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Abstract: Biocompatible nanosystems based on polymeric materials are promising drug delivery
nanocarrier candidates for antitumor therapy. However, the efficacy is unsatisfying due to nonspecific
accumulation and drug release of the nanoparticles in normal tissue. Recently, the nanosystems that
can be triggered by tumor-specific stimuli have drawn great interest for drug delivery applications
due to their controllable drug release properties. In this review, various polymers and external
stimuli that can be employed to develop stimuli-responsive polymeric nanosystems are discussed,
and finally, we delineate the challenges in designing this kind of Nanomedicine to improve the
therapeutic efficacy.
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1. Introduction

The progress of nanotechnology in the 21st century has tremendously promoted the
Nanomedicine development, leading to pharmaceutical improvements and healthcare en-
hancements. The nanoparticle systems that are predominantly developed for drug delivery
are liposomes, nanomicelles, dendrimers, nanocrystals, and polymeric nanoparticles [1–5].
In particular, owing to their good biocompatibility and high designability, polymer-based
nanoparticles have been extensively employed as drug delivery nanocarriers. Moreover,
the biostability of polymeric nanosystems seems to be better than other nanocarriers, such
as liposomes, and the delivery features can be manipulated by engineering the polymer
composition and structure. A lot of polymers including natural and synthetic ones such
as polycaprolactone and chitosan have been explored as building blocks for nanocarriers
development. In particular, due to their good biocompatibility, availability, and FDA ap-
proved status, poly(lactic-co-glycolic acid) (PLGA) and poly(lactic acid) (PLA) are the most
extensively studied polymers. The PLGA- and PLA-based nanocarriers are easy to synthe-
size, and have been investigated for the delivery of many therapeutic agents [6–8]. Unfor-
tunately, the drug encapsulated in these nanoparticles can be released in a relatively rapid
speed (more than 50% release in 10 to 48 h) in both lesions and normal tissue [9]. The lack
of spatiotemporal control over the nanosystems in determining where and when the loaded
drug is released can significantly compromise the merits of these nanomedicines [10,11].
To this end, the capability to modulate the drug release activity of nanocarriers by using
specific triggers including both exogenous and endogenous stimuli can largely overcome
the weakness of these conventional carriers and confer spatiotemporal control over their
drug release.

The last few years have witnessed tremendous progress in designing stimuli-responsive
drug delivery nanocarriers to improve their tumor specificity when administered systemi-
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cally [12]. A variety of stimuli-responsive polymeric nanocarriers that assemble or disas-
semble in response to endogenous stimuli such as pH [13], GSH [14] and protease [15,16]
or exogenous stimuli such as light [17], temperature [18] and ultrasound [19] have been
developed for controlled drug release at the right site and time. For example, capitalizing
on the slightly acidic microenvironment in tumor tissue in comparison to physiological
condition (pH 7.4) in normal organs, pH-responsive nanocarriers have been designed for
pH-triggered drug release at tumor site selectively [13,20–22]. The highly hypoxic tumor
microenvironment that contains over 4-fold higher levels of reducing glutathione (GSH)
than normal tissues is the advantage to develop GSH-responsive polymeric drug delivery
systems [14,23–26]. In addition, owing to the overexpression of many proteases in cancer
and their key roles in tumor progression, a number of protease-responsive polymeric
nanosystems have been developed by integrating polymer materials with peptide modules
to impart the nanoparticles with protease-selectivity, allowing for protease-unlocked drug
release at tumor sites [16,27–29]. On the other hand, the nanoparticles that can be triggered
by exogenous stimuli enable the spatiotemporal control over the drug release through a re-
mote equipment [30]. For example, light, especially near infrared (NIR) light, has frequently
been exploited as stimulus to trigger the drug release of some well-designed polymeric
nanosystems both in vitro and in vivo [31–34]. A variety of nanoparticles that are sensitive
to temperature have been designed for thermo-controlled drug release based on thermo-
sensitive polymeric materials such as poly(N-iso-propylacrylamide) (PNIPAAm) [35–37].
Ultrasound is also a widely explored stimulus for activatable polymeric drug delivery
nanocarriers development due to the non-invasiveness and deep tissue penetration [38–40].
These stimuli-responsive polymeric nanosystems have shown great potential in improving
the tumor-specificity of drug delivery and enhancing the anti-tumor efficacy.

In this article, we will review the recent advances and current state of employing
stimuli-responsive polymeric materials for developing various kinds of activatable nanocar-
riers for controlled drug delivery applications. Firstly, typical polymers that can be ex-
ploited to design activatable drug delivery nanosystems are summarized (Table 1). Next,
various polymeric drug delivery nanoplatforms that can be triggered by external stimuli
including endogenous and exogenous targets are surveyed.

2. Typical Polymers for Controlled Drug Delivery
2.1. Poly(caprolactones)

Most synthetic polymers are programmable and their properties can be easily modu-
lated by chemical modification. However, most of their backbones are composed of amide
or carbon bonds that are difficult to be degraded in physiological conditions, and their
biocompability is not good. Poly(caprolactone) (PCL) is the widely used synthetic aliphatic
polyester for developing nanoparticles for drug delivery applications. It is synthesized
from ring-opening polymerization based on ε-caprolactone by employing tin octoate as
catalyst. Up to now, PCL has not only been applied in developing nanosystems for drug
delivery applications but also commonly utilized as scaffold matrix material in tissue
engineering [41]. As the degradation rates and solubility of PCL is low, the strategies
such as synthesis of block copolymers and modification with other polymers have been
employed to improve its solubility and reactivity properties [42,43]. The PCL-based am-
phiphilic copolymers synthesized by modifying the hydrophobic PCL with hydrophilic
polymers such as PEG, poly(2-ethyl-2-oxazoline) (PEtOz), poly (acrylic acid) (PAA) or
poly(N,N-dimethylamino-2-ethyl methacrylate) (PDMAEMA) can be used to establish
micelles [44]. For example, the diblock copolymers PCL-PEG that are functionalized with
integrin-targeting peptide RGD have been used to design nanomicelles for tumor-targeted
doxorubicin delivery [45]. Furthermore, a number of PCL-based block copolymers have
been used to formulate stimuli-responsive nanomicelles for tumor-specific drug release
applications [46].
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2.2. PLGA Polymers

The poly (D,L-lactic-co-glycolic acid) (PLGA) polymer is another extensively studied
aliphatic polyester with ester bond in the backbone, which can be hydrolyzed in wa-
ter [8,47]. The PLGA with a diverse range of molecular weights and lactide to glycolide
ratios can be synthesized by ring-opening polymerization. This polymer has been widely
used as building blocks to develop nanoparticles for drug delivery applications, and the
biocompatibility and blood circulation time can be largely improved when modified with
PEG, the clinically approved polymer, to obtain PLGA-PEG copolymers [48]. The versatility
and solubility of PEG motif allows for modification with various functional ligands at
the terminal ends, leading to the established nanosystems with specific functions [49–51].
Additionally, the viscous gels that are responsive to temperature can be prepared based
on PLGA triblock copolymers with ester linkages in the backbone, which is a promising
strategy to develop thermo-responsive drug delivery nanocarriers [52].

2.3. Poly(amides)

The poly(amino acids) polymers are the most commonly used poly(amides) for de-
signing an enzyme, especially protease-responsive drug delivery nanosystems, due to their
good biocompatibility and cleavability by enzymes [53]. Moreover, the synthetic route
is facile and relatively mature, making poly (amino acids) an ideal polymeric material to
build various kinds of nanosystems for drug delivery applications [54]. It is convenient to
integrate enzyme-responsive substrates into the polymers due to the high programmability
of poly(amino acids), making them attractive candidates for design enzyme-responsive
drug delivery nanosystems [55]. The most extensively utilized poly (amino acids) poly-
mers are synthesized with a single type of amino acid and poly(γ-glutamic acid) [56–59].
Capitalizing on the positive charges of lysine that can interact with nucleic acids through
electrostatic interactions, the poly(L-lysine) has been widely used to design gene delivery
nanosystems [60–64]. It can facilitate endosomal escape of DNA or RNA through the
proton sponge effect. Although some cytotoxicity may be produced by the polymers due to
their highly cationic properties, their biocompatibility can be improved by modifying them
with other polymers to mask the positive charges [65,66]. The other highly programmable
poly(amino acids) that can be functionalized to establish versatile nanoparticles is Poly(γ-
glutamic acid). Notably, the carboxylate groups on their side chains can be modified with
functional moieties such as tumor targeting ligands, and drugs [66]. Previous studies
demonstrated that the poly(γ-glutamic acid)-based nanoparticles can be used for the de-
livery a variety of drugs including chemotherapeutics, therapeutic protein, agents, and
immunotherapeutics [67–69].

2.4. Poly(ortho esters)

Poly(ortho esters) (POEs), including POE I−IV, are synthetic polymer materials that
were used as surgical sutures in the last century [70]. Previous studies demonstrated
that their hydrolysis rates could be manipulated by acidic excipients, which confer the
POE-based nanosystems with acidity control over their drug release activities [71]. For POE
I−III, they have been less investigated as polymeric materials for drug delivery applications
due to their limited water penetrability and highly hydrophobicity. The POE IV with their
backbone instilled with glycolic and lactic monomers has demonstrated great potential
in developing drug delivery nanosystems for delivering nucleic acid therapeutics and
small molecules. By producing glycolic or lactic acid monomers during degradation, the
hydrolysis of polymeric ester linkages would be promoted. Moreover, the degradation rate
of POE IV could be manipulated by adjusting the property of latent acid diols and diol R
group [72].

2.5. Poly(ester amides)

Poly(ester amides) (PEAs) are the combination of polyesters and polyamides, which
confers them with enzyme-responsive properties. In particular, the amino acid-based PEAs
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are promising candidates for biomedical applications including drug delivery due to their
favorable biological and mechanical properties [73–75]. Of note, their properties such as
hydrophility/hydrophobicity and substrate recognition are adjustable by programming the
constitution and sequence of amino acids [76]. Owing to the ester and amide bonds in the
backbone of PEAs, they can be efficiently hydrolyzed by enzymes such as proteases [77].
In addition, due to the high programmability of PEAs, large libraries of the polymers with
a variety of backbones could be built, enabling high throughput screening of PEAs with
specific properties for DNA or siRNA delivery [78,79].

2.6. Poly(phosphoesters)

The other polymers that are promising to be utilized as building blocks for drug
nanocarrier construction is poly(phosphoesters) due to their good biocompatibility [80,81].
The phosphorus atom in poly(phosphoesters) allows for modification with a number of drug
reagents, such as small molecular drugs and protein therapeutics. Meanwhile, modification
with different molecules enables the physicochemical modulation of poly(phosphoesters),
which may improve their properties for drug delivery applications [82]. Because of the
structure similarities between poly(phosphoesters) and nucleic acids, they are favorable
polymers for DNA/RNA delivery and the release activity could be controlled by en-
zymes [83]. Furthermore, their potential in drug delivery applications could be enhanced
due to their capability of copolymerization with other polymers such as polyesters or
polyethers, and thus, this has gained much attention [84,85].

2.7. Natural Polymers

The other class of polymers that have been applied in drug delivery are natural
occurring ones such as albumin, collagen, hyaluronic acid (HA), chitosan, dextran, and
cyclodextrins due to their good biocompatibility and abundance in nature [86]. Compared
with synthetic polymers, the natural ones are more easily degraded in the physiological
conditions and more biocompatible, while their programmability are limited. Among
these natural polymers, the HA and chitosan are the two most widely used materials in
drug delivery applications. Specifically, chitosan is derived from chitin that is naturally
found in crustacean exoskeleton [87]. Chitosan has been widely employed to develop
nanosystems for oral drug delivery [88]. It is broken down by lysozyme and chitosan
polymers with low degrees of acetylation and can remain in vivo for several months. It has
been used for DNA delivery and pulmonary drug delivery due to its positive charge and
mucoadhesive properties [89,90]. Additionally, the ease of the side group modification and
integration with many other polymeric materials making chitosan a versatile building block
for development of a variety of polymeric nanocarriers for controlled drug release [91–93].
HA is the other extensively studied natural polysaccharide polymer that is composed
of N-acetyl-D-glucosamine disaccharide and dglucuronic acid [94]. HA has been widely
utilized in biomedical applications including tissue engineering and drug delivery due to its
favorable properties such as good biocompatibility and low immunogenicity [95–97]. The
conjugation of HA with other hydrophobic therapeutics can improve the drug solubility
and blood circulation time. Owing to its highly hydrophilicity and capability to expand
the volume (up to 1000-fold) after absorbing water, HA has been widely used to develop
hydrogel-based drug delivery systems [98,99].

To make it clearer, the above-mentioned polymers, their applications, advantages, and
drawbacks are summarized in the Table 1 bellow.
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Table 1. Polymers for drug delivery applications.

Name of Polymer Applications Stimuli Benefits Drawbacks References

PCL Drug delivery,
tissue engineering Heat, pH Multifunctional

adjustability
Low degradation rates

and solubility [41–46]

PLGA Drug delivery Heat Ease of synthesis,
hydrolyzable Low biocompatibility [8,47–52]

Poly(amides) Drug delivery Enzyme, ROS Cleavability by
enzymes Cytotoxicity [53–69]

POEs Surgical sutures,
drug delivery pH, light Acidity control Highly hydrophobicity [70–72]

PEAs Drug delivery Enzyme, US High programmability Biocompatibility [73–79]

Poly(phosphoesters) Drug delivery Enzyme
Good biocompatibility,

multifunctional
adjustability

Synthesis complexity [80–85]

Natural polymers Drug delivery,
tissue engineering Enzyme, pH Good biocompatibility Programmability [86–99]

3. Stimuli-Responsive Polymeric Nanosystems

Stimuli-responsive nanoparticles are degradable nanosystems engineered from spe-
cific polymeric materials that undergo functional or structural changes after being triggered
by external stimuli. After being trigged by specific stimuli, the loaded (encapsulated or con-
jugated) drugs will be released by deshedding or breaking the linking bonds, thus realizing
controlled drug release [100,101]. The tumor hallmarks that can be exploited as stimuli
such as tumor overexpressed enzymes, mild acidic pH, and redox potential are called
endogenous stimuli and the triggers such as light, thermo, and ultrasound that are from
outside of the body are termed exogenous stimuli. Both endogenous and exogenous stimuli
can be introduced to polymeric nanosystems to develop stimuli-sensitive nanomicelles
to minimize the side effects by controlling their drug release activities with spatiotem-
poral precision, hence enhancing the anti-tumor efficacy. In the following part, we will
present the widely used stimuli-responsive polymeric nanosystems including endogenous
platforms: enzyme-responsive, pH-responsive, redox-responsive, and exogenous ones:
light-responsive, thermo-responsive, and ultrasound-responsive choices.

3.1. Endogenous Stimuli-Responsive Polymeric Nanosystems
3.1.1. Enzyme-Responsive Polymeric Nanosystems

Enzymes, proteins with catalytical activities, play critical roles in the regulation of
almost all physiological processes [102–104]. The aberrations of enzymes activity have
been implicated in a variety of diseases [103]. In particular, a variety of enzymes such as
proteases are frequently overexpressed in cancers and have been recognized as biomarkers
of tumors [27,105,106]. Besides their biomarker role in malignancies, most enzymes can
catalyze the chemical reactions in a mild condition in comparison to the harsh conditions of
many traditional chemical reactions [107]. Additionally, the enzymes show high specificity
to their substrates, allowing for selective chemical reactions catalyzed by enzymes [108].
The last decade has witnessed great progress in developing stimuli-responsive drug deliv-
ery nanocarriers controlled by tumor-overexpressed enzymes such as proteases [109].

Proteases, the enzymes that degrade proteins by catalyzing the hydrolysis of pep-
tide bonds, are frequently dysregulated in pathologies. A lot of proteases such as ma-
trix metalloproteases (MMPs) and cathepsin B (CatB) are overexpressed in tumors, and
they are widely recognized as biomarkers for tumor diagnosis and therapy [27,105]. The
peptide substrates that can be specifically recognized by tumor-overexpressed proteases
such as MMP2/9 and CatB have been widely employed to design protease-responsive
polymeric drug delivery systems, [28,110–112] and several of them are in clinical tri-
als [112–114]. Considering the key role proteases play in tumorigenesis, progression, and
metastasis, the advantages of protease-triggered drug delivery systems are high speci-
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ficity and efficacy. In one case, Gu et al. developed a smart drug delivery nanosystems
by masking the positive charges on low molecular weight protamine with a polyanionic
peptide (E10) via a MMP-2/9-hydrolyzable peptide linker sequence (Pro-Leu-Gly-Leu-Ala-
Gly, PLGLAG) to obtain an activatable low molecular weight protamine (ALMWP, E10-
PLGLAG-VSRRRRRRGGRRRR) [115]. The ALMWP was further conjugated to PEG-PCL
drug delivery nanosystems to enhance the tumor accumulation and treatment efficacy of
the nanoformulation. Apart from MMPs, cathepsins are the other useful class of proteases
that have drawn great interest in developing a variety of stimuli-responsive nanomicelles
for drug delivery applications. The past decades have witnessed great progress in design-
ing and constructing a range of cathepsin-responsive polymeric drug delivery systems,
which are predominantly engineered by introducing a tetra-peptide module (Gly-Phe-
Leu-Gly, GFLG) that can be specifically cleaved by CatB to polymeric materials [116,117].
The pioneering work of Kopeck et al. conjugated the drug to poly(N-(2-hydroxypropyl)
methacrylamide (PHPMA) with Gly-Phe-Leu-Gly peptide substrate in the polymer back-
bone and side-chains to enable tumor-selective drug release and improve the therapeutic
efficacy [118,119]. This strategy was extended to a two-drug (gemcitabine and paclitaxel)
combination system linked to PHPMA copolymers to achieve a synergistic antitumor effect
(Figure 1) [118]. Most recently, Pu et al. reported a semiconducting polymer nano-PROTAC
(SPNpro) system that is composed of a semiconducting polymer core conjugated with
proteolysis targeting chimera (PROTAC) segments via peptide fragment to synergize pho-
totherapy with CatB-triggered protein degradation for photo-immunometabolic cancer
therapy (Figure 2) [120].

The other enzymes that have been widely used as promising stimuli for developing
activatable drug delivery systems include oxidoreductase and phospholipases [121–123].
For example, Gu et al. employed glucose oxidase as gate keeper to design nanosystems that
are sensitive to glucose levels in blood for controlled release of insulin encapsulated in the
core [124,125]. This glucose-activatable nanoformulation allowed for diabetes management
in the self-regulated manner. Owing to their frequently upregulation in tumors, the phos-
pholipase A2 (PLA2) has drawn great interest as a target for developing activatable drug
delivery nanosystems. Capitalizing on this, Andresen et al. developed the secretory phos-
pholipase A2 (sPLA2)-responsive liposome drug-delivery nanosystems (Figure 3) [126]. In
this case, the antitumor ether lipids (AELs) were masked as prodrugs. The prodrugs of
AELs (proAELs) were synthesized for liposome preparation and the loaded prodrugs could
be triggered by sPLA2 at tumor microenvironment selectively, which not only minimized
the undesired side effects but also maximized the antitumor efficacy.
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Figure 2. Schematic illustration of SPNpro-mediated IDO degradation for cancer photo-
immunometabolic therapy. (a) Structure and CatB-specific activation mechanism of SPNpro.
(b) SPNpro-mediated activatable photo-immunometabolic therapy with two processes: (i) a se-
ries of cancer immune responses including immunogenic cell death (ICD), tumor-associated antigen
release, DC maturation, and effector T (Teff) cell activation upon NIR photoirradiation; (ii) SPNpro-
mediated immunometabolic intervention processes including CatB-specific activation of IPP, IDO and
VHL targeting, proteasome recruitment, IDO degradation, Trp upregulation and Kyn depletion, and
Teff cell activation. Reproduced from ref. [120] with permission from the Nature Publishing Group.
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Figure 3. Chemical structures of two different pro-antitumor ether lipids (proAELs) that have been
synthesized and investigated with respect to their physical properties and ability to constitute a novel
liposome-based drug-delivery system. Secretory phospholipase A2 (sPLA2) hydrolyzes the liposome
membrane, thereby releasing both activated antitumor ether lipids (AELs) and the encapsulated drug.
The AELs are cytotoxic to cancer cells. Furthermore, synergistically with the generated fatty acids,
they function as permeability enhancers that promote drug uptake by the cancer cells. Reproduced
from ref. [126] with permission from the American Chemical Society.

3.1.2. pH-Responsive Polymeric Nanosystems

The high rate of glycolysis in tumor cells and the overproduction of lactic acid lead
to the mild acidity (pH 6.2–6.8) in tumor microenvironment compared to the physiolog-
ical condition in normal tissues (pH 7.2–7.4) [127,128]. The pH difference between the
tumor microenvironment and normal tissue has led to the development of pH-activatable
polymeric nanoplatforms for controlled drug release at tumor sites. Additionally, the
high acidity of endosomes and lysosomes (pH 4.0−6.0) has been utilized as endogenous
stimulus to trigger the intracellular cargo release [21,129]. The amine groups-rich poly-
mers that can switch between hydrophobic and hydrophilic states in response to pH
changes have been extensively explored for the establishment of pH-responsive nanoplat-
forms. This kind of polymeric nanomicelle would be disassembled in response to pH
changes, leading to the cargo release at a specific microenvironment. Recently, Gao et al.
reported a dual pH-responsive nanomicelle drug delivery nanoplatform self-assembled
from poly(2-(dimethylamino) ethyl methacrylate)-block-poly(2-(diisopropylamino)ethyl
methacrylate) (PDMA-b-PDPA) diblock copolymers for both amphotericin B and siRNA
delivery (Figure 4) [130]. In addition, the polymers beard with acid-responsive function-
alities such as boronic acid esters, oxime, and hydrazone bonds are widely explored to
construct pH-sensitive drug nanocarriers.
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Figure 4. Schematic diagram of AmB-loaded dual pH-responsive micelleplexes for siRNA delivery
with enhanced siRNA endosomal escape ability. (A) Production of AmBloaded PDMA-b-PDPA
micelleplexes. AmB was loaded in the hydrophobic PDPA core, and siRNA was complexed with
the PDMA corona shell. (B) AmB-facilitated endosome disruption and siRNA cytoplasmic release
(a: AmB-loaded micelleplexes dissociated in early endosomes after cell uptake, and AmB molecules
are inserted into endosomal membranes; b: protonated PDMA-b-PDPA unimers complexed with
siRNA and trafficked from early endosomes into late endosome/lysosomes, causing vesicle swelling;
c: AmB-enhanced siRNA release from endosomes into cytoplasm via membrane destabilization).
(C) In the case of AmB-free micelleplexes, polymer/siRNA complexes were entrapped in late endo-
somes or lysosomes without efficient cytoplasmic siRNA release. Reproduced from ref. [130] with
permission from the American Chemical Society.

3.1.3. Redox-Responsive Polymeric Nanosystems

The uncontrolled proliferation of tumor cells is often associated with the redox differ-
ence between tumor cells and normal cells. For example, the high levels of reactive oxygen
species (ROS) and glutathione (GSH) in tumor cells are considered as promising targets for
construction of tumor-selective drug release nanosystems [131,132]. H2O2 is the most abun-
dant ROS species in tumor cells due to its longer half-life than others, making it a potential
target for preparation of ROS-responsive nanoplatforms [133]. To establish ROS-responsive
systems, the polymers are often incorporated with arylboronic or thioketal esters. Xia
et al. reported an safe and efficient gene delivery polymeric material poly(amino thioketal)
(PATK) with ROS responsibility synthesized through polymerization of oligoamines with
acrylamide thioketal [134]. The polymer could be degraded by the high level of ROS in
tumor cells, leading to the disassembly of DNA/PATK complexes and DNA release.

GSH, a tripeptide composed of glycine, cysteine, and glutamate, is the other most
explored redox stimuli in tumor cells for stimuli-sensitive nanocarriers development [135].
The integration of disulfide bond in polymers is the widely explored strategy for GSH-
responsive nanosystem construction [136]. Of note, poly(disulfide)s, the intriguing disulfide-
containing polymers synthesized through ring-opening disulfide exchange polymerization,
are biodegradable GSH-responsive polymeric materials for intracellular delivery of a vari-
ety of drug agents including nucleic acids, proteins, and small molecular drugs [137–140].
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Moreover, the disulfide linkers within poly(disulfide)s could improve the cytosol deliv-
ery through thiol-mediated cellular uptake, which bypassed endosomal and lysosomal
entrapment and degradation. Most recently, Ping et al. reported the poly(disulfide)s-
based platform synthesized through copolymerization of diethylenetriamine moieties
containing monomer 1 and guanidyl ligands containing monomer 2 for efficient cytosol
delivery of both nucleic acids and proteins (Figure 5) [141]. The thiol-mediated uptake
of the poly(disulfide)s-based nanoplatforms and the cleavage of disulfide linkers within
poly(disulfide)s by the upregulated intracellular GSH contributes to its excellent deliv-
ery performance. Additionally, the degradation of the polymers by GSH in cytosol not
only promoted the loaded cargo release but also avoided the cytotoxicity of the polymer
accumulation in the cytosol.
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3.2. Exogenous Stimuli-Responsive Polymeric Nanosystems
3.2.1. Light-Responsive Polymeric Nanosystems

Due to its high spatiotemporal controllability regarding the dosage, wavelength,
time and space, light has emerged as a fascinating tool for controlling the drug release
activity of polymeric drug delivery nanocarriers [33,34]. To develop light-controlled drug
release nanosystems, the most widely explored strategy is incorporation of photolabile
or photoswitchable moieties in the polymers to impart light-responsive property to the
building blocks.

The past few decades have witnessed tremendous progress in developing UV light
(340–380 nm) responsive polymers. Several functional moieties have been widely incor-
porated into polymers to endow them with physical or chemical changes upon being
irradiated with UV light. Azobenzene can undergo photoisomerization upon UV light
irradiation by transiting from trans to cis forms, and the transition can be reversed upon
visible light (420–490 nm) irradiation. The UV light triggered conformational transition
and the change in hydrophilicity of polymers led to the disassembly of the nanoplatforms
established from the azobenzene incorporated polymers, and thus triggered the drug re-
lease [142]. Oriol et al. reported the UV light-responsive nanovesicles self-assembled from
the 4-isobutyloxyazobenzene units (AZO) containing amphiphilic linear-dendritic block
copolymers (LDBCs) [143]. Upon UV irradiation, the nanovesicles will be deformed and
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the membrane permeability increased, leading to the release of encapsulated fluorescent
molecules. In addition to azobenzene, spiropyran can also switch between hydropho-
bic closed form and hydrophilic open form after being irradiated with UV and visible
light, respectively [144,145]. Besides the photoisomerization of azobenzene and spiropy-
ran in response to UV light irradiation, the coumarin, cinnamic ester, or cinnamic acid
incorporated polymers can also respond to UV light through cross-linking of the poly-
mers [146,147]. Despite the progress made in developing UV light-responsive nanosystems,
their biomedical applications are limited by the superficial tissue penetration depth of UV
light and the cytotoxicity. Near-infrared (NIR) light (750–1000 nm) offers the advantages
of deeper tissue penetration and lower photocytotoxicity, which makes it an appealing
external stimulus to trigger the drug release of nanocarriers [148,149]. Zhao et al. re-
ported a NIR light-responsive nanoplatform for controlled cargo release by disrupting
the block copolymer micelles (Figure 6) [150]. The nanoplatform was engineered by load-
ing NaYF4:TmYb upconversion nanoparticles (UCNPs) and hydrophobic cargos into the
poly(ethylene oxide)-block-poly(4,5-dimethoxy-2-nitrobenzyl methacrylate) copolymer
micelles. Upon 980 nm light irradiation, the UCNPs would convert the NIR light to short
wavelength UV light which could be absorbed by o-nitrobenzyl groups in the copolymer,
leading to the photocleavage of the copolymer. Then, the encapsulated cargos would be
released owing to the NIR light triggered disassembly of the micelles. The NIR light can
also be utilized to trigger the payload release through photothermal effect based on gold
nanorods that can act as NIR-to-heat nanotransducer. The drug release that is triggered by
heat will be described in the following section.
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3.2.2. Thermo-Responsive Polymeric Nanosystems

Heat is the other extensively explored stimulus for developing activatable drug deliv-
ery nanoplatforms. This kind of nanocarrier is engineered from the polymers incorporated
with the functional moieties that undergo a structure change in response to thermo stimulus.
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These polymers exhibit a phase transition in response to different solution temperatures,
leading to a dramatic change in their solubility [151,152]. In the case of lower critical solu-
tion temperature (LCST), the polymer is miscible with the solvent when the temperature
is below LCST, while the polymer will be hydrophobic when the temperature is above
LCST. The other case is upper critical solution temperature (UCST). In this condition, the
polymers will undergo a phase transition when the temperature is cooled below UCST.
Poly(N-isopropyl acrylamide) (pNIPAAm) is one of the most extensively explored thermo-
sensitive polymers with an LCST of 32 ◦C below body temperature, indicating that it is not
a good candidate for construction of drug delivery nanoplatforms [153,154]. To regulate the
LCST of pNIPAAm, the copolymers with hydrophobic comonomers were synthesized and a
variety of polyNIPAAm-based thermo-sensitive polymeric materials with the desired LCST
range have been obtained [151]. Okano et al. constructed the thermo-sensitive polymeric
micelles based on poly(N-isopropylacrylamide-co-N,N-dimethylacrylamide)-b-poly(D,L-
lactide) (P(IPAAm-DMAAm)-b-PLA) and studied their cellular uptake mechanism induced
by temperature [155]. The Hydrodynamic size of prepared micelles is about 20 nm and
the LCST is about 39 ◦C. When the temperature is below the LCST, their cellular uptake
can be significantly inhibited. Interestingly, the micelles can be internalized into cells and
localize at Golgi apparatus when the temperature is above the LCST (42 ◦C). Addition-
ally, the other thermo-responsive polymers that can be used for drug delivery applica-
tions include poly(oligo(ethylene glycol)(methyl ether) (meth)acrylate)s (POEGMA) [156]
poly(ether)s [157] poly(2-alkyl-2-oxazoline)s [158] poly(N,N-dimethylaminoethyl methacry-
late) [159] and poly(N-vinyl amide)s (mainly poly(N-vinylcaprolactam), PVCL) [160].

3.2.3. Ultrasound-Responsive Polymeric Nanosystems

Owing to its deep tissue penetration, noninvasiveness and good biocompatibility
at low frequency, ultrasound (US) has emerging as a promising tool to trigger the drug
release of nanocarriers with high spatiotemporal selectivity [161]. Great efforts have
been made to develop biocompatible polymers that undergo degradation upon US treat-
ment [162]. Recently, the concept of mechanophores-functionalities offers novel paths to
prepare stress-responsive materials by incorporating the functional moieties into poly-
mer materials [163–165], which leads to the study of US-responsive mechanolabile moi-
eties [165]. For example, the copolymer PEO−THPMA derived from 2-tetrahydropyranyl
methacrylate (THPMA) can be hydrolyzed upon treated with the high-intensity focused
US (HIFU) [166]. Based on the property of this copolymer, Zhao et al. reported the
HIFU-responsive nanosystems constructed from THPMA based amphiphilic block copoly-
mer [167]. In addition, Xia et al. reported ultrasound and redox-responsive copolymer
micelles by functionalizing pluronic type copolymer with ester and disulfide bonds to
impart the copolymer with UV response [168]. The copolymer micelles demonstrate a slow
redox-triggered release and fast HIFU-triggered release property, and the cleavage sites of
the two cases are deferent.

4. Conclusions

In this review, we summarized a variety of polymers that have been extensively
explored for polymeric drug delivery nanosystems development, and discussed both
endogenous and exogenous stimuli-responsive drug nanocarriers that are reported for
controlled drug release in antitumor therapy. Polymeric nanosystems have received much
attention for drug delivery applications due to their biocompatibility, nano-size structure,
biodegradability, non-toxicity, drug loading capability. Moreover, the pharmaceutical prop-
erties of the loaded drugs can be improved and the therapeutic efficacy would be enhanced
by controlling the drug release at the site of interest while minimizing the undesired side
effects. As we presented above, the proteases, pH, and redox species are particularly
promising targets that can be leveraged to improve the tumor-selectivity of the delivered
drugs, and several of them are in clinical trials. Despite the progress made, the stimuli
toolbox is limited and there is a compelling need to explore more biological stimuli to
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further improve the drug delivery specificity. Additionally, the multicomponent designs of
stimuli-responsive polymeric nanoplatforms make the polymer synthesis complicated and
difficult. Besides these challenges, there are some other issues such as tumor heterogeneity
that should be considered when designing stimuli-trigged polymeric nanosystems. There-
fore, more research works on stimuli-responsive polymeric nanosystems need to be done
at both academic and pharmaceutical level to further improve the anti-tumor efficacy of
these nanotherapeutics.
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