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Abstract: Skin cancers are increasing at an alarming rate, and detection in the early stages is essential
for advanced treatment. The current segmentation methods have limited labeling ability to the
ground truth images due to the numerous noisy expert annotations present in the datasets. The
precise boundary segmentation is essential to correctly locate and diagnose the various skin lesions.
In this work, the lesion segmentation method is proposed as a Markov decision process. It is solved
by training an agent to segment the region using a deep reinforcement-learning algorithm. Our
method is similar to the delineation of a region of interest by the physicians. The agent follows a set of
serial actions for the region delineation, and the action space is defined as a set of continuous action
parameters. The segmentation model learns in continuous action space using the deep deterministic
policy gradient algorithm. The proposed method enables continuous improvement in performance
as we proceed from coarse segmentation results to finer results. Finally, our proposed model is
evaluated on the International Skin Imaging Collaboration (ISIC) 2017 image dataset, Human against
Machine (HAM10000), and PH2 dataset. On the ISIC 2017 dataset, the algorithm achieves an accuracy
of 96.33% for the naevus cases, 95.39% for the melanoma cases, and 94.27% for the seborrheic keratosis
cases. The other metrics are evaluated on these datasets and rank higher when compared with the
current state-of-the-art lesion segmentation algorithms.

Keywords: image segmentation; skin lesion; deep deterministic policy gradient; multistep manner;
skin cancer; melanoma; semantic segmentation; instance segmentation

1. Introduction

The largest organ in the human body is the skin. The disorganized and uncontrolled
growth of skin cells lead to skin cancer formation and cancer can rapidly grow to other
body parts. Skin cancer is a common kind of cancer worldwide. The deadliest form
of skin cancer is melanoma, and its prevalence has been rapidly rising in the last 30
years [1]. Early diagnosis can increase one’s chances of survival. Identification of the
melanoma or suspected skin lesions is conducted by dermoscopy imaging, by detecting the
pigmented skin lesions. The technique is non-invasive and detects possible lesions in the
early stage. Because of the higher resolution of dermoscopic images and better visualization
capabilities, dermatologists can use their own eyes to examine skin lesions. The decision-
making process is time-consuming, requires a high degree of expert knowledge, and is
biased (i.e., depending on the dermatologist’s viewpoint). Convolutional neural networks
(CNN) can detect melanoma in the same manner that dermatologists can [2], suggesting
the potential for automated skin lesion analysis.

Automated skin lesion analysis is an essential part of computer-assisted diagnosis [3,4].
Existing artificial intelligence (AI) algorithms do not do an excellent job of adequately con-
sidering this clinical frame of reference. The diagnostic accuracy (Acc) can increase if
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the detection algorithms employ “contextual” images gathered within the same patient
to analyze whether the images represent a melanoma [5]. If the process is successful,
the classifiers will be more precise and assist dermatological clinic work. The ABCDE
recommendations [6,7] provide physicians and patients with a clear and comprehensive
framework for diagnosing melanoma, asymmetry, abnormalities along the border, skin dis-
coloration, unbalanced color palette, lesions larger than 6 mm in diameter, evolved lesions
(shape, color, or size), indicating the potential melanoma [8,9]. The uneven melanoma
borders are usually notched or scalloped, and uneven margins are defined vaguely. Conse-
quently, the lesion segmentation process is often given the first performance preference to
provide the regions of interest (ROI) or boundary information that has proven to aid the
detection and classification tasks [10,11]. Still, the issue of automatic lesion segmentation
remains unsolved.

In some skin lesions with light pigment, the color and the visual patterns of the
pigment patches and the surrounding skin regions are highly similar, resulting in fuzzy
and unclear boundaries, making the segmentation extremely difficult. Figure 1 shows the
skin sample lesion images taken from the ISIC 2017 dataset [12], which have distinct class
differences due to the various variations such as severe, blurred boundary, inhomogeneity,
hair appearance, etc. Furthermore, due to the high quality of the original dermoscopic
images, direct processing takes a long time and requires many resources. Therefore, to
reduce the image’s size, downsampling is utilized first. The subtlety and finer textures are
lost during this process, making it much more difficult to distinguish the boundaries of the
lesion. The lesions include color-makers, veins, hairs, glues, and rulers, all of which change
the texture and color distribution of the lesions and impede efficient learning. Because
the images are collected from various institutions and hospitals, they have a diverse set
of characteristics. Hairs and color-makers are seen in specific images, complicating the
process of segmenting lesions. The lesion segmentation is challenging due to the problems
mentioned above. Several multi-scale information in CNN architectures [13–15] or multi-
task learning frameworks [16,17] are mentioned in the literature to address these problems.
The fundamental idea behind the methods is to generate reliable predictions by using as
much data as possible. On the other hand, these methods either incorporate detailed new
training parameters or need additional labeling information, both of which are inapplicable
in practice.

However, in the methods using fully convolutional networks (FCNs) [18,19], the
FCN smoothens out the complicated structures while ignoring the minor details. In
the stand-alone post-processing, step CRF is employed and is disconnected from the
FCN. A downsampling sequence followed by a greater sampling rate rapidly results in a
detailed loss and poor segmentation results. The network makes errors while dealing with
oversized objects. Despite their large representative capacity, the multi-scale approach uses
skip connections from the low-level encoder features that tend to utilize redundant data.
Furthermore, the encoder feature’s contextual information is insufficient at the start of the
network when coupled with the proper high-level decoder feature map, resulting in poor
pixel-wise recognition performance. A series of downsampling and a higher sampling rate
leads to loss of details and rough lesion segmentation results. When dealing with oversized
objects, it assigns wrong labels and ignores them. Figure 2 presents the segmentation masks
generated from our reinforcement learning (RL) algorithm on the PH2 dataset. As can be
seen in the figure, the masks are clear.

RL is prominent in artificial intelligence applications, such as anomaly detection,
robot control, computer vision, autonomous driving, and computer gaming. DL and RL
are used to solve increasingly complex problems resulting from a breakthrough in deep
learning (DL). Deep reinforcement learning (DRL) trains an intelligent agent to deal with
the Markov decision process (MDP) issue that combines DL with RL GrabCut [20] is a
conventional interactive lesion segmentation method that divides the foreground and
background regions using a coarse bounding box. Guotai et al. [21] proposed a CNN-
based model that improved the lesion segmentation results by scribbling on the initial
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segmentation results. When physicians delineate the ROI on a lesion image, they first
perform the coarse segmentation to determine the majority of the ROI’s area.
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Figure 1. The skin sample lesion images taken from the ISIC 2017 dataset, which have different class differences within due
to the various variations, such as severe (a,d,l), blurred boundary (b,d–f,h,l), inhomogeneity (b,i,f,h,k), hair appearance
(g,c), poor contrast (h,j). The difficulties mentioned above are present in the skin lesion datasets. These datasets are used for
the automated segmentation process.

The clinicians then fine-tune the coarse segmentation procedure in the form of a
multi-step process. This segmentation approach is similar to interactive segmentation [22].
Since it includes painting many strokes with a brush on the foreground and background
or creating a box around the foreground, the interaction is considered prior knowledge
for segmentation. This strategy gathers past information and improves the segmentation
algorithm’s efficacy by interacting with the user. Inspired by these concepts, the proposed
method is proposed as a multi-step segmentation process. Our method has the advantage
of improving the segmentation performance by automatically gathering the previous
knowledge, thus eliminating the need for human involvement.

The segmentation process is proposed as an MDP. In the next step, the segmentation
mask predicted previously is taken as prior knowledge in the following step during the
segmentation process. The agent executes an action for the segmentation process in every
step that depends on the current segmentation mask and the input image. Our method
derives its inspiration from the stroke-based stylization approach [23]. We propose a
segmentation executor that helps draw a brushstroke for the input segmentation mask to
designate the ROI. A neural network is used in the segmentation executor, which converts
the continuous action parameters to brushstrokes. It can be used in different ways, and after
some specific number of phases, the final segmentation results are achieved. The location
and shape to get the fine-grained segmentation is established by using the continuous
action parameters set.
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Deep Q-Networks (DQN) [24] is one of the most often utilized DRL algorithms.
However, it is only restricted to solving the discrete action space problems. We use the
Deep Deterministic Policy Gradients (DDPG) [25] algorithm for solving the continuous
action space. DDPG is a learning method that simultaneously learns a policy and Q-
function. Before employing the Q-function to learn the policy, it uses the off-policy data
and Bellman’s equation. To the best of our knowledge, this is the first attempt to represent
and solve the skin lesion image segmentation problem as an MDP using DDPG. Since the
DDPG is heavily dependent on searching the correct hyperparameters for the current task,
we choose the action bundle, a suitable hyperparameter for the algorithm, thus increasing
its stability.

The following are the main contributions of this work:

• The skin lesion image segmentation is proposed as an MDP. It is solved with the
DDPG algorithm, similar to how the physicians delineate the lesion image ROIs.

• The proposed skin image segmentation executor is based on the quadratic Bezier
curve (QBC) and uses the action bundle as a hyperparameter to further improve the
Acc of the segmentation process.

• We use a modified experience replay memory (ERM) to train the segmentation agent
efficiently. The ERM helps in efficiently utilizing the previous experiences by learning
multiple times.
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• We perform a quantitative statistical analysis of our skin lesion segmentation results
to show the reliability of our segmentation method and compare our results to the
current state-of-the-art approaches.

The structure of the article is as follows: Section 2 describes the current state-of-the-
art methods, Section 3 presents our proposed RL method, overview, and the details of the
experimental setup; Section 4 presents the results and discussion of our method. Finally,
we conclude our article in Section 5.

2. Related Work

Many strategies used in the skin lesion segmentation are established in the liter-
ature, including region-merging-based approaches [26], active contour models [27–29],
thresholding-based methods [17]. Many conventional methods [28,29] based on morpho-
logical processes and clustering algorithms are proposed in the literature. The skin lesion
is split into the foreground and background regions using K-means clustering by Jafari
et al. [30]. Similarly, Ali et al. [31] suggested that skin lesions be segmented using fuzzy
C-means (FCM). The contour is produced regularly in another important class of tech-
niques called the active contour models [27–29] as it approaches the pigmented regions
boundaries. After generating candidate regions using threshold-based methods, the active
contour models are directed by multi-direction gradient vector flow (GVF) snake [29], local
histogram fitting energy [26], and can be used to enhance the course segmentation.

On the other hand, the traditional methods often use complex pre-and post-processing
processes and a slew of data-dependent intermediate stages. Consequently, the perfor-
mance of the conventional method primarily depends on these phases, requiring the design
step to be done carefully when working with a variety of datasets. They will fail if the
boundaries of the pigmented regions are unclear, and the skin conditions are complex.
Deep CNN models have excelled in several computer vision applications [32–34], including
advanced skin lesion segmentation. In general, convolution and pooling methods are used
in basic CNN models. Deeper neural networks can extract more semantic and abstract
characteristics using the learned kernels (e.g., components and shape).

The output feature maps of classification neural networks often shrink over time (by
subsampling). Consequently, a probability vector with values ranging from 0 to 1, and a
dimension equal to the number of categories, is generated. This is an encoding method
in which the abstract and semantic properties encode the images as the neural network
grows in depth. A segmentation neural network has a similar fundamental structure to a
neural network classifier. Still, it also has a decoding route that attempts to improve the
output resolution (through upsampling), such that the output segmentation mask size
matches the input image size. Based on the above, Jafari et al. [35] proposed segmentation
as a classification problem for skin lesion analysis. The image patches inputs of various
sizes centered on a single pixel, and the output for that pixel is the projected label. In
this scenario, the consideration of pixel context information present locally is adopted.
Since this method relies on pixel-level prediction, dense prediction is needed, and then the
research moved towards combining decoding pathway CNN to do the lesion segmentation.
Due to its success, Ronneberger et al. [36] created the popular U-Net, which is extensively
utilized in medical image segmentation applications.

Several U-Net-based melanoma segmentation and classification methods have been
proposed [37–39]. Liu et al. [11] used the dilated convolution after the finish of every con-
volutional block present in the original U-Net to extend the proposed technique receptive
field. Abhishek et al. [40] enhanced performance by integrating and choosing different
color bands dependent on color changes. Yuan et al. [41] proposed a framework based on
convolution–deconvolution. A Jaccard distance-based loss function was considered apart
from the conventional cross-entropy loss. Al-Masni et al. [42] developed a full resolution
convolutional neural network (FrCN) that learns the properties of full resolution for each
input data individual pixel without subsampling. Bi et al. [43] proposed training the dis-
tinct CNN models for every class known using the category information. The hierarchical
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development model-based stepwise integration (PSI) model was used to improve the
output of lesion segmentation. Sarker et al. [44] proposed pyramid-pooling networks with
dilated residual networks to segment skin lesions. The combination of endpoint error loss
results in negative log-likelihood sharp boundaries. Xie et al. [16] suggested skin lesion
segmentation as a mutual bootstrapping CNN method and classification, in which one job
bootstraps the other.

Long et al. [45] first suggested a fully convolutional network (FCN) with a skip
architecture based on a standard classification network to segment an entire image swiftly.
Karthik et al. [46] used the Leaky ReLU and FCN in the final model layers frameworks
to separate the ischemic lesions. Milletari et al. [47] proposed a V-Net-based architecture
to segment the medical images in 3D and 2D formats. Many interactive segmentation
algorithms are developed, with the physicians assisting the whole segmentation task.
Olaf et al. [36] proposed a CNN and FCN-based biomedical image (cell) segmentation
architecture. The classification network, led by a coarse segmentation network trained
explicitly for this purpose, is guided by the expected coarse mask. Simultaneously, class-
specific localization maps are produced by classification activation mapping (CAM). Then
the concatenation is done into a U-Net-like network to improve the coarse mask prediction.
DEXTR (deep extreme cut) [34] showed that using extreme points (contours corner points)
as CNN input may improve the nature images instance segmentation results [34]. On
the other hand, reference [34] uses extreme point inputs, the quality of which define
the segmentation’s efficiency. According to research [48,49], the auxiliary function of
boundary/edge prediction helps in instance segmentation.

A loss function based on the Dice index is proposed to enhance the segmentation
network. In addition to FCN-based techniques, several DL-based image segmentation
algorithms have been proposed, including polygon-RNN [50], DeepLab V3+ [51], and
multi-task network cascades [52]. In recent years, novel approaches for various applica-
tions, such as area extraction [53], wound intensity correction [54], and automated lung
nodule categorization, have been developed [55]. Although there are positive effects of
the therapies discussed above, a few pieces of literature have examined how physicians
compute the ROI in skin imaging. The RL helps in imitating the demarcation technique of
a physician. RL is significantly progressing in many applications, by combining RL with
DL, DQN [24], DDPG [25], proximal policy optimization (PPO) [56], and asynchronous
advantage actor critic (AC) are examples of deep neural networks used in DRL techniques
for agent training. DeepMind achieves human-level game-playing abilities using DRL [23].
Therefore, other researchers have begun to use DRL for a range of problems, such as
recommendation systems [57], game simulators, the Internet of Things, and adaptive
packet scheduling [58]. DRL methods show promise in image classification, landmark
identification [59], object localization [60], visual navigation [61], large -scale 3D point
clouds semantic parsing [62], and face recognition [63].

Sahba et al. [64] developed a system for the image segmentation of prostate images
based on RL Q-learning [65], which helps in finding the best values suitable for the sub-
category of images and enhances the extraction of the ROI from the image. In contrast,
Q-learning is limited to a narrow set of states and actions. Several researchers have tried
to use DQN for image segmentation in recent years, combining Q-learning with CNN.
DeepOutline [66] is an end-to-end deep RL framework for semantic image segmentation
that works similarly to a user sketching the outlines of objects in an image with a pen.
This approach is also proposed as an MDP. SeedNet is a game-changing seed generation
method for interactive segmentation [67]. In each of these methods, DQN is utilized for
training an image segmentation agent. DQN, on the other hand, is unable to maintain
continuous activity, demanding additional operations to address the issue. In this article,
we use the DDPG algorithm directly to segment lesions to save time and effort.
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3. Proposed Method

This section addresses the public available skin lesion datasets, preparation of the
ground truth images, and our proposed RL method. The ISIC-2017 Skin Lesion Challenge
dataset [12] and the PH2 dataset [13] and Human against Machine (HAM 10,000) [68] are
three public datasets used by our method. In addition, we scaled all of the images to a size
of 361 × 256 pixels to increase Acc and reduce computational costs.

3.1. ISIC-2017 Segmentation Dataset

The ISIC is a leading organization in terms of the availability of skin lesion image
datasets. In addition, it provides expert annotations for the lesion images that can be used
by several automated computer-aided diagnosis (CADx) applications. These applications
use these datasets to detect melanoma and other cancers. This organization holds annual
skin lesion competitions to inspire more researchers to develop CAD applications to identify
lesions and promote skin cancer awareness [27]. The ISIC 2017 skin lesion dataset includes
2750 images, with 2000 in the training set, 150 in the validation set, and 600 in the test set.
The algorithms must attain high Sensitivity (Sen) and Specificity (Spe) values to ensure that
the lesions are correctly segmented. Unfortunately, when the ISIC challenge 2018 [27] was
held previously, they did not release the ground truth of their training dataset. As a result,
we focus our evaluation on the ISIC-2017 dataset.

3.2. PH2 Dataset

The PH2 dataset contains 200 images, 160 of which are naevus (both atypical and
normal naevus) and 40 melanomas [13]. The ground truth in this dataset offers the true
and precise boundaries of skin lesions. This dataset acts as an alternative test dataset
for DL models trained on the ISIC-2017 segmentation training set. The ISIC challenge
dataset contains several dermoscopic skin lesion images, which are collected by various
dermatoscopes and camera devices worldwide. Consequently, the color normalization and
illumination pre-processing must be done using the color constancy method. To process
the datasets, we utilized the shades of the gray algorithm [69]. Figure 3 shows our skin
lesion segmentation results by our proposed neural network architecture.
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3.3. Overview of Our RL Method

In this article, we propose a groundbreaking multi-stage segmentation strategy based
on DRL to detect skin lesions. In each step, a segmentation agent is trained to find the
best segmentation technique based on the previous step’s evaluation results. In this article,
the DDPG algorithm trains the segmentation agent to solve the MDP problem. DL and
deterministic policy gradient (DPG) are combined in the DDPG algorithms [70]. The actor
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uses the low-dimensional state space to make choices. The advantage of the DDPG is that
it classifies policies that outperform the actor.

Since DDPG is an off-policy algorithm, it provides a huge replay buffer, enabling it
to learn from a wide variety of unrelated transformations. The predicted gradient of the
action-value function is a more appealing version of the DPG. Because of its simplicity, the
DPG can be calculated far more accurately than the traditional stochastic policy gradient.
In high dimensional action spaces, DPG algorithms outperform their stochastic equivalents
drastically. DDPG is a non-policy model-based algorithm for studying continuous action.
It uses DQN’s ERM and slow learning goal networks and is built on DPG, which operates
through continuous action spaces. Compared to traditional methods, such as the level set,
Chan-Vese, and snakes, the method proposed does not require any technological skills.

The neural network optimizes the method proposed based on the segmentation results
from the prior step. Thus, the network evolves techniques for segmenting skin lesion
images without the need for specialized knowledge. DDPG is used to address problems
that require continuous action space based on the AC architecture. It is suggested to solve
two challenges: overcoming the delayed RL issue for neural networks and creating a
self-learning framework based on a neural network that needs no training or reinforcement
from the context. The AC paradigm is a mix of value and policy-based methods. The
first uses an implicit system for learning the value function and an action-based value
function to achieve the policy. Conversely, policy optimization refers to explicitly defined
model capacity, such as the policy gradient (PG) [71]. Our RL-based image segmentation
algorithm is shown in Algorithm 1 below:

Algorithm 1 RL based image segmentation.

Randomly initializing actor network µ(s|θµ) and critic network Q(s, a|θQ) with weights θQ and θµ.
Initializing of the target networks µ’ and Q’ and weights θµ’ ← θµ, θQ’ ← θQ

Initializing of experience replay memory R
for episode e = 1, N do

Initializing a random process M for exploration of actions
Received s1 initial observation state
for x = 1, T do

Select action parameter set at = µ(st|θµ) + Nt accordingly to the exploration noise and the current policy
Feed the action parameters (As0,Ast,Ast+1,..AsT) in the segmentation executor.
Feed the updated segmentation mask Smt + 1 and the ground truth for computation of reward function r(t).
Execution of actions at and observing reward rt and observation of new state st+1

Storing transition (st, at, rt, st+1) in R
Sampling of a random mini-batch (si, ai, ri, si+1) of N transitions from R
Set yi = ri + γQ’(si+1, µ’(si+1|θµ’)|θQ’)
Feed the ground truth Smt in the critic network

Feed the reward r(t) and long term expected return Q to the evaluation network.
Evaluation of the segmentation policy focused on reward r(t) and the long-term return Q.

Updating critic by minimize of the loss: L = 1
N ∑

i
(yi −Q(si, ai

∣∣∣∣θQ)) 2

Using the sampled policy gradient to update the actor policy:

∇θµ J ≈ 1
N ∑

i
∇a
(
Q(s, a)

∣∣θQ)∣∣∣∣s=si ,a=µ(si)∇ϑµ µ(s|θµ)|si

Updating the target networks:
θQ’ ← τθQ + (1 − τ) θQ’

θµ’ ← τθµ + (1 − τ) θµ’

end for
end for

The actor critics are made up of two networks: a value network and a policy network.
The former is called the critic, and the latter is called the actor. In the AC network, the
actor’s responsibility is to learn policy, while the critic helps evaluate the decision taken
by the actor. The actor aspires to get enhanced performance, while the critic aspires to be
more precise and accurate. Iterative optimization is used in the training process, following
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the theory of adversarial networks, due to the interdependence and interaction in both
the actor and the critic [72]. Moreover, our solution lets the off-the-shelf segmentation
executor perform a segmentation mechanism focused on the action parameters present as
a continuous set. The segmentation executor performs a brushstroke centered as a series of
action parameters and draws it onto a segmentation mask taken as an input to improve the
Acc of the segmentation process. The architecture of our proposed method is depicted in
Figures 3 and 4.
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Figure 4. Our RL framework for the segmentation process. The set of actions selected by the
actor depend on the new segmentation mask Smt and the input image. The parameters are passed
to the segmentation executor. Smt + 1, the updated segmentation mask, is then produced by the
segmentation executor. The new segmentation mask has three distinct features. The mask is used
for the calculation of reward by comparison with the ground truth mask. Secondly, it is given as
input to the critics and the ground truth to calculate the Q’s long-term estimated return. Thirdly, it is
used for updating the previously used Smt segmentation mask. The critic actor and segmentation
executor are both built using neural networks. The critic actor and segmentation executor are both
built using neural networks. The current segmentation methodology π is evaluated by the evaluator
and is based on the long-term return Q and reward R.

A segmentation executor is used in the proposed method to perform the segmentation
action, and it is based on neural networks. By using an initial segmentation mask and
an input image, the agent attempts to characterize an action series (As0,Ast,Ast+1,..AsT)
using the new segmentation strategy (S) for a task that requires segmentation (mapping of
action A to state S). The role of synthesizing the texture of each stroke in this RL method is
conceived as a sequential decision-making mechanism centered on the MDP mechanism,
with a soft tuft brush acting as an RL agent. The probability of good action is very high at
any stage, i.e., the decision should increase the compatibility between the future and the
previous decisions. The Acc with which the segmentation process is carried out directly
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affects the efficiency of the segmentation results. Segmentation methods are used to train
the DDPG handler. The segmentation executor adopts the brushstroke chosen by the
actor in process t and obtains a modified Smt + 1 segmentation mask. In the segmentation
procedure, these steps are repeated.

At the end of the segmentation phase, we have the final segmentation mask. The
residual design of our model is built similar to ResNet-18 [32] and is used for the policy
(actor) and the value (critic) network. Meanwhile, batch standardization is used by the
policy network [73]. Our method’s strength stems from integrating normalization into
the model design, and the execution of normalization takes for every mini-batch of the
training process. Batch normalization helps them train faster while reducing their time on
the initialization process. It serves as a regularizer, obviating the need for dropout in some
instances; by standardizing weights with translated ReLU (TreLU), the sensor network
aids in the training of the model. Convolutional layers and fully connected layers are used
in the segmentation network. The subpixel [74] technique is used in the segmentation
executor to increase the brushstroke resolution. CoordConv layer is taken as the first layer
by both the critic and the actor. The actor, critic, and the segmentation executor interaction
framework is shown in Figure 4. The architecture details of these are described in Figure 5.
In Section 3.4, the image segmentation method is depicted as an MDP process. The details
of the segmentation executor and the steps used to improve our segmentation results are
discussed in Section 3.3.
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segmentation executor produces various segmentation results depending on the parameters taken for action. The action set
is output by the actor as a series of five actions at a time, each with 8 parameters. The outputs of the critic are single valued
for estimation. ResNet-18 is the architecture used.

The ERM for DDPG training is proposed in Section 3.4, which helps us obtain im-
proved segmentation results

3.4. MDP for the Segmentation of Skin Lesion

The segmentation agent is used to find the ROI in this algorithm, with the skin lesion
segmentation mechanism modeled as an MDP process. State, space S, operation A, and the
reward features are the three main features of the MDP. This method’s three-dimensional
explanation is proposed as follows:
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State: many of the agent’s activities in the environment are included in the state space.
The agent’s decision will be based on this information. The state in this work consists of
the image I, the current segmentation mask Smt and the step-index t, which is defined as St
= (Smt, I, t). Smt is a mask for the segmentation process with a pixel scale of 0 or 255. The
background pixels are 255 and 0. The original segmentation default value mask is 0. I is
a representation of the lesion that requires segmentation. The index at step t is used to
differentiate between the various phases of the segmentation. The state of the segmentation
phase terminates in our multi-step segmentation process. The steps are maximized and
performed until the training process is completed. Until the maximum number of stages
has been achieved, the agent can enter the terminal state and continue to execute the final
segmentation task.

Action: the action area includes any operation that the segmentation executor can
conduct. In a state, the agent makes a policy declaration π in the space of action. The action
is then used to adjust the brushstroke direction and shape, described as several parameters.

Reward function: The reward function defines the state to reward mapping in the RL
task. Regularly, the agent’s job is to maximize the amount of discounted future rewards R.
This function signifies the immediate state reward when an action is changed, which helps
evaluate the result’s effectiveness for the decision taken by the agent. The M’s segmentation
mask changes at every step during the process of training. Consequently, the mask’s Acc is
measured by the comparison of the truth ground mask for every step. The L2 mean square
error is used as an arbitrary metric. Rl2 is the default L2 reward mode. To better reflect
each step’s effect, we need an essential reward feature to take advantage of the L2 change
pattern. The resemblance between the two images calculates the value of L2. If two images
are the same, the loss of L2 is equivalent to 0. The reward function can be modeled using
the difference in Rl2 between the two adjacent steps. Rdiff’s reward function is shown in the
Equation (1) below, where SmAt denotes the last segmentation mask, and Smtdenotes the
mask.

Rdiff = L2(Smt − 1, G) − L2(Smt, G) (1)

The reward function sends a favorable signal when the loss of L2 decreases and vice
versa. Therefore, it is essential to predict Q’s long-term return value at each point to
enhance the learning trends. The reward function underlines the effectiveness of each
action selected. The consistency of the operation chosen over the entire duration of the
segmentation is an essential function. Q(St, At) is the At value defined in the St state.

The Bellman Theorem is used to measure Q(St, At) and use the reward function. The
reward function is denoted by R(St, At). Q(St, At) is shown in Equation (2) below as:

Q(St, At ) = R(St, At ) + γmax
a′

Q
(
S′t, A′t

)
(2)

where Q(St, At) is the value of Q for the selection of At from the state St. The reward
function is represented by R(St, At). γ signifies the discount factor that represents the
advantage of future returns Q(St + 1, (St + 1)) in relation to the immediate reward R(St, At).
When γ value is zero, it is equal to the focus only on the immediate reward while ignoring
all the long-term returns. When the γ value is zero, it is equal to the focus only on the
immediate reward while ignoring all the long-term returns.

In the case of γ is 1, both the immediate reward and long-term returns are equally
important. The segmentation policy is denoted by π. Using the Bellman equation, the
critic helps estimate the decision based on the long-term return Q taken by the agent.
The Bellman rule is used to establish the learning process of the long-term reward Q of
the decision made by the agent. The value of Q depends on the activity and state. It is
calculated using the Bellman equation. The critics’ estimation increases the segmentation
Acc. Instead of Stand At, the critics are fed the ground truth of St. The new value function
after modification of V(St,G) undergoes training in the following Equation (3) below as:

V ∗ (s) = maxmaxa′
(

R(St, At) + γ V ∗
(
s′
))

(3)
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Finally, the algorithm of DDPG is used for optimizing the MDP for lesion segmentation.
Section 3.5 provides the detail of the hyperparameter action bundle and the segmentation
executor.

3.5. Action Bundle and the Segmentation Executor

The mask on which the neural network draws the brushstroke as the ROI renderer
implements the segmentation executor mentioned above. There are two advantages of the
segmentation executors. First, it could be well distinguished and combined with DDPG.
Secondly, a neural network can have a fine-grained quality. The segmentation executor is
run by using learning algorithms that are supervised and executes on a vast number of
samples taken for training, which are collected from various graphical rendering systems.
Several segmentation executors, including triangles, circles, square Bézier curves, and
B-spline curves, produce multiple brushstroke forms. A polynomial B-spline curve is more
reliable to employ than a Bezier curve since its degree is independent of the number of
control points. The B-spline curve offers local control over each section of the curve through
control points. For a given parameter, the total of the basis functions equals one. Based on
the experimental findings, QBC and B-spline significantly benefit in the segmentation of
lesion images. Thus, we use the QBC and B-spline to segment the lesion images. The QBC
action parameters are described in Equation (4) as follows:

At = (x0, y0, x1, y1, x2, y2, r0, r1), (4)

where the three QBC control point coordinates are (x0, y0, x1, y1, x2, y2), (P0, P1, P2), At =
(x0, y0, x1, y1, x2, y2, r0, r1).

The thickness of the two QBC endpoints (P0, P2) determines the parameters (r0, r1).
Approximately eight motion parameters were obtained using neural networks, with

the stroke proportions and forms being generally distinct. The path traced by a quadratic
Bézier curve is given in the form of function S(x) as seen in the Equation (5), given points
P0, P1, and P2. The following Equation (5) below describes the QBC theorem, and the
interpretation can be made by taking the linear interpolation of the points corresponding
to the linear Bézier curves from P0 to P1 and then from P1 to P2 respectively. Then we
rearrange the Equation (5) for obtaining S(x) in Equation (6) as follows:

S(x) = (1− x)[(1− x)P0 + xP1] + x[(1− x)P1 + xP2], 0 ≤ t ≤ 1 (5)

S(t) = (1− x)2P0 + 2(1− x)xP1 + x2P2, 0 ≤ t ≤ 1 (6)

The tangents at QBC P0 and P2 converge at P1. The curve starts at P0 in the direction
of P1, where the curve ranges from 0 to 1 and curves from the direction of P1 to the end of
P2. A spline of the order n is a piecewise polynomial function having a degree n− 1 present
in a variable x. The knots are those values of x, where the intersection of the polynomial
pieces occurs, and the listing is done in the ascending order as {t0, t1,t2,....,tn}. When the
distinct knots are considered, the first n − 2 derivatives of the polynomial components
across each knot are continuous. Over a r knot, the spline is continuous only on the first n –
r − 1 derivatives of the spline. In Equation (6), there is a single spline Si,n(y) that obeys a
given sequence of knots having a specific scaling factor satisfying Equation (7).

Si,n(y) =
{

0 i f y < xi or y ≥ xi+n
non− zero otherwise

(7)

If the constraint is additionally added, such that ∑i Si,n(y)=1 for all y between the last
and the first knot, then the factor of scaling ∑i Si,n(y) becomes fixed. The resulting spline
functions are called B-splines.
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The defining of higher order B-splines in the form of a recursive Equation is shown in
Equation (7) as follows:

Si,k+1(y) = wi,k(y)Bi,k(y) + [1− wi+1,k(y)]Bi+1,k(y) (8)

where wi,k(y) =

{
y−xi

yi+1−xi
, xi+k 6= ti

0 otherwise
.

The action bundle strategy further improves Acc and is inspired by the frameskip [57],
an effective hyperparameter for several RL tasks. The frameskip determines the granularity
at which environmental agents are tracked, and the action to be used shall be selected. The
skip frame parameter K allows the agent to take into repetition the actions at selected K
frames. The connection between the associated states and the computational resources
saved by this technique is explored. The connection between the different actions, referred
to as the action bundle, is explored. To encourage the actor to delve further into the action
space, the actor creates an action package by selecting K acts for the actions taken from the
action space bundle. The segmentation executor then conducts K operations in a single
action kit; thus, improving the segmentation result Acc. In Section 3.6, we discuss the ERM
for DDPG.

3.6. Modified ERM for DDPG

The various DRL algorithm-training instances have been referred to as transformations.
The five parameters for each transformation are the current state S, preferred actions A
dependent on S, instant reward R, next step S’, and terminal, i.e., when the state undergoing
execution comes to an end. The ERM stores transitions (S, A, R, S’, Terminal), and random
sampling prevents interaction between transformations. When the ERM retains many
samples from the agent’s experience with the environment, a small batch of transformations
for the training agent is randomly sampled from memory. The ERM is used to optimize
the critic inputs for the best possible assessment, as seen in Figure 6.
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State S and Action A are given as an input to the critic network to maintain the Q’s
long-term return. The performance of the critic depends on the actor’s determination to
determine the algorithm’s efficiency and the correct policy π. The new parameter as a
Ground Truth (GT) is added to optimize the necessary evaluation ability for segmentation
assignment. The current transition is a new step (S, A, R, S’, GT, Terminal). The ground
truth and S’ are sent to the critics for evaluation depending on the transition (new). On
the other side, the presence of the ROI resembles the tissue that surrounds it, resulting in
boundary ambiguity. In this situation, the whole scenario cannot be interpreted by the
segmentation agent. The modified ERM is seen in Figure 6.

4. Results and Discussion

The performance of the RL algorithm is evaluated in this section. We conduct a
qualitative and quantitative analysis of our proposed RL solution before comparing our
results to those of various state-of-the-art segmentation algorithms and methods.

4.1. Experimental Setup
4.1.1. Implementation Details

The type of hardware used to assess network efficiency has a significant effect on
its performance. The NVidia P100 form is used in the suggested RL method (16 G.B.
RAM@1.32GHZ), where the performance is 9.3 TFLOPS. The train and test datasets are
described in the device configuration discussed above. NVidia P100 is fitted with a 1.32 GHz
processor and 16 G.B. of RAM for network training and benchmarking. The architecture
uses Ubuntu 16.04, which is based on the programming language Python version 3.8. The
Adam optimizer is used by the network, which has a learning rate of [1e-4] and a micro-
batch of 16. The decision-maker acts in the most simplistic form, receives a reward from
the environment, and the environment shifts its state. The decision-maker then detects
the state of the environment, takes the initiative, earns a reward, and so on. The state
transformations are probabilistic and are solely determined by the current state and the
behavior shown by the actor. The actor’s reward is calculated by the behavior taken and
the initial and current condition of the environment. The reward profit ratio for gamma is
set to be at 0.850. The memory replay experience has been set to 600. The action bundle is
set as K = 5, and the step number is set as t = 3.

4.1.2. Evaluation Metrics

To ensure the performance of the proposed models, the basic statistical parameters
used in other literature works have been studied. (Sen) is calculated in Equation (9), as
follows:

Sen = TP/TP + FN (9)

It means that the number of lesion pixels in the image is distributed uniformly. Simi-
larly, the parameter Spe determines if the pixels proportions have been correctly assigned
to the image and is given in Equation (10) as follows:

Spe = T N/T N + FP (10)

The rate of pixel classification referred to as Acc is determined in Equation (11), as
follows:

Acc = TP/T N + TP + FN + FP (11)

The spatial overlap that is present between the assigned binary mask and the seg-
mented image is defined as the Dice coefficient (Dice), and is measured in Equation (12) as
follows:

Dice = 2 TP/2 TP + FP + FN (12)
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The Jaccard index is the relationship between the binary labels and the pixel values
analyzed for the input image. The Jaccard index is determined in Equation (13) as follows:

Jaccard Index = T P/T P + FN + FP (13)

It is generally used to measure the change in the center of transformation present in
the image axis. While true positive (TP) correctly depicts lesion pixels, false positive (FP)
incorrectly depicts non-lesion pixels as lesions, true negative (TN) depicts all incorrectly
labeled non-lesion pixels, and false negative (FN) represents the incorrectly identified
lesion pixels.

A pixel’s distance to a surface is defined in Equation (14) as follows:

HD (M, N) = max[m∈Md(m, N), maxn∈N d(n, M)] (14)

The Hausdorff distance between two surfaces M and N is computed using the differ-
ence between the predicted segmentation result and the ground truth. A lower HD number
means the performance of the segmentation algorithm is good. The RVD value infers if the
segmentation performed by the algorithm helps in the selection of the ROI area, more or
less. The algorithm extracts a larger region in the ROI segmentation, if the value of RVD is
positive or negative. The relative volume difference is calculated using the following RVD
formula in Equation (15), as follows:

RVD = 100 ×
[ ∣∣Mgt

∣∣
|Mm|

− 1

]
(15)

4.1.3. Evaluation and Comparison on the ISIC 2017 Dataset, HAM10000, and the
PH2 Dataset

The trained neural networks for the CADx diagnosis of the pigmented skin lesions are
challenging due to the lack and diversity of dermatoscopic image datasets. The HAM10000
dataset (Human against Machine with 10,000 training images) [68] is available to solve this
problem. In this dataset, different modalities are used to collect and retain dermatoscopic
images from various populations. The generated dataset contains 10015 dermatoscopic
images that are utilized for training machine-learning algorithms. The cases in this dataset
include all of the essential diagnostic categories as a representative collection in the pig-
mented lesions realms, such as intraepithelial carcinoma/actinic keratosis, Bowen’s disease
(akiec), benign keratosis-like lesions, basal cell carcinoma (bcc) (seborrheic keratosis, lichen
planus-like keratosis, and solar lentigines), and dermatofibroma are some of the conditions
(df).

The segmentation masks are evaluated on this dataset, and, as can be seen in Figure 7,
the masks are very precise and clear. Figure 8a represents the initial input image with
Figure 8b,c showing the segmentation of other methods that use a variety of loss functions.
It shows the influence of the loss function TL and GN on the input images. In these,
attention gates (AG) and group normalization (GN) analyze the input images and help in
the prediction of the boundaries of skin lesions.
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Figure 8d shows the lesion ROI computed by our RL algorithm. The results infer
that the lesions are segmented in an accurate and precise manner. Our method reuses the
CNN feature map and shortens the training and testing times, which helps us to train
our networks from start to finish efficiently. Our algorithm enables the identification
of high-dimensional hierarchical images. The detection approach is robust to changes
in conditions, such as illumination and color balance. Our algorithm outperforms the
alternative methods, as seen in Figure 9. Figure 9a shows the visual comparison evaluated
on the ISIC 2017 image dataset (with a black background). Figure 9a shows the input
images from the dataset. The provided binary mask (ground truth) is depicted in Figure 9b,
whereas the method’s prediction results (A.G. U-Net + GN) are depicted in Figure 9c.

Our RL algorithm results can be seen in Figure 9d. As can be seen, our algorithm is
capable of segmenting lesions with great Acc. However, the segmentation mask results
show the exact shapes of the lesions in some instances, which differ somewhat from the
ground truth. Since the ground truth images are annotated manually, such minor errors can
happen. Figure 10 shows the visual projections that have been derived from the proposed
ISIC 2018 image dataset (present without the black background). Figure 10a shows the
original image; Figure 10b shows the given binary mark (ground truth); Figure 10c the
prediction effects of the method (Att U-Net + GN); Figure 10d the results of our RL
algorithm. As can be seen, our segmentation mask corners are sharp and clear. The masks
are much similar to the ground truth images.
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Figure 8. The ablation experiment segmentation diagrams for the input image. (a) The initial image
taken from the dataset. (b) The image’s ground truth; (c) Att U-Net + GN + TL; (d) Att U-Net + GN +
FTL; (e) Att U-Net + GN + DL (TL: Tversky Loss; FTL: focal Tversky loss; DL = Dice loss). (f) Our RL
algorithm results. The segmentation mask boundaries are sharper than the state-of-the-art methods,
as shown.

Figure 11a shows the original input image; Figure 11b the binary mask (ground truth);
Figure 11c the segmentation results of simple U-Net; Figure 11d the segmentation results
of the SE block on the specific U-Net; Figure 11e the segmentation results of the BCDU
network (with 1 dense unit); Figure 11f segmentation results of the U-Net network (with
all the 64 filters); Figure 11g Att-U-Net + GN + TL segmentation results. Finally, Figure 11h
shows the results of our RL algorithm. As can be seen from the image, the results of the
masks are precise. The background is reflected in the darker (blacker) area, while the
foreground is the lighter (white) area.

This method is quick, and it helps in calculating the running time easily. This method
is well balanced because there is a high degree of separation between the foreground and
the background. The proposed number of parameters in a model, storage measurements,
and inference speed is compared to other state-of-the-art models. The GN used in previous
work tests the mean and variation of the channel groups since they have been standardized,
e.g., the AG U-Net model scans images in epochs that can easily connect to other algorithms.
In BCDU, the image upload epoch is 359 s, while the U-Net baseline is 165 s. It takes 133 s
to encrypt a terabyte of info. For the NVIDIA Quadro K1200 GPU, the proposed solution’s
predicted performance (AG U-Net + GN + TL) is faster than the U-Net baseline with a 256
× 256 input scale [75].
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Figure 9. The visual projections derived from the ISIC 2018 image dataset. (a) The original image
from the dataset. (b) The given binary mark (ground truth), (c) The prediction effects of the proposed
method (Att U-Net + GN). (d) The results of our RL algorithm. Our algorithm is able to segment the
lesions clearly. However, in some cases, it shows exactly the lesion shape in the segmentation mask,
deviating a bit from the ground truth. However, as can be seen, the segmentation masks are clear.

The visual segmentation results in Figures 9–12 demonstrate the proposed RL method’s
better segmentation performance than the other state-of-the-art methods. The performance
metrics visualization for the PH2 and the ISIC 2017 challenge dataset is shown in Figure 12.
The statistical measures used by our methods, such as Acc, Dice, Jaccard index, Sen, and
specificity are plotted for the PH2 and the ISIC 2017 skin segmentation dataset. The blue
line denotes the performance metrics plotted for the PH2 dataset, and the red line shows
the metrics for ISIC 2017 skin segmentation dataset. In Figure 12b, the statistical measures
of our method denoted as Dice, JSI, MCC, and the overall of these statistical measures are
plotted for the three categories of skin lesions: naevus, melanoma, and seborrheic keratosis.
While the other blue line and the red line denote the PH2 and the ISIC 2017 dataset metrics,
the highlighted points indicate the metric values such as Sen, Spe, and Acc for each of the
categories on both datasets. Figure 12c shows the action bundle effect.
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Figure 10. The visual images taken from ISIC 2018 image database model (present without the black
frame). (a) The original image, (b) the given binary mark (ground truth), (c) the prediction effects of
the method (Att U-Net + GN). (d) The results of our RL algorithm. As can be seen, our segmentation
masks corners are sharp and clear.

The Dice index values taken for the ablation experiments are shown in Table 1. The
various values of K are the different settings for the action bundle. We evaluate the effect
of the value K on the Dice Values. We infer from the results that our segmentation results
improve when we use both the modified ERM and action bundle. In Table 2, our approach
works better for Sen and Spe than all of the algorithms, with values 98.59% and 97%. We
aim to design these algorithms for high Sen and Spe. The Sen value is larger than other
methods in terms of various statistical parameters taken for comparison. Table 2 compares
the proposed model’s segmentation efficiency to that of state-of-the-art methods on the
PH2 dataset in terms of Dice index, Jaccard index, Acc, Sen, and Spe. The Acc, Jaccard index,
and Spe values are 0.96, 0.92, and 0.97. The higher Acc shows that the ratio of the correctly
segmented area over the ground truth is higher with respect to other methods. The percent
overlap between the target mask and the predicted mask is higher. Table 3 shows the results
of our suggested approaches and state-of-the-art algorithms on the ISIC 2017 dataset. The
participants in the ISIC-2017 segmentation challenge segmented the borders of the lesion
regardless of the lesion form. The value of the Jaccard index, Sen, Spe, Dice index, and Acc
are 0.84, 0.95, 0.985, 0.957, and 0.9539. The percentage of positive individual pixel values
that are correctly identified and the negative values that are correctly identified is higher
than the other methods. The majority of the lesion regions have a darker background and a
lighter boundary. As a result, the segmentation frameworks find the darker center but lacks
the bright border regions. Our method outperforms all other segmentation algorithms for
each skin lesion and can pick up the bright border regions.
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Figure 11. (a) Original input image, (b) ground truth images, (c) segmentation results of simple U-Net, (d) segmentation 
results of SE block on basic U-Net, (e) segmentation results of the BCDU network (with 1 dense unit), (f) segmentation 
results of the U-Net network (with all 64 filters), and (g) segmentation results of Att U-Net + GN + TL. (h) Results of our 
RL algorithm. As can be seen from the image, the results of the masks are clear. Our algorithm is able to segment the 
lesions with a high Acc. The other statistical measures are also higher than the other methods. 

Figure 11. (a) Original input image, (b) ground truth images, (c) segmentation results of simple
U-Net, (d) segmentation results of SE block on basic U-Net, (e) segmentation results of the BCDU
network (with 1 dense unit), (f) segmentation results of the U-Net network (with all 64 filters), and
(g) segmentation results of Att U-Net + GN + TL. (h) Results of our RL algorithm. As can be seen
from the image, the results of the masks are clear. Our algorithm is able to segment the lesions with a
high Acc. The other statistical measures are also higher than the other methods.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 27 
 

Our findings are also compared to U-Net [36], SE U-Net [37], BCDU [52], DeepLab 
V3+ [51], and other methods. The SE U-Net [35] approach works in a manner analogous 
to the proposed technique as it simplifies the inter-class dependencies by adding several 
convolution layer parameters. However, it is unable to perform the segmentation of minor 
and complicated lesions. The value of RVD is negative and has a value of –0.0451, which 
signifies our better performance compared to the other methods. In Tables 4 and 5, we 
compare our RL algorithm on three different lesion types: seborrheic keratosis (SK), 
naevus, and melanoma. It is compared with methods such as FCN-AlexNet [10], FCN16s 
[15], FCN 8s [41], etc. In Table 4, the algorithm outperforms other methods with an overall 
value of the Dice index as 93.98%, JSI as 88.79%, and MCC of 90.21%. The higher Dice and 
Jaccard index values indicate the better similarity of our qualitative results in comparison 
with the ground truth images. 

Table 5 shows the overall values for the various categories of the lesions are 96.25% 
for Sen, Spe as 94.71%, and Acc as 95.33%. Thus, we conclude that our RL algorithm on the 
benchmark datasets has enhanced the segmentation Acc, thus outperforming the state-of-
the-art methods, increasing 7%, 8%, 9%, respectively, for Dice index, specificity, and 
Jaccard index, respectively. The other statistical measures are also higher for our RL 
methods. Consequently, the computational complexity of the one-initialized Q-learning 
algorithm achieves a goal state with a target reward representation and finishes in less 
than O(en) steps. S denotes a finite state set, and G∈S is the goal states non-empty set. A(s) 
is the actions finite set that are taken in execution such that s ∈ S.where e = ∑s∈S|A(s)|. 
Our algorithm can solve complex problems of identifying skin lesions, which is very 
difficult using conventional techniques. The technique achieves long-term results and 
corrects the error that occurs during the training process. Once our model has 
corrected an error, there is less chance that it occurs again. 

 
Figure 12. (a)The statistical measures used by our method such as Acc, Dice, Jaccard index, Sen, and Spe are plotted 
for the PH2 and the ISIC 2017 skin segmentation dataset. The blue line denotes the performance metrics plotted for 
the PH2 dataset and the red line shows the metrics for ISIC 2017 skin segmentation dataset. In (b), the statistical 
measures of our method denoted as Dice, JSI, MCC, and the overall of these statistical measures are plotted for the 
three categories of skin lesions: naevus, melanoma, and seborrheic keratosis. While the other blue line and the red 
line denotes the metrics for the PH2 and the ISIC 2017 dataset, the highlighted points indicate the metric values such 
as Sen, Spe, and Acc for each of the categories on both the datasets. (c) Shows the action bundle effect. The various 
values of K are the different settings for the action bundle. We evaluate the effect of the value K on the dice values. We 
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Figure 12. (a)The statistical measures used by our method such as Acc, Dice, Jaccard index, Sen, and Spe are plotted for the
PH2 and the ISIC 2017 skin segmentation dataset. The blue line denotes the performance metrics plotted for the PH2 dataset
and the red line shows the metrics for ISIC 2017 skin segmentation dataset. In (b), the statistical measures of our method
denoted as Dice, JSI, MCC, and the overall of these statistical measures are plotted for the three categories of skin lesions:
naevus, melanoma, and seborrheic keratosis. While the other blue line and the red line denotes the metrics for the PH2 and
the ISIC 2017 dataset, the highlighted points indicate the metric values such as Sen, Spe, and Acc for each of the categories
on both the datasets. (c) Shows the action bundle effect. The various values of K are the different settings for the action
bundle. We evaluate the effect of the value K on the dice values. We infer from the results that our segmentation results
improve when we use both the modified ERM and action bundle.
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Table 1. The Dice index values taken for the ablation experiments. The various values of K are the different settings for the
action bundle.

Statistical
Measure

Basic
Model

Modified ERM
Included

With Action
Bundle With Both K = 1 K = 3 K = 5 K = 7

Dice Index 93.00 93.98 94.0 95.7 93.0 93.98 95.79 94.0

Table 2. The proposed RL model’s segmentation efficiency is compared to state-of-the-art methods. The statistical measures
such as Dice score, Jaccard index, Acc, Sen, and Spe are evaluated on the PH2 dataset.

Method Dice Score Jaccard Index Acc Sen Spe

U-Net [36] 0.89 0.81 0.94 0.93 0.94
U-Net (all 64 filters) [37] 0.90 0.81 0.94 0.93 0.95

SE_U-Net [51] 0.91 0.83 0.95 0.89 0.96
BCDU [52] 0.90 0.82 0.94 0.94 0.95

Attn_U-Net+GN [75] 0.91 0.83 0.95 0.94 0.95
FCN-16s [15] 0.88 0.80 0.91 0.93 0.88

DeepLab V3+ [51] 0.89 0.81 0.92 0.94 0.89
Mask R-CNN [48] 0.90 0.83 0.93 0.96 0.89
Ensemble-S [75] 0.93 0.90 0.83 0.96 0.92

Xie et al. [16] 0.88 0.80 0.92 0.98 0.86
Sarker et al. [44] 0.88 0.80 0.91 0.98 0.85

SLSNet [76] 0.90 0.81 0.94 0.87 0.95
Lina et al. [77] 0.87 0.79 0.94 0.88 0.95

Wang et al. [78] 0.89 0.82 0.87 0.62 0.94
Wibowo et al. [79] 0.88 0.80 0.93 0.86 0.96

Our RL algorithm (proposed) 0.94 0.92 0.96 0.9859 0.985

Table 3. Results comparison of our proposed RL method and the state-of-the-art methods on the ISIC skin lesion segmenta-
tion challenge 2017 dataset.

Method Acc Dice Score Jaccard Index Sen Spe

First: Yading
Yuan (CDNN
model) [35]

0.934 0.849 0.765 0.825 0.975

Second: Matt
Berseth (U-
Net) [37]

0.932 0.847 0.762 0.820 0.978

U-Net [36] 0.901 0.763 0.616 0.672 0.972
SegNet [38] 0.918 0.821 0.696 0.801 0.954
FrCN [47] 0.940 0.870 0.771 0.854 0.967

Ensemble-S [75] 0.933 0.844 0.760 0.806 0.979
Xie et al. [16] 0.939 0.866 0.788 0.877 0.955

Sarker et al. [44] 0.941 0.871 0.793 0.899 0.950
SLSNet [76] 0.944 0.875 0.777 0.841 0.953

Lina et al. [77] 0.941 0.867 0.790 0.892 0.939
Wang et al. [78] 0.873 0.898 0.829 0.590 0.941

Wibowo et al. [79] 0.938 0.877 0.802 0.862 0.963
Our RL algorithm (proposed) 0.9539 0.957 0.840 0.950 0.985

The qualitative results show our model’s segmentation mask performing better than
the other models. The statistical measures of our RL algorithm are compared to the results
of the standard algorithms, such as U-Net [36], SegNet [38], FrCN [42], etc. The Acc, dice
values are 95.39% and 95.7%, ensuring that our algorithm results are superior to the other
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state-of-the-art methods. From this, we infer that we can qualitatively and quantitatively
segment skin lesions better than the other approaches.

Our findings are also compared to U-Net [36], SE U-Net [37], BCDU [52], DeepLab
V3+ [51], and other methods. The SE U-Net [35] approach works in a manner analogous
to the proposed technique as it simplifies the inter-class dependencies by adding several
convolution layer parameters. However, it is unable to perform the segmentation of minor
and complicated lesions. The value of RVD is negative and has a value of –0.0451, which
signifies our better performance compared to the other methods. In Tables 4 and 5, we
compare our RL algorithm on three different lesion types: seborrheic keratosis (SK), naevus,
and melanoma. It is compared with methods such as FCN-AlexNet [10], FCN16s [15], FCN
8s [41], etc. In Table 4, the algorithm outperforms other methods with an overall value of
the Dice index as 93.98%, JSI as 88.79%, and MCC of 90.21%. The higher Dice and Jaccard
index values indicate the better similarity of our qualitative results in comparison with the
ground truth images.

Table 4. For the ISIC 2017 test set, the segmentation results of our proposed RL algorithm and the current state-of-the-art
segmentation methods. The statistical measures used are dice score, Jaccard similarity index (JSI), Mathews correlation
coefficient (MCC), and the melanoma category seborrheic keratosis (SK).

Method Naevus Melanoma Seborrheic
Keratosis Overall

Dice JSI MCC Dice JSI MCC DICE JSI MCC DICE JSI MCC
FCN-AlexNet [10] 85.61 77.01 82.91 75.94 64.32 70.35 75.09 63.76 71.51 82.15 72.55 78.75

FCN-32s [11] 85.08 76.39 82.29 78.39 67.23 72.70 76.18 64.78 72.10 82.44 72.86 78.89
FCN-16s [15] 85.60 77.39 82.92 79.22 68.41 73.26 75.23 64.11 71.42 82.80 73.65 79.31
FCN-8s [41] 85.33 76.07 81.73 80.08 69.58 74.39 68.01 56.54 65.14 81.06 71.87 77.81

DeepLabV3+ [51] 88.29 81.09 85.90 80.86 71.30 76.01 77.05 67.55 74.62 85.16 77.15 82.28
Mask R-CNN [48] 88.83 80.91 85.38 80.28 70.69 74.95 80.48 70.74 76.31 85.58 77.39 81.99
Ensemble-S [75] 87.93 80.46 85.58 78.45 68.42 73.61 76.88 66.62 74.05 84.42 76.03 81.51

Xie et al. [16] 88.87 81.69 85.93 83.05 74.01 77.98 81.71 72.50 77.68 86.66 78.82 83.14
Sarker et al. [42] 89.28 82.11 86.33 83.54 74.53 78.08 82.53 73.45 78.61 87.14 79.34 83.57

SLSNet [76] 86.59 78.76 79.80 92.12 79.25 79.53 86.12 74.52 77.12 88.27 77.54 78.81
Lina et al. [77] 87.12 80.35 85.14 86.25 78.69 80.25 84.35 81.32 83.25 85.90 80.12 82.88

Wang et al. [78] 88.12 79.14 80.12 89.12 77.24 80.37 86.37 83.40 81.42 87.87 79.90 80.63
Wibowo et al. [79] 86.32 79.45 81.22 85.67 76.27 80.27 85.39 79.58 79.38 85.79 78.40 80.29
Our RL algorithm 93.00 89.57 90.78 95.79 91.93 87.11 95.00 93.23 92.74 94.59 91.57 90.21

Table 5. For the ISIC 2017 skin lesion segmentation test set, we evaluated the performance of our proposed RL method and
the state-of-the-art segmentation method. The statistical measures used are Sen, Spe, Acc, and the melanoma category is
seborrheic keratosis (SK).

Method Naevus Melanoma Seborrheic
Keratosis Overall

Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc
FCN-AlexNet [10] 82.44 97.58 94.84 72.35 96.23 87.82 71.70 97.92 89.35 78.86 97.37 92.65

FCN-32s [11] 83.67 96.69 94.59 74.36 96.32 88.94 75.80 96.41 89.45 80.67 96.72 92.72
FCN-16s [15] 84.23 96.91 94.67 75.14 96.27 89.24 75.48 96.25 88.83 81.14 96.68 92.74
FCN-8s [41] 83.91 97.22 94.55 78.37 95.96 89.63 69.85 96.57 87.40 80.72 96.87 92.52

DeepLabV3+ [51] 88.54 97.21 95.67 77.31 96.37 89.65 74.59 98.55 90.06 83.34 97.25 93.66
Mask R-CNN [48] 87.25 96.38 95.32 78.63 95.63 89.31 82.41 94.88 90.85 84.84 96.01 93.48
Ensemble-S [75] 84.74 97.98 95.58 73.35 97.30 88.40 71.80 98.58 89.91 80.58 97.94 93.33

Xie et al. [16] 90.93 95.74 95.51 83.40 95.00 90.61 85.81 94.74 91.34 88.70 95.45 93.93
Sarker et al. [42] 92.08 95.37 95.59 84.62 94.20 90.85 87.48 94.41 91.72 89.93 95.00 94.08

SLSNet [76] 86.23 94.22 93.61 85.94 93.65 92.52 84.18 94.21 93.81 85.45 94.02 93.44
Lina et al. [77] 87.22 94.25 93.14 85.56 93.57 92.58 86.38 94.12 91.22 86.38 93.98 92.31

Wang et al. [78] 63.54 93.25 86.54 66.51 94.31 85.62 68.05 93.72 84.33 66.03 93.76 85.49
Wibowo et al. [79] 86.25 95.29 92.56 87.12 94.32 91.29 86.32 93.25 90.98 86.56 94.28 91.61
Our RL algorithm 96.79 98.60 96.33 93.96 98.59 95.39 93.39 98.60 94.27 96.25 98.50 95.33

Table 5 shows the overall values for the various categories of the lesions are 96.25%
for Sen, Spe as 94.71%, and Acc as 95.33%. Thus, we conclude that our RL algorithm
on the benchmark datasets has enhanced the segmentation Acc, thus outperforming the
state-of-the-art methods, increasing 7%, 8%, 9%, respectively, for Dice index, specificity,
and Jaccard index, respectively. The other statistical measures are also higher for our RL
methods. Consequently, the computational complexity of the one-initialized Q-learning
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algorithm achieves a goal state with a target reward representation and finishes in less than
O(en) steps. S denotes a finite state set, and G∈S is the goal states non-empty set. A(s) is
the actions finite set that are taken in execution such that s ∈ S.where e = ∑s∈S|A(s)|. Our
algorithm can solve complex problems of identifying skin lesions, which is very difficult
using conventional techniques. The technique achieves long-term results and corrects the
error that occurs during the training process. Once our model has corrected an error, there
is less chance that it occurs again.

In case the training dataset is absent, the RL algorithm can learn from its experiences.
It maintains a balance between exploitation and exploration, where exploration is the
process of exploring the most rewarding ways to reach the target. In contrast, exploitation
is searching for the most optimal solutions to see if they are better than the solution that
has been tried before.

5. Conclusions

This paper proposes an effective multi-step approach for skin lesion segmentation
based on a deep reinforcement-learning algorithm. The segmentation process is proposed
as a Markov decision process and is solved by training an agent to segment the region of
interest using a deep reinforcement-learning algorithm. The agent follows a set of serial
actions for the region delineation. The action is defined as a set of continuous parameters.
The segmentation accuracy is boosted further by using enhanced replay memory and the
action bundle as a hyperparameter. The outcomes of the experiments demonstrate that the
proposed reinforcement learning method yields good results. In the future, this method
can be used for other medical image segmentation tasks and other forms of diagnostic
imaging. The proposed approach can also detect small irregular-shaped objects or objects
with no fixed geometry in the segmentation task. The statistical results infer the better
performance of our reinforcement-learning algorithm on the datasets; thus, outperforming
the state-of-the-art methods with an increase of 7%, 8%, 9%, respectively, for Dice index,
specificity, and Jaccard index, respectively. The other statistical measures, such as accuracy
and MCC, also rank higher than the other methods. Thus, the reinforcement-learning
model proposed can learn with ease how to segment complex skin lesion images.
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