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Abstract: This paper discusses a new approach for building a compact all-in-one matrix converter
module based on SiC semiconductors arranged in a common source connection. The used transistors
are in the D2PAK package. The design of the module is divided into two parts, namely a power
module designed at one-layer aluminum substrate printed circuit board (PCB) to ensure good
thermal performance and voltage isolation between the module and heatsink. The second board is
responsible for the SiC driving and is mounted at the top of the power PCB and consists of metal-oxide
semiconductor field effect transistor (MOSFET) drivers, isolated power supplies, a current direction
detection circuit, and current value sensors. In the paper, the proper function of the SiC MOSFET
drivers, current direction detection, and current measurement sensors were evaluated. Finally, 3D
design together with the final prototype is presented. The modules contain three bidirectional cells
for interconnection three input voltage sources and one output phase. The uniqueness and novelty of
the presented module are the compactness and easy expandability of the module to achieve higher
power outputs and multiphase applications such as five phase machines.

Keywords: matrix converter; silicon carbide; matrix module; driver

1. Introduction

The popularity of the matrix converter increased in the last years [1,2] due to the
possible advantages over the standard back-to-back converters (BBC). The improvement in
the semiconductor industry, especially in the field of Silicon Carbide (SiC) and Gallium
Nitride (GaN) transistors and the small footprint of the component, has opened new ways
to build a compact and high-power density matrix converter. The main advantage of the
matrix converter is the absence of the storage components (capacitor or inductor), which
are getting bulkier if the output power of the standard BBC converter rises. The lack of
storage components predetermines the matrix converter to applications with high-power
density and it can be used in environments with low or high temperatures (for example,
in aerospace applications). The market research shows that commercial products are
not available nowadays for use in the matrix converter application. In the past, some
power modules were designed and introduced. However, they are not available now
due to the shortage of products, and researchers must design their module for the direct
matrix converter (DMC) or indirect matrix converter (IMC). For the proper function of the
converter, a bidirectional switch is required. The bidirectional switches are built from the
discrete transistor in various configurations shown in Figure 1.

The first device is built from one semiconductor switch and four diodes, where the
diode bridge is used. The advantage is that no complex commutation algorithm is required.
The main disadvantage is the higher power losses, since the load current flows through
three semiconductor devices [3]. The second configuration in Figure 1b, called the common
emitter, is widely used due to its good dynamic parameters and lower power losses in
comparison to the connection in Figure 1a [3]. The switch in Figure 1c is, from the loss
point of view, the same as in Figure 1b but requires less isolated power supplies in the case
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of a 3 × 3 converter [3,4]. The CC-switch configuration requires six power supplies, and
the CE-switch configuration requires nine power supplies. The CC configuration has worse
dynamic parameters due to the big collector parasitic inductance of the components [1]. The last
structure is shown in Figure 1d and is represented by the RB-IGBT, which can block voltages
in the reverse direction. However, their dynamic behavior in reverse recovery is very slow
compared to the standard P-N diode, which can significantly raise the power losses. Because of
the slow reverse recovery behavior, these types of switches are not much used in this application
currently [5]. The experiments with the relatively new GaN technology show the potential of
this technology to be used in future matrix converters applications [6–9].
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next publications show a sample of the low parasitic inductance module based on the SiC 
chips from the CREE manufacturer [11,12]. The disadvantage of these modules is that if 
one device is destroyed, the whole module becomes useless, or the replacement of the 
broken component can be very expensive. A partial solution is presented in [13], where 
authors used D2PAK IGBTs mounted at the PCB in 3 × 1 configuration. This arrangement 
ensures good maintenance and reparability, but using the IGBT transistor leads to higher 
power losses which cannot be easily dissipated through FR4 substrate. So, additional cool-
ing is required, especially at higher power outputs. Another approach presented by the 
authors in [14] offers a compact direct matrix converter using the SiC MOSFETs. The sam-
ple with a power of 2 kW was built in the PCB with dimensions of 358 × 155 × 40 mm. The 
high-density sparse matrix converter is presented in [15] with a very compact design 
wherein SiC MOSFETs were used. The power output of the converter is 1500 W, and the 
demonstrated power losses by the authors are below 80 W with a switching frequency of 
100 kHz. 

Several methods for cooling high-power surface mount technology (SMT) compo-
nents are described in [16,17], as well as the impact of the vias placement on the cooling 
performance [18]. The first uses the thermal vias in the two-layer or multilayer PCB as 
shown in Figure 2a. The generated heat is dissipated through vias to the heatsink or the 
inner layers of the PCB. This method needs an additional insulating heat-conducting pad 
between the FR4 substrate and heatsink to ensure the right insulation of the board if high 
voltage is present. The next approach shown in Figure 2b, which can reach potentially 
lower thermal resistances, is PCB with copper inlays. This method is attractive from the 
low thermal resistance point of view but faces the same insulation problem. Additionally, 
non-standard manufacturing technology must be used, which can be costly, especially in 
small batches. The next solution on the market is the insulated metal substrate (IMS) 
boards, shown in Figure 2c, which ensure a good thermal interface between the SMT com-
ponent and the heatsink with low thermal resistance provided by the metallic core. These 
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These publications show the effort of the researchers to build a compact sample of
the bidirectional switch for the matrix converter [10], where authors build an intelligent
power switch module with implemented commutation in the module (since every module
consists of a microcontroller in which the commutation algorithm is implemented). The
next publications show a sample of the low parasitic inductance module based on the SiC
chips from the CREE manufacturer [11,12]. The disadvantage of these modules is that if one
device is destroyed, the whole module becomes useless, or the replacement of the broken
component can be very expensive. A partial solution is presented in [13], where authors
used D2PAK IGBTs mounted at the PCB in 3 × 1 configuration. This arrangement ensures
good maintenance and reparability, but using the IGBT transistor leads to higher power losses
which cannot be easily dissipated through FR4 substrate. So, additional cooling is required,
especially at higher power outputs. Another approach presented by the authors in [14] offers
a compact direct matrix converter using the SiC MOSFETs. The sample with a power of 2 kW
was built in the PCB with dimensions of 358 × 155 × 40 mm. The high-density sparse matrix
converter is presented in [15] with a very compact design wherein SiC MOSFETs were used.
The power output of the converter is 1500 W, and the demonstrated power losses by the
authors are below 80 W with a switching frequency of 100 kHz.

Several methods for cooling high-power surface mount technology (SMT) components
are described in [16,17], as well as the impact of the vias placement on the cooling perfor-
mance [18]. The first uses the thermal vias in the two-layer or multilayer PCB as shown in
Figure 2a. The generated heat is dissipated through vias to the heatsink or the inner layers
of the PCB. This method needs an additional insulating heat-conducting pad between the
FR4 substrate and heatsink to ensure the right insulation of the board if high voltage is
present. The next approach shown in Figure 2b, which can reach potentially lower thermal
resistances, is PCB with copper inlays. This method is attractive from the low thermal
resistance point of view but faces the same insulation problem. Additionally, non-standard
manufacturing technology must be used, which can be costly, especially in small batches. The
next solution on the market is the insulated metal substrate (IMS) boards, shown in Figure 2c,
which ensure a good thermal interface between the SMT component and the heatsink with
low thermal resistance provided by the metallic core. These PCBs are widely used in the
automotive industry due to their good performance in the cooling of power LED modules. If
electrical insulation is needed, manufacturers can offer IMS boards with an insulation voltage
up to 4 kV. According to the datasheet of the used IMS board with the market name Goldenmax
G11, the breakdown voltage is above 3 kV, declared by the manufacturer.
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Figure 2. PCB Heat dissipation solution: (a) thermal vias; (b) copper inlay; (c) IMS board.

This paper focuses on the design, modeling, and practical realization of the 3 × 1 ma-
trix converter module, with easy expandability to provide a matrix converter with various
input/output configurations. According to the authors’ research, no modules with similar
parameters are now commercially available. The presented module can deliver power up
to 1.7 kW. The designed module is part of the research project for the control of multiphase
drives and the investigation of converter efficiencies. In the five-phase application, the
presented modules in this configuration can deliver up to 8.5 kW. The output power of the
module is adjustable by the change of power semiconductors and can be increased up to
3.5 kW per module.

2. Structure of the Module

The module was designed to be very compact, considering the mounting of almost
all required components to drive the module, with only the need for external signals to
control the module. Due to this consideration, the design was separated into three parts.
The block diagram with the highlighted blocks is shown in Figure 3.

For the power part, the SiC transistors were used due to their relatively high operation
temperature, high blocking voltage, and relatively small form factor. Recently, the ON-
Semiconductors manufacturer released a new family of the SiC MOSFETs, which were well
suited for this application. The semiconductors are in the D2PAK-7 package with a Kelvin
source pin extended from the package to ensure proper driving of the device. It is important
to select the right mounting of the semiconductors to ensure good electrical insulation
and good heat dissipation. For this application, the best price to performance ratio is
achieved by the IMS boards according to the research in the introduction. Additionally,
this approach does not need an insulating pad between PCB and the heatsink, increasing
thermal resistance significantly.
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For the power part, the common-source configuration of the switches was selected. As
described in many publications [19–24], the commutation algorithm must be implemented
to ensure no short or open circuit development, leading to overvoltage and overcurrent
generation and circuit destruction. Many commutation techniques are available where
most of them are based on the output current measurement. Thus, the authors decided
to implement a current direction measurement to the power board for the commutation
investigation in future work. The output current direction in the matrix converter can be
measured in many ways, and these methods are summarized in Table 1, together with
possible advantages and disadvantages.

Table 1. Comparison of the basic current direction measurement methods.

Method Advantages Disadvantages

Direct measurement at the transistors
-No additional losses
-Accurate at low currents
-No isolated power supply needed

-Every transistor needs its circuitry
-Lot of parts

-Only one circuit per output phase

Measuring at the output diodes -Only one circuit per output phase
-Accurate at low currents

-Enters additional losses to the converter
-Needs an isolated power supply
-Additional components

Measuring at the output shunt -Only one circuit per output phase
- Small additional losses

-Low accuracy at the small output currents
-Needs an isolated power supply

Since the current direction detection circuitry is designed at the power IMS board, the
authors selected a method that measures at the output diodes, offering good precision and
fast reaction. The power losses can be effectively dissipated through the metal board to the
heatsink. If the diodes with low drop voltage are selected, the power losses can be reduced
significantly. The circuit is supplemented with the fast comparator to detect the voltage
drop direction at the diodes, as shown in Figure 4. The board was designed to one-layer
IMS board with final dimensions of 129 × 58 mm. The design of the power board is shown
in Figure 4. The board consists of four mounting holes to be easily mounted to the heatsink.
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The design of this board allows the change of the power devices based on the output
power specification of the matrix converter. The 3D model of the power board is shown
in Figure 5.
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Figure 5. The 3D model of the power board.

The second board was designed for driving SiC transistors. The SiC transistors
offering a high blocking voltage together with a low RDS(on) in comparison with traditional
MOSFET technology. To ensure the short signal traces to the SiC MOSFET Gate pin, the
driver board is placed right above the power board. The signals are transferred through
the connectors. Since the input of the converter is connected to the phase voltage and a
common source of transistors floats at the high voltage potentials, the isolated gate driver
is needed. For the proper supply of the secondary side of the driver, the isolated push-pull
power supply is designed based on the SN6505 push-pull driver to ensure a small form
factor. The secondary voltage from the power supply is 18.5 V, and this voltage is further
divided into +15.5 V and −3 V to ensure proper driving of the SiC power MOSFETs. For
the gate driving, the dual isolated gate driver for the H-bridge applications was used.
The secondary side of this driver was designed that way so that this driver can drive two
transistors connected with a common source. The driver is capable of sourcing 4 A and
sinking 6 A to each MOSFET. For proper SiC driving and ensuring that the driver is not
overloaded by the current, the proper external gate resistors must be selected as shown in
Figure 6. The following driving configuration was selected to ensure faster gate discharge
and thus faster turn off times:
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Figure 6. Configuration of the turn-on and turn-off resistors.

During the turn-on, only the RON resistor applies, since diode D is in the blocking
direction. In the turn-off time, the diode is in the conducting stage and the resistors are
connected in parallel, which allows reaching a higher discharge current. The resistors were
selected as follows: RON = 4.1 Ω and ROFF = 2.8 Ω. Then, the current capacity of the driver
needs to be checked [25]:

IPOS_MAX =
VDD − VSS

RNmos ·ROH
RNmos+ROH

+ RON + RFETin
(1)

INEG_MAX =
VDD − VSS − VD

ROL +
RON ·ROFF

RON+ROFF
+ RFETin

(2)

where ROH and ROL represent internal driver driving MOSFETs resistances, RNmos is internal
pull-up driving resistor, and RON, ROFF, and RFETin represent the turn-on, turn-off, and
SiC internal resistors, respectively, according to the SiC datasheet. Diode forward voltage
is represented by VD and supply voltages are denoted in VDD for positive rail and VSS
for negative rail. The calculated values from (1) and (2) must be lower than 4 A for turn-
on current (IPOS_MAX) and lower than 6 A for turn-off current (INEG_MAX) according to
datasheet [25], to ensure that driver is not overloaded. In our case, the calculated results
are 2.9 A and 5.2 A for IPOS_MAX and INEG_MAX, respectively. Calculated values are below
the maximum values specified by the datasheet [25] which confirms the correctness of the
design. All circuitry in the driver board is powered from the single 5 V power supply. The
board includes a voltage supervisor IC, which ensures the power supplies startup when
the supply voltage reaches 4.7 V by enabling the drivers to prevent current inrush.

Together with isolated power supplies and isolated gate drivers, the current mea-
surement was implemented on this board. Current measurement is implemented on the
driver board (Top PCB). The OUT pin shown in Figures 4 and 5 is used to conduct current
from the power board to the driver board. Then, the current is flowing through the hall
current sensor and then to the output phase pin shown in Figure 7. The sensor can measure
current in the range of ± 20 A, which is suitable for this application, even if the SiC devices
would be changed for more powerful ones. If the output current would be bigger, the
manufacturer of the sensor offers a ± 30 A version in the same package, which can be
easily changed if more output power is needed. Finally, the board involves a high-speed
optocoupler, which ensures galvanic isolation and transfers the direction of the output
current flowing through the module. The designed driver board is shown in Figure 7.
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The power and driver board are stackable with one another. The signal connections
are made through pin headers. The connection of power high-voltage lines is made through
steel-tinned standoffs. On the power board, the standoffs are soldered directly to the board,
and in the driver board, the mounting screw is used. The assembled 3D model of the power
and driver board is shown in Figure 8.
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Due to the space limitations on the driver board, the input signal board shown in
Figure 2 must be designed on the separated PCB. This board consists of a buck power
supply with an operating range from 9 V to 15 V and output power of 10 W. For the
interface, three different connectors are used. For the pulse width modulation (PWM)
signals, the RJ50 shielded connector is used. This connector transfers six PWM signals,
and the remaining wires are used as supply voltage lines. The level shifter shifts input
PWM signals to the 5 V level appropriate for the gate drivers. For the current direction
and the actual measured current value, the RJ11 connector is used. The value of the output
module current is transferred through the differential twisted pair to improve immunity to
electromagnetic interference. Finally, the optical TOS-LINK connector is added to the board.
Through this interface, the current direction is transmitted too so that the board can transmit
the current direction signal in two ways. The optical interface is fast, reliable, and immune to
electromagnetic interference, so it is preferred in a disturbed environment. The signal board is
mounted perpendicularly to the driver board, so all connectors face upwards. The 3D model
of the assembled 3 × 1 matrix converter module is shown in Figure 9.
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For further protection against the accidental touch of the high voltage connectors, the
cover was designed. The finalized module with the designed cover can be seen in Figure 10.
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Figure 10. Assembled module: (a) Side view (b) Top view.

Thefinaldimensionsofone3×1matrixmoduleare130×54×43mm(length×width× height).
All PCBs were manufactured, and the final module was assembled according to designed
3D models.

3. Verification of the Operation

For the proper SiC MOSFETs driving, the isolated power supply must be capable
of delivering at least 1 W of the power. The output power of the isolated power supply
was measured together with an output voltage as a load current function. The efficiency
was calculated from the measured data. The measured data of the power supply are
shown in Figure 11.
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As shown in Figure 11, the operating output power of approximately 1 W to 2 W
converter reaches its maximum efficiency of around 82%. The converter can deliver more
power in case if more powerful semiconductors are used. The output current is limited to
200 mA due to the used secondary rectification diode limitation. The thermal image of the
one power supply during the output load of 2 W can be seen in Figure 12.
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Figure 12. The temperature of the isolated power supply at the load of 2 W.

After the power supply efficiency and maximum load temperature, the most important
indicator of the power supply quality is the output voltage waveform, especially during
the startup of the power supply and dynamic events. If the overvoltage occurs during the
startup, this can lead to the destruction of the semiconductor components. Thus, measuring
the quality of the output waveform is important. The waveform of all of the voltages during
the converter power supplies startup sequence can be seen in Figure 13.
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Figure 13. Power supply startup sequence (Input Voltage, Blue 10 V/div; 5 V Rail, Cyan 5 V/div;
Enable Signal, Purple 5 V/div; Isolated Output, Green 10 V/div).

The Input signal represents the 12 V supply rail provided by the laboratory power
supply. The 5 V rail is measured at the output of the buck converter. The Enable signal
represents the signal from the supervisor circuit monitoring the 5 V rail. Finally, the Isolated
signal is the voltage at the secondary side of the isolated power supply for the gate drivers.
As shown in Figure 13, no overshoots are present, and the startup of the isolated power
supply occurs after enabling signal when the 5 V supply rail is present and stable.

For the driver functionality verification, the PWM signal was applied to the input of
the driver board, and the output signal was measured at the gate of the SiC MOSFET. The
measured waveforms can be seen in Figure 14.
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the capacitors are recharged. If the voltage drop during the turn-on or turn-off transients 
is big, this can lead to a faulty transistor switch or can cause triggering under-voltage 
protection in the modern gate driver ICs. In this case, the single power supply needs to 
deliver the required power to the two transistors since the switch is bidirectional and con-
structed from two SiC devices connected by the common source. Measurement of the sta-
bility of the positive supply rail during turn-on and turn-off can be seen in Figure 16. 
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last below 20 ns, with a negative overshoot of 1 V. For the turn-off process, the transient 
last below 50 ns with a positive overshoot of 1.9 V. At the end of turn-on or turn off pro-
cess, the power supply rail is stable again.  

In the next measurement, the output current detection circuit was measured. The iso-
lated autotransformer was used to generate the AC waveform. The load for the AC wave-
form was a 33 Ω power resistor. The voltage oscilloscope probe measured the output of 
the current detector circuit, and the output current of the module was measured using a 
current probe (Tektronix TCP303). The current measurement designed at the board was 

Figure 14. PWM signals (Blue, UDS voltage 10 V/div; Cyan, UGS voltage 10 V/div).

The cyan waveform in Figure 15 represents the output signal applied to the SiC
MOSFET gate, where turn-off is represented by the −3 V and turn-on is represented by the
+15 V, as was designed. In the isolated gate driver, the important parameter is the signal
propagation delay from the non-isolated to the isolated side. The measured value of delay
was 20 ns for the turn-on waveform and 25 ns for the turn-off waveform. These measured
values correspond to the values in the driver datasheet.
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One important aspect of the gate driver circuitry is the stability and the response of the
isolated power supply. During the turn-on and turn-off process, the major current needs to
be delivered or removed from the MOSFET gate. These currents are delivered mainly from
the isolated power supply capacitors, and when the switching state is stable, the capacitors
are recharged. If the voltage drop during the turn-on or turn-off transients is big, this can
lead to a faulty transistor switch or can cause triggering under-voltage protection in the
modern gate driver ICs. In this case, the single power supply needs to deliver the required
power to the two transistors since the switch is bidirectional and constructed from two
SiC devices connected by the common source. Measurement of the stability of the positive
supply rail during turn-on and turn-off can be seen in Figure 16.

As can be seen in Figure 16, the power supply recovery from the turn-on transient last
below 20 ns, with a negative overshoot of 1 V. For the turn-off process, the transient last
below 50 ns with a positive overshoot of 1.9 V. At the end of turn-on or turn off process,
the power supply rail is stable again.
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In the next measurement, the output current detection circuit was measured. The
isolated autotransformer was used to generate the AC waveform. The load for the AC
waveform was a 33 Ω power resistor. The voltage oscilloscope probe measured the output
of the current detector circuit, and the output current of the module was measured using a
current probe (Tektronix TCP303). The current measurement designed at the board was
evaluated too. The output of this sensor is the differential pair which represents the flowing
current through a circuit. Differential output was selected due to its very high resistance to
the surrounding interface. The measured results are shown in Figure 17.
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As shown in Figure 17, the current detection circuit measures the direction of the
output current reliably. The cyan and purple waveforms represent the differential outputs
from the current value measurement circuitry. The signals are measured against the ground.
For better visualization of the current detector functionality, the waveforms were measured
with the same position settings, as shown in Figure 18.

The manufactured power board on the IMS with all power semiconductors assembled
can be seen in Figure 19 at the left image. The top three spacers are used as connectors for
input phases. The bottom two spacers are used as mounting and fixing supports for the
higher rigidity of the module. The spacer mounted at the right side is the output phase
connected to the driver board, where the current of this phase is measured. The assembled
power board and the driver PCB can be seen in Figure 19 at the right side image.
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The designed cover for the compact matrix module presented in Figure 9 was tested
too. The design was manufactured with the help of a 3D printer. The cover provides
additional protection against accidental contact with the live parts of the module. The
assembled module with the cover can be seen in Figure 20.
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4. Discussion

The article aimed to present the design of the compact module suitable for use in
matrix converter applications. The module is compact and allows different output powers
with the dimensions of the module preserved. As mentioned in the introduction section, the
power output of the module can be adjusted by the change of the power semiconductors
in the IMS board. Due to easy expandability, the isolated power supply was designed with
a sufficient power reserve to ensure that the higher power SiC will be driven properly. The
output characteristics of the module can be seen in Figure 11. For the proper power-up
sequence, the voltage supervisor circuitry is used with the voltage sequence measured
in Figure 13. The driver capability of the dual-gate driver was measured too and can be
seen in Figure 15. The propagation delay of the driver is within 30 ns as the manufacturer
specified in the datasheet [25]. The response of the isolated power supply to the switching
of the SiC was measured in Figure 16 for turn-on and turn-off transients. The functionality
of the current direction detection circuitry, as well as current measurement circuitry, was
tested and measured in Figures 17 and 18 respectively. Assembled module is shown in
Figure 19, and the completed module together with 3D printed case is shown in Figure 20.
The Table 2 summarizes used components in the presented module:

Table 2. Components used in the compact 3 × 1 matrix converter module.

Component Marking

Power switch SiC NTBG080N120SC1
Diode for current direction

detection V20PW15
SiC Driver UCC21521

Current measurement sensor ACHS-7192-500E
Input filter inductor 1 mH (external)
Input filter capacitor 7 µF/Delta connection (external)
Rated input voltage 3 × 230V RMS

Rated output power per module 1.7 kW

5. Conclusions

In this paper, the design of the compact, all-in-one matrix module is presented. The
target of this design was implementing all needed circuitry to the one compact module.
In this case, the module is in configuration 3 × 1. The easy expandability of these modules
is another advantage; the module is ready to be interconnected to other modules via power
bus bars, and therefore the various configurations of the resulting matrix converter can be
easily constructed. The power part of the module is designed with SiC MOSFETs which
offers high blocking voltage together with low conduction resistance, resulting in lower
power losses in comparison with traditional MOSFET or IGBT structures. The power board
prototype is designed on an IMS aluminum board containing power transistors in common-
source configuration and current direction detection diodes. The main advantage of the
usage of the IMS board is the maintenance of very good thermal dissipation from the power
semiconductors to the heatsink along with high voltage insulation of the heatsink. On
top of the IMS board the control board PCB is mounted which includes power drivers for
every bidirectional switch together with isolated power supplies and current measurement
sensor. The isolated power supply reaches 82% peak efficiency and has a maximum output
power of 3.5 W. The assembled module uses two connectors. The first connector (RJ50) is
used to transfer PWM signals and supply voltage to the module. The second connector
(RJ11) is transferring current detection and current measurement signal to the supervisory
control board for control and commutation purposes.
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For the proper module functionality, the supervisory control board with a control
algorithm generating all PWM signals for the used matrix converter modules is needed. This
board will be included in future work and evaluation of the power board and construction of
the matrix converter in configuration 3 × 5 with the use of the presented all-in-one modules.
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