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SUPPLEMENTARY MATERIAL 

Feature Selection 
For classification with small training samples and high dimensionality, feature selec-

tion plays an important role in avoiding overfitting problems and improving classification 
performance. One of the commonly used feature selection methods for small samples 
problems is recursive feature elimination (RFE) method[1]. 

If the relationship between a feature and the output is suspected to be non-linear, 
tree-based methods (e.g., decision trees, random forest, and extreme gradient boosting 
(XGBoost)) can be applied to perform feature selection with low complexity. They can 
model non-linear relations well and do not require much tuning. XGBoost is a gradient 
boosted decision tree that is designed for speed and performance. In this method, new 
models are created that predict the errors of prior models to make the final prediction. 
This method runs several times faster than existing state-of-the-art methods on a single 
machine. It scales the models in distributed or memory limited settings, which is the main 
factor that leads to the success of XGBoost. The stopping criteria for XGBoost are as fol-
lows: First, for each output yi, the R2 of regression performance is measured with all fea-
tures as input. The corresponding feature importance is also ranked in terms of infor-
mation gain, which is the relative contribution of each feature to the full model. The sec-
ond step is to iterate through the ranked list of input attributes and recursively eliminate 
attributes from the least important feature to the most important feature. After each elim-
ination, the XGBoost model is built with the remaining features, and the corresponding 
R2 score is returned. Finally, with the plot of feature number versus R2 score, the elbow 
method is used to select the optimal number of features. Elbow method identifies the point 
at which adding more features does not improve the R score. Boosted tree algorithms such 
as XGBoost are capable of detecting non-linear effects or interactions. Therefore, these 
methods have the potential to fit into data with significantly fewer features [2]. 

Bayesian Ridge Conditional Imputation on Scikit.learn Iterative Imputer 
A multivariate imputer estimates each feature from all the others. Deploying this 

method is considered a powerful strategy for imputing missing values by modeling each 
feature with missing values as a function of other features in a round-robin fashion [3]. 

Scikit.learn Iterative Imputer uses Bayesian Ridge regression as default. There exist 
several strategies to perform Bayesian ridge regression. The Scikit.learn implementation 
is based on the algorithm described by Tipping [4] where updates of the regularization 
parameters are done as suggested by MacKay [5]. Iterative Imputer has proven to be the 
more accurate method of imputation for obstetrics and ginechology datasets [6]. 

Hyperparameters fine-tuning 
A model hyperparameter is a characteristic of a model that is external to the model 

and whose value cannot be estimated from data.  
Grid search is the process of performing hyperparameter tuning in order to deter-

mine the optimal values for a given model. This is significant as the performance of the 
entire model is based on the hyperparameter values specified.  

In brief, for each algorithm, analysts define a grid consisting of several values to test 
for any hyperparameter of interest. The grid search performs a K-fold cross-validation 
splitting a dataset in K partitions and then searching for each split the combination leading 
to the best performance in a grid of hyperparameters[3]. 

The hyperparameter grids for each algorithm have been shown below: 
Logistic Regression [3]: 

• Solver: ‘lbfgs’, ‘liblinear’ // Selected: ‘lbfgs’ 
Random Forest [3]: 

• Number of trees in the forest: (100, 500 ,100) // Selected: 500 
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• Maximum depth of the tree: (3, 5, 10)// Selected: 5 
K-nearest neighbours [3]: 

• Number of neighbors: (5, 10, 15) // Selected: 5 
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