Effects of Viscoelasticity on the Stress Evolution over the Lifetime of Filament-Wound Composite Flywheel Rotors for Energy Storage
Abstract
:1. Introduction
2. Composite Flywheel Rotor Modeling
2.1. Analytical Model Description
2.2. Tsai-Wu Failure Criterion
2.3. Computational Methodology
3. Modeling Parameters
3.1. Materials
3.2. Flywheel Rotor Simulation Parameters
4. Results and Discussion
4.1. Algorithm Validation
4.2. Viscoelastic Behavior
4.2.1. Case 1
4.2.2. Case 2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 2009, 13, 1513–1522. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Takkar, S.; Gupta, K.; Tiwari, V.; Singh, S.P. Dynamics of Rotating Composite Disc. J. Vib. Eng. Technol. 2019, 7, 629–637. [Google Scholar] [CrossRef]
- Yang, L.; Crawford, C.; Ren, Z. A Fuzzy Satisfactory Optimization Method Based on Stress Analysis for a Hybrid Composite Flywheel. IOP Conf. Ser. Mater. Sci. Eng. 2018, 398, 012032. [Google Scholar] [CrossRef]
- Mittelstedt, M.; Hansen, C.; Mertiny, P. Design and multi-objective optimization of fiber-reinforced polymer composite flywheel rotors. Appl. Sci. 2018, 8, 1256. [Google Scholar] [CrossRef] [Green Version]
- Hartl, S.; Schulz, A.; Sima, H.; Koch, T.; Kaltenbacher, M. A Static Burst Test for Composite Flywheel Rotors. Appl. Compos. Mater. 2016, 23, 271–288. [Google Scholar] [CrossRef]
- Corbin, C.K. Burst Failure Prediction of Composite Flywheel Rotors: A Progressive Damage Approach via Stiffness Degredation; Stanford University: Stanford, CA, USA, 2005. [Google Scholar]
- Arnold, S.M.; Saleeb, A.F.; Al-Zoubi, N.R. Deformation and life analysis of composite flywheel disk systems. Compos. Part B Eng. 2002, 33, 433–459. [Google Scholar] [CrossRef]
- Trufanov, N.A.; Smetannikov, O.Y. Creep of Composite Energy Accumulators. Strength Mater. 1991, 23, 671–675. [Google Scholar]
- Portnov, G.G. Estimation of Limit Strains in Disk-Type Flywheels Made of Compliant Elastomeric Matrix Composite Undergoing Radial Creep. Mech. Compos. Mater. 2000, 36, 55–58. [Google Scholar] [CrossRef]
- Levistor Boosting Forecourt Grid Power for the Next Generation of Fast Charging Electric Vehicles. Available online: https://levistor.com/#about (accessed on 14 August 2021).
- Stornetic GmbH Powerful Storage System for Grid Services. Available online: https://stornetic.com/assets/downloads/stornetic_general_presentation.pdf (accessed on 14 August 2021).
- Tzeng, J.T. Viscoelastic Analysis of Composite Cylinders Subjected to Rotation. Trans. Ophthalmol. Soc. 2001, 101, 200–202. [Google Scholar] [CrossRef]
- Emerson, R.P. Viscoelastic Flywheel Rotors: Modeling and Measurement; Pennsylvania State University: State College, PA, USA, 2002. [Google Scholar]
- Emerson, R.P.; Bakis, C.E. Relaxation of press-fit interference pressure in composite flywheel assemblies. In Proceedings of the 43rd International SAMPE Symposium and Exhibition, Anaheim, CA, USA, 31 May–4 June 1998; SAMPE: Anaheim, CA, USA, 1998; Volume 43, pp. 1904–1915. [Google Scholar]
- Rupp, A.; Baier, H.; Mertiny, P.; Secanell, M. Analysis of a Flywheel Energy Storage System for Light Rail Transit. Energy 2016, 107, 625–638. [Google Scholar] [CrossRef]
- Toray CARBON FIBER T700G. Available online: https://www.toraycma.com/wp-content/uploads/T700G-Technical-Data-Sheet-1.pdf (accessed on 14 August 2021).
- Majda, P.; Skrodzewicz, J. A modified creep model of epoxy adhesive at ambient temperature. Int. J. Adhes. Adhes. 2009, 29, 396–404. [Google Scholar] [CrossRef]
- Almeida, J.H.S.; Ornaghi, H.L.; Lorandi, N.P.; Bregolin, B.P.; Amico, S.C. Creep and interfacial behavior of carbon fiber reinforced epoxy filament wound laminates. Polym. Compos. 2018, 39, E2199–E2206. [Google Scholar] [CrossRef]
- Thakur, P.; Sethi, M. Creep deformation and stress analysis in a transversely material disk subjected to rigid shaft. Math. Mech. Solids 2019, 25, 17–25. [Google Scholar] [CrossRef]
- Debljinom, P.; Teorije, P.; Napona, P. Modelling of creep behaviour of a rotating disc in the presence of load and variable thickness by using SETH transition theory. Struct. Integr. Life 2018, 18, 153–160. [Google Scholar]
- Zharfi, H. Creep relaxation in FGM rotating disc with nonlinear axisymmetric distribution of heterogeneity. Theor. Appl. Mech. Lett. 2019, 9, 382–390. [Google Scholar] [CrossRef]
- Tzeng, J.T. Viscoelastic Analysis of Composite Flywheel for Energy Storage; Army Research Laboratory: Adelphi, MD, USA, 2001. [Google Scholar]
- Lekhnitskiy, S.G. Anisotropic Plates; Air Force Systems Command: Moscow, Russia, 1957.
- Ha, S.K.; Jeong, H.M.; Cho, Y.S. Optimum design of thick-walled composite rings for an energy storage system. J. Compos. Mater. 1998, 32, 851–873. [Google Scholar] [CrossRef]
- Li, S.; Sitnikova, E.; Liang, Y.; Kaddour, A.S. The Tsai-Wu failure criterion rationalised in the context of UD composites. Compos. Part A Appl. Sci. Manuf. 2017, 102, 207–217. [Google Scholar] [CrossRef]
- Tsai, S.W.; Wu, E.M. A General Theory of Strength for Anisotropic Materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Rojas, J.I.; Nicolás, J.; Crespo, D. Study on mechanical relaxations of 7075 (Al-Zn-Mg) and 2024 (Al-Cu-Mg) alloys by application of the time-temperature superposition principle. Adv. Mater. Sci. Eng. 2017, 2017, 2602953. [Google Scholar] [CrossRef] [Green Version]
- ASM International Handbook Committee. Metals Handbook Properties and Selection: Nonferrous Alloys and Special-Purpose Materials; ASM International: Geauga County, OH, USA, 1990; Volume 2, ISBN 978-0-87170-378-1. [Google Scholar]
- Tzeng, J.T. Viscoelastic Modeling of Press-Fitted Composite Cylinders. J. Compos. Tech. Res. 2001, 23, 21–27. [Google Scholar]
- Ding, H.; Chen, W.; Zhang, L. Elasticity of Transversely Isotropic Materials; Gladwell, G.M.L., Ed.; Springer: Dordrecht, The Netherlands, 2006; ISBN 9781119130536. [Google Scholar]
- Sadananda, K.; Nani Babu, M.; Vasudevan, A.K. The unified approach to subcritical crack growth and fracture. Eng. Fract. Mech. 2019, 212, 238–257. [Google Scholar] [CrossRef]
- Kheawcum, M.; Sangwongwanich, S. A Case Study on Flywheel Energy Storage System Application for Frequency Regulation of Islanded Amphoe Mueang Mae Hong Son Microgrid. In Proceedings of the 17th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2020, Phuket, Thailand, 24–27 June 2020; pp. 421–426. [Google Scholar]
- Amiryar, M.E.; Pullen, K.R. A review of flywheel energy storage system technologies and their applications. Appl. Sci. 2017, 7, 286. [Google Scholar] [CrossRef] [Green Version]
- Mansouri Kouhestani, F.; Byrne, J.; Johnson, D.; Spencer, L.; Hazendonk, P.; Brown, B. Evaluating solar energy technical and economic potential on rooftops in an urban setting: The city of Lethbridge, Canada. Int. J. Energy Environ. Eng. 2019, 10, 13–32. [Google Scholar] [CrossRef] [Green Version]
- Andersen, F.M.; Baldini, M.; Hansen, L.G.; Jensen, C.L. Households’ hourly electricity consumption and peak demand in Denmark. Appl. Energy 2017, 208, 607–619. [Google Scholar] [CrossRef]
- Peña-Alzola, R.; Sebastián, R.; Quesada, J.; Colmenar, A. Review of flywheel based energy storage systems. In Proceedings of the 2011 International Conference on Power Engineering, Energy and Electrical Drives, Malaga, Spain, 11–13 May 2011. [Google Scholar] [CrossRef]
- Odegard, G.M.; Bandyopadhyay, A. Physical aging of epoxy polymers and their composites. J. Polym. Sci. Part B Polym. Phys. 2011, 49, 1695–1716. [Google Scholar] [CrossRef]
- Ha, S.K.; Yang, H.-I.; Kim, D.-J. Optimum design of a hybrid composite flywheel with permanent magnet rotor. J. Compos. Mater. 1999, 33, 1544–1575. [Google Scholar] [CrossRef]
- Pérez-Aparicio, J.L.; Ripoll, L. Exact, integrated and complete solutions for composite flywheels. Compos. Struct. 2011, 93, 1404–1415. [Google Scholar] [CrossRef]
Material | S11 [Pa−1] | S22 [Pa−1] | S33 [Pa−1] | S66 [Pa−1] | ν |
---|---|---|---|---|---|
Aluminum | 0.33 | ||||
CFRP | 0.31 |
Material | |||||
---|---|---|---|---|---|
CFRP | 2720 | 1689 | 64.1 | 307 | 137 |
Aluminum | 572 | 572 | 572 | 572 | 331 |
Parameter | Aluminum Hub | CFRP Rim | Complete Rotor |
---|---|---|---|
Inner radius | 160 mm | 200 mm | - |
Outer radius | 200 mm | 330 mm | - |
Press-fit interference | - | - | 0.8 mm |
Rotor height | - | - | 430 mm |
Energy capacity | - | - | 11.19 kWh |
Time [Year] | 0 | 0.5 | 1 | 5 | 10 |
---|---|---|---|---|---|
Interface pressure [MPa] | −26.98 | −19.60 | −19.01 | −17.66 | −17.08 |
Radial peak stress [MPa] | 50.96 | 50.86 | 50.83 | 50.75 | 50.71 |
Circumferential peak stress [MPa] | 975.51 | 936.54 | 933.20 | 925.40 | 922.01 |
Phase | Day 1 | Day 90 | Day 180 | Day 270 | Day 365 | |
---|---|---|---|---|---|---|
Peak interface pressure [MPa] | ωPmin | −41.04 | −39.26 | −39.03 | −38.90 | −38.80 |
ωPint | −38.76 | −36.49 | −36.17 | −35.98 | −35.84 | |
ωPmax | −34.78 | −31.54 | −31.05 | −30.77 | −30.55 | |
Peak radial tensile stress in CFRP rim [MPa] | ωPmin | 0.0 | 0.001 | 0.010 | 0.012 | 0.014 |
ωPint | 10.19 | 10.35 | 10.37 | 10.38 | 10.39 | |
ωPmax | 35.33 | 35.26 | 35.24 | 35.23 | 35.22 | |
Peak circumferential stress in CFRP rim [MPa] | ωPmin | 207.9 | 207.3 | 207.2 | 207.1 | 207.1 |
ωPint | 426.8 | 420.2 | 419.3 | 418.7 | 418.3 | |
ωPmax | 816.7 | 800.9 | 798.4 | 797.0 | 795.9 | |
SR for aluminum hub [/] | ωPmin | 0.271 | 0.256 | 0.255 | 0.253 | 0.253 |
ωPint | 0.044 | 0.056 | 0.057 | 0.058 | 0.059 | |
ωPmax | 0.524 | 0.550 | 0.554 | 0.556 | 0.557 | |
SR for CFRP rim [/] | ωPmin | 0.160 | 0.155 | 0.154 | 0.153 | 0.153 |
ωPint | 0.242 | 0.236 | 0.235 | 0.235 | 0.234 | |
ωPmax | 0.760 | 0.740 | 0.737 | 0.735 | 0.734 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skinner, M.; Mertiny, P. Effects of Viscoelasticity on the Stress Evolution over the Lifetime of Filament-Wound Composite Flywheel Rotors for Energy Storage. Appl. Sci. 2021, 11, 9544. https://doi.org/10.3390/app11209544
Skinner M, Mertiny P. Effects of Viscoelasticity on the Stress Evolution over the Lifetime of Filament-Wound Composite Flywheel Rotors for Energy Storage. Applied Sciences. 2021; 11(20):9544. https://doi.org/10.3390/app11209544
Chicago/Turabian StyleSkinner, Miles, and Pierre Mertiny. 2021. "Effects of Viscoelasticity on the Stress Evolution over the Lifetime of Filament-Wound Composite Flywheel Rotors for Energy Storage" Applied Sciences 11, no. 20: 9544. https://doi.org/10.3390/app11209544
APA StyleSkinner, M., & Mertiny, P. (2021). Effects of Viscoelasticity on the Stress Evolution over the Lifetime of Filament-Wound Composite Flywheel Rotors for Energy Storage. Applied Sciences, 11(20), 9544. https://doi.org/10.3390/app11209544