas
in topological chains one can control the direction of the pumping current slightly tuning
the gate voltage of the system.

We have also analyzed how electrons are transferred through the energy-gapped
topological materials and we have found that during the train perturbation electrons are
pumped through the mid-gap temporary states in the nontrivial topological chains and
through the induced LDOS sidebands outside the energy gap region in the trivial chains.
This conclusion stands for the main result of the paper and can be useful for potential
applications of such topological materials in nanoelectronics.

Additionally, we have investigated LDOS time dynamics along the chain after a
sudden quench which changes topological phase of the system (from the nontrivial to the
normal or to the trivial one). We have found that during this change topological states do
not disappear at once, but they balance between the edges of the chain with vanishing
intensities. Even more importantly, the travel speed of topological states strongly depends
on the chain energetic structure such that for gapped materials the states move relatively
slow and for normal materials they move much faster along the chain.
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48. Kurzyna, M.; Kwapiński, T. Edge-state dynamics in coupled topological chains. Phys. Rev. B 2020, 102, 195429. [CrossRef]
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