The Role of Climate Control in Monogastric Animal Farming: The Effects on Animal Welfare, Air Emissions, Productivity, Health, and Energy Use
Abstract
:1. Introduction
2. Scope of the Work
3. Analyzed Works
- Phase 1: the duplicate papers between the two analyzed databases were eliminated;
- Phase 2: the papers which predominantly in English were excluded;
- Phase 3: the titles were scanned and the papers that were not focused on monogastric animals or that were from other research areas were excluded;
- Phase 4: the papers were read and those in which no relations between climate control and other domains of livestock houses stood out where not considered as a contribution and excluded;
- Phase 5: the references of the remaining papers were read to find further papers that relate to the previously presented criteria.
4. The Central Role of Climate Control
4.1. Climate Control and Animal Welfare
4.2. Climate Control and Air Emissions
4.3. Climate Control and Productivity
4.4. Climate Control and Health
4.4.1. Climate Control and Animal Health
4.4.2. Climate Control and the One Health Approach
4.4.3. Climate Control and Worker Health
4.5. Climate Control and Energy Use
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- FAO. Global Agriculture towards 2050; FAO: Rome, Italy, 2009. [Google Scholar]
- UNDESA. World Population Prospects 2019: Highlights; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019; ISBN 9789211483161. [Google Scholar]
- Kraatz, S. Energy intensity in livestock operations-Modeling of dairy farming systems in Germany. Agric. Syst. 2012, 110, 90–106. [Google Scholar] [CrossRef]
- FAO. Energy-Smart Food at FAO: An Overview; FAO: Rome, Italy, 2012. [Google Scholar]
- Mottet, A.; de Haan, C.; Falcucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 2017. [Google Scholar] [CrossRef]
- FAO. Dietary Protein Quality Evaluation in Human Nutrition. Report of an FAQ Expert Consultation; FAO: Rome, Italy, 2013. [Google Scholar]
- Elmadfa, I.; Meyer, A.L. Animal Proteins as Important Contributors to a Healthy Human Diet. Annu. Rev. Anim. Biosci. 2017. [Google Scholar] [CrossRef]
- Barre, H.J.; Sammet, L.L.; Nelson, G.L. Environmental and Functional Engineering of Agricultural Buildings; Van Nostrand Reinhold Company: New York, NY, USA, 1988; ISBN 978-1-4684-1445-5. [Google Scholar]
- Clark, J.A. Environmental Aspects of Housing for Animal Production, 1st ed.; Butterworth-Heinemann: Oxford, UK, 1981; ISBN 9781483164335. [Google Scholar]
- Costantino, A.; Fabrizio, E. Building Design for Energy Efficient Livestock Housing. In Introduction to Biosystems Engineering; Holden, N.M., Wolfe, M.L., Ogejo, J.A., Cummins, E.J., Eds.; ASABE, VT Publishing: Blacksburg, VA, USA, 2020; ISBN 978-1-949373-97-4. [Google Scholar]
- Costantino, A.; Comba, L.; Sicardi, G.; Bariani, M.; Fabrizio, E. Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation. Appl. Energy 2021, 288, 116583. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Feng, H.; Huang, Q.; Xiao, X.; Zhang, X. Wearable Internet of Things enabled precision livestock farming in smart farms: A review of technical solutions for precise perception, biocompatibility, and sustainability monitoring. J. Clean. Prod. 2021, 312, 127712. [Google Scholar] [CrossRef]
- García, R.; Aguilar, J.; Toro, M.; Pinto, A.; Rodríguez, P. A systematic literature review on the use of machine learning in precision livestock farming. Comput. Electron. Agric. 2020, 179, 105826. [Google Scholar] [CrossRef]
- ASHRAE. 2011 ASHRAE Handbook: HVAC Applications; ASHRAE: Atlanta, GA, USA, 2011; ISBN 9781936504077. [Google Scholar]
- European Union. Council Directive 99/74/EC of 19 July 1999 Laying down Minimum Standards for the Protection of Laying Hens; European Council: Brussels, Belgium, 1999. [Google Scholar]
- European Union. Council Directive 2007/43/EC of 28 June 2007: Laying down Minimum Rules for the Protection of Chickens Kept for Meat Production; European Council: Brussels, Belgium, 2007. [Google Scholar]
- European Commission. Council Directive 2008/120/EC of 18th December 2008: Laying down Minimum Standards for the Protection of Pigs; European Council: Brussels, Belgium, 2008. [Google Scholar]
- Firfiris, V.K.; Martzopoulou, A.G.; Kotsopoulos, T.A. Passive cooling systems in livestock buildings towards energy saving: A critical review. Energy Build. 2019, 202. [Google Scholar] [CrossRef]
- FAO. Energy-Smart Food for People and Climate–Issue Paper; FAO: Rome, Italy, 2011. [Google Scholar]
- ASHRAE. ASHRAE Terminology. Available online: https://xp20.ashrae.org/terminology/ (accessed on 1 May 2020).
- Jacobson, L.D. Housing designs that optimize an animal’s thermal environment. In Livestock Housing: Modern Management to Ensure Optimal Health and Welfare of Farm Animals; Aland, A., Banhazi, T., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 185–188. ISBN 9789086862177. [Google Scholar]
- Panagakis, P.; Blanes-Vidal, V.; Barbosa, J.C.; Banhazi, T.; da Cruz, V.F.; Berckmans, D.; Maltz, E. Glossary of Terms on Animal Housing: Interconnecting Engineering, Physical and Physiological Definitions; University of Aarhus: Aarhus, Denmark, 2009; ISBN 87-91949-38-6. [Google Scholar]
- Hellickson, M.A.M.A.; Walker, J.N.J.N. Ventilation of Agricultural Structures; ASAE: St. Joseph, MI, USA, 1983; ISBN 0916150569. [Google Scholar]
- Pšenka, M.; Sístková, M.; Mihina, S.; Gálik, R. Frequency analysis of noise exposure of dairy cows in the process of milking. Res. Agric. Eng. 2016, 62, 185–189. [Google Scholar] [CrossRef] [Green Version]
- de SGBarros, J.; Barros, T.A.; Sartor, K.; Raimundo, J.A.; Rossi, L.A. The effect of linear lighting systems on the productive performance and egg quality of laying hens. Poult. Sci. 2020, 99, 1369–1378. [Google Scholar] [CrossRef]
- de Souza Granja Barros, J.; dos Santos Barros, T.A.; de Oliveira Morais, F.J.; Sartor, K.; Rossi, L.A. Proposal of LED-based linear lighting systems with low power consumption and high light distribution for laying hens. Comput. Electron. Agric. 2020, 169, 105218. [Google Scholar] [CrossRef]
- Bishop, J.C.; Falzon, G.; Trotter, M.; Kwan, P.; Meek, P.D. Livestock vocalisation classification in farm soundscapes. Comput. Electron. Agric. 2019, 162, 531–542. [Google Scholar] [CrossRef]
- Broom, D.M. Animal welfare defined in terms of attempts to cope with the environment. Acta Agric. Scand. Sec. A Anim. Sci. Suppl. 1996, 27, 22–28. [Google Scholar]
- Blokhuis, H.; Miele, M.; Veissier, I.; Jones, B. Improving Farm Animal Welfare-Science and Society Working Together: The Welfare Quality Approach; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 9789086867707. [Google Scholar]
- Mellor, D.J. Updating Animal Welfare Thinking: Moving beyond the “Five Freedoms” towards “A Life Worth Living”. Animals 2016, 6, 21. [Google Scholar] [CrossRef]
- Huynh, T.T.T.; Aarnink, A.J.A.; Gerrits, W.J.J.; Heetkamp, M.J.H.; Canh, T.T.; Spoolder, H.A.M.; Kemp, B.; Verstegen, M.W.A. Thermal behaviour of growing pigs in response to high temperature and humidity. Appl. Anim. Behav. Sci. 2005, 91, 1–16. [Google Scholar] [CrossRef]
- Blanes-Vidal, V.; Hansen, M.N.; Pedersen, S.; Rom, H.B. Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow. Agric. Ecosyst. Environ. 2008, 124, 237–244. [Google Scholar] [CrossRef]
- Groot Koerkamp, P.W.G.; Groenestein, C.M. Ammonia and odour emission from a broiler house with a litter drying ventilation system. In Proceedings of the AgEng 2008, Hersonissos, GR, USA, 23–25 June 2008. [Google Scholar]
- Knížatová, M.; Mihina, Š.; Brouček, J.; Karandušovská, I.; Mačuhová, J. The influence of litter age, litter temperature and ventilation rate on ammonia emissions from a broiler rearing facility. Czech J. Anim. Sci. 2010, 55, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Banhazi, T.M. Seasonal, Diurnal and Spatial Variations of Environmental Variables in Australian Livestock Buildings. Aust. J. Multi-Disciplinary Eng. 2013, 10, 60–69. [Google Scholar] [CrossRef]
- Winkel, A.; Cambra-López, M.; Groot Koerkamp, P.W.G.; Ogink, N.W.M.; Aarnink, A.J.A. Abatement of particulate matter emission from experimental broiler housings using an optimized oil spraying method. Trans. ASABE 2014, 57, 1853–1864. [Google Scholar] [CrossRef] [Green Version]
- Thorne, P.S. Industrial livestock production facilities: Airborne emissions. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2019; pp. 652–660. ISBN 9780444639523. [Google Scholar]
- Costantino, A.; Fabrizio, E.; Villagrá, A.; Estellés, F.; Calvet, S. The reduction of gas concentrations in broiler houses through ventilation: Assessment of the thermal and electrical energy consumption. Biosyst. Eng. 2020. [Google Scholar] [CrossRef]
- Rodriguez, M.R.; Losada, E.; Besteiro, R.; Arango, T.; Velo, R.; Ortega, J.A.; Fernandez, M.D. Evolution of NH3 Concentrations in Weaner Pig Buildings Based on Setpoint Temperature. Agronomy 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Grieve, D. Heat stress in commercial layers and breeders. Tech. Bull. Hy-Line Int. 2003, 19, 1–3. [Google Scholar]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Wen, J.; Zhang, H. Effect of chronic heat exposure on fat deposition and meat quality in two genetic types of chicken. Poult. Sci. 2007, 86, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
- Daramola, J.O.; Abioja, M.O.; Onagbesan, O.M. Heat Stress Impact on Livestock Production. In Environmental Stress and Amelioration in Livestock Production; Sejian, V., Naqvi, S.M.K., Ezeji, T., Lakritz, J., Lal, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 53–73. ISBN 978-3-642-29205-7. [Google Scholar]
- Kilic, I.; Simsek, E. The effects of heat stress on egg production and quality of laying hens. J. Anim. Vet. Adv. 2013, 12, 42–47. [Google Scholar] [CrossRef]
- Barrett, N.W.; Rowland, K.; Schmidt, C.J.; Lamont, S.J.; Rothschild, M.F.; Ashwell, C.M.; Persia, M.E. Effects of acute and chronic heat stress on the performance, egg quality, body temperature, and blood gas parameters of laying hens. Poult. Sci. 2019, 98, 6684–6692. [Google Scholar] [CrossRef] [PubMed]
- Bilardo, M.; Comba, L.; Cornale, P.; Costantino, A.; Fabrizio, E. Relation between energy use and indoor thermal environment in animal husbandry: A case study. In Proceedings of the E3S Web of Conferences, Bucharest, Romania, 26–29 May 2019; Tanabe, S., Zhang, H., Kurnitski, J., Gameiro da Silva, M.C., Nastase, I., Wargocki, P., Cao, G., Mazzarela, L., Inard, C., Eds.; Volume 111, p. 01042. [Google Scholar]
- Settar, P.; Yalçin, S.; Türkmut, L.; Özkan, S.; Cahanar, A. Season by genotype interaction related to broiler growth rate and heat tolerance. Poult. Sci. 1999, 78, 1353–1358. [Google Scholar] [CrossRef]
- Liu, M.; Lu, Y.; Gao, P.; Xie, X.; Li, D.; Yu, D.; Yu, M. Effect of curcumin on laying performance, egg quality, endocrine hormones, and immune activity in heat-stressed hens. Poult. Sci. 2020, 99, 2196–2202. [Google Scholar] [CrossRef] [PubMed]
- Moreno, I.; Ladero, L.; Cava, R. Effect of the Iberian pig rearing system on blood plasma antioxidant status and oxidative stress biomarkers. Livest. Sci. 2020, 235, 104006. [Google Scholar] [CrossRef]
- Kristensen, H.H.; Wathes, C.M. Ammonia and poultry welfare: A review. Worlds. Poult. Sci. J. 2000, 56, 235–245. [Google Scholar] [CrossRef]
- McGovern, R.H.; Feddes, J.J.R.; Zuidhof, M.J.; Hanson, J.A.; Robinson, F.E. Growth performance, heart characteristics and the incidence of ascites in broilers in response to carbon dioxide and oxygen concentrations. Can. Biosyst. Eng./Genie Biosyst. Canada 2001, 43, 41–46. [Google Scholar] [CrossRef]
- Donham, K.J.; Cumro, D.; Reynolds, S. Synergistic effects of dust and ammonia on the occupational health effects of poultry production workers. J. Agromed. 2002, 8, 57–76. [Google Scholar] [CrossRef] [PubMed]
- Beker, A.; Vanhooser, S.L.; Swartzlander, J.H.; Teeter, R.G. Atmospheric ammonia concentration effects on broiler growth and performance. J. Appl. Poult. Res. 2004, 13, 5–9. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Miller, W.W.; Maslin, W.R.; Thaxton, J.P.; Dozier, W.A.; Purswell, J.; Branton, S.L. Interactive effects of ammonia and light intensity on ocular, fear and leg health in broiler chickens. Int. J. Poult. Sci. 2007, 6, 762–769. [Google Scholar] [CrossRef]
- Olanrewaju, H.A.; Dozier, W.A.; Purswell, J.L.; Branton, S.L.; Miles, D.M.; Lott, B.D.; Pescatore, A.J.; Thaxton, J.P. Growth performance and physiological variables for broiler chickens subjected to short-term elevated carbon dioxide concentrations. Int. J. Poult. Sci. 2008, 7, 738–742. [Google Scholar] [CrossRef] [Green Version]
- Smit, L.A.M.; Heederik, D.; Doekes, G.; Blom, C.; Van Zweden, I.; Wouters, I.M. Exposure-response analysis of allergy and respiratory symptoms in endotoxin-exposed adults. Eur. Respir. J. 2008, 31, 1241–1248. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Protecting Health and Safety of Workers in Agriculture, Livestock Farming, Horticulture and Forestry Protecting Social Europe; European Commission-Directorate-General for Employment, Social Affairs and Inclusion Unit B.3: Luxembourg, 2012; ISBN 9789279226731. [Google Scholar]
- Banhazi, T. Controlling the concentrations of airborne pollutants in three different livestock facilities. In Livestock Housing: Modern Management to Ensure Optimal Health and Welfare of Farm Animals; Aland, A., Banhazi, T., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013; pp. 281–295. ISBN 9789086862177. [Google Scholar]
- Ngajilo, D. Respiratory health effects in poultry workers. Curr. Allergy Clin. Immunol. 2014, 27, 116–124. [Google Scholar]
- FAO. Drivers, Dynamics, and Epidemiology of Antimicrobial Resistance in Animal Production; FAO: Rome, Italy, 2016; ISBN 978-92-5-109441-9. [Google Scholar]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Government of the United Kingdom: London, UK, 2016. [Google Scholar]
- Yi, B.; Chen, L.; Sa, R.; Zhong, R.; Xing, H.; Zhang, H. Transcriptome Profile Analysis of Breast Muscle Tissues from High or Low Levels of Atmospheric Ammonia Exposed Broilers (Gallus gallus). PLoS ONE 2016, 11, e0162631. [Google Scholar] [CrossRef]
- Hristov, A.N.; Degaetano, A.T.; Rotz, C.A.; Hoberg, E.; Skinner, R.H.; Felix, T.; Li, H.; Patterson, P.H.; Roth, G.; Hall, M.; et al. Climate change effects on livestock in the Northeast US and strategies for adaptation. Clim. Chang. 2018, 146, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Laurent, J.W. Alternatives to Common Preventive Uses of Antibiotics for Cattle, Swine, and Chickens; Natural Resources Defense Council, Inc. (NRDC): New York, NY, USA, 2018. [Google Scholar]
- Ranjan, A.; Sinha, R.; Devi, I.; Rahim, A.; Tiwari, S. Effect of Heat Stress on Poultry Production and their Managemental Approaches. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1548–1555. [Google Scholar] [CrossRef]
- Yasmeen, R.; Ali, Z.; Tyrrel, S.; Nasir, Z.A. Assessment of Respiratory Problems in Workers Associated with Intensive Poultry Facilities in Pakistan. Saf. Health Work 2020, 11, 118–124. [Google Scholar] [CrossRef]
- Thornton, P.K.; Herrero, M. The Inter-Linkages between RAPID Growth in Livestock Production, Climate Change, and the Impacts on Water Resources, Land Use, and Deforestation; International Livestock Research Institute (ILRI): Nairobi, Kenya, 2009. [Google Scholar]
- El Mogharbel, O.; Ghali, K.; Ghaddar, N.; Abiad, M.G. Simulation of a localized heating system for broiler brooding to improve energy performance. Int. J. Energy Res. 2014, 38, 125–138. [Google Scholar] [CrossRef]
- Fabrizio, E.; Airoldi, G.; Chiabrando, R. Study of the environmental control of sow farrowing rooms by means of dynamic simulation. Lect. Notes Electr. Eng. 2014, 263, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Costantino, A.; Fabrizio, E.; Biglia, A.; Cornale, P.; Battaglini, L. Energy Use for Climate Control of Animal Houses: The State of the Art in Europe. Energy Procedia 2016, 101, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Costantino, A.; Ballarini, I.; Fabrizio, E. Comparison between simplified and detailed methods for the calculation of heating and cooling energy needs of livestock housing: A case study. In Proceedings of the Building Simulation Applications, Bozen-Bolzano, Italy, 8–10 February 2017; Volume 2017-Febru, pp. 193–200. [Google Scholar]
- Zhou, Y.; Bidarmaghz, A.; Narsilio, G.; Aye, L. Heating and Cooling Loads of a Poultry Shed in Central Coast, NSW, Australia. In Proceedings of the World Sustainable Built Environment Conference 2017, Hong Kong, China, 5–7 June 2017. [Google Scholar]
- Costantino, A.; Fabrizio, E.; Ghiggini, A.; Bariani, M. Climate control in broiler houses: A thermal model for the calculation of the energy use and indoor environmental conditions. Energy Build. 2018, 169, 110–126. [Google Scholar] [CrossRef]
- Costantino, A.; Fabrizio, E. Energy modelling of livestock houses: The results from the EPAnHaus project. In Proceedings of the Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019; Corrado, V., Fabrizio, E., Gasparella, A., Patuzzi, F., Eds.; pp. 4251–4258. [Google Scholar]
- Xie, Q.; Ni, J.Q.; Bao, J.; Su, Z. A thermal environmental model for indoor air temperature prediction and energy consumption in pig building. Build. Environ. 2019, 161, 106238. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, I.B.; Kim, R.W.; Yeo, U.H.; Kim, J.G.; Kwon, K.S. Dynamic energy modelling for analysis of the thermal and hygroscopic environment in a mechanically ventilated duck house. Biosyst. Eng. 2020, 200, 431–449. [Google Scholar] [CrossRef]
- Lindley, J.A.; Whitaker, J.H. Agricultural Buildings and Structures; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1996; ISBN 9780929355733. [Google Scholar]
- Ni, J. Mechanistic models of ammonia release from liquid manure: A review. J. Agric. Eng. Res. 1999, 72, 1–17. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Towards One Health Preparedness; European Centre for Disease Prevention and Control (ECDC): Stockholm, Sweden, 2018; ISBN 978-92-9498-188-2. [Google Scholar]
- World Health Organization. One Health. Available online: https://www.who.int/news-room/q-a-detail/one-health (accessed on 13 July 2020).
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- OECD. Improving Energy Efficiency in the Agro-Food Chain; OECD Publishing: Paris, France, 2017; ISBN 9789264278523. [Google Scholar]
- Ballarini, I.; Costantino, A.; Fabrizio, E.; Corrado, V. The dynamic model of EN ISO 52016-1 for the energy assessment of buildings compared to simplified and detailed simulation methods. In Proceedings of the Building Simulation 2019 16th Conference IBPSA, Rome, Italy, 2–4 September 2019; Corrado, V., Fabrizio, E., Gasparella, A., Patuzzi, F., Eds.; pp. 3847–3854. [Google Scholar]
- FAO. Livestock Solutions for Climate Change; FAO: Rome, Italy, 2017. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 9789251079201. [Google Scholar]
- Strpić, K.; Barbaresi, A.; Tinti, F.; Bovo, M.; Benni, S.; Torreggiani, D.; Macini, P.; Tassinari, P. Application of ground heat exchangers in cow barns to enhance milk cooling and water heating and storage. Energy Build. 2020, 224, 110213. [Google Scholar] [CrossRef]
- Battisti, D.S.; Naylor, R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science (80-) 2009, 323, 240–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rötter, R.; Van De Geijn, S.C. Climate change effects on plant growth, crop yield and livestock. Clim. Chang. 1999, 43, 651–681. [Google Scholar] [CrossRef]
- Renaudeau, D.; Collin, A.; Yahav, S.; De Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [Green Version]
- Steinfeld, H.; Wassenaar, T.; Jutzi, S. Livestock production systems in developing countries: Status, drivers, trends. Rev. Sci. Tech. Int. Off. Epizoot. 2006, 25, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Brundtland, G. Report of the World Commision on Environement and Development: Our Common Future. Oxford Pap. 1987. [Google Scholar] [CrossRef]
- Roland-holst, D.; Zilberman, D. How Vulnerable is California Agriculture to Higher Energy Prices? Agric. Resour. Econ. Updat. 2006, 9, 1–4. [Google Scholar]
Domain | Reference | Year | Source 1 |
---|---|---|---|
Animal welfare | Broom [28] | 1996 | J |
Blokhuis et al. [29] | 2013 | B | |
Mellor [30] | 2016 | J | |
Air emissions | Huynh et al. [31] | 2005 | J |
Blanes-Vidal et al. [32] | 2008 | J | |
Groot Koerkamp et al. [33] | 2008 | P | |
Knížatová et al. [34] | 2010 | J | |
Banhazi [35] | 2013 | J | |
Winkel et al. [36] | 2014 | P | |
Thorne [37] | 2019 | B | |
Costantino et al. [38] | 2020 | J | |
Rodriguez et al. [39] | 2020 | J | |
Productivity | Grieve [40] | 2003 | J |
St-Pierre et al. [41] | 2003 | J | |
Lu et al. [42] | 2007 | J | |
Daramola et al. [43] | 2012 | B | |
Kilic and Simsek [44] | 2013 | J | |
Barrett et al. [45] | 2019 | J | |
Bilardo et al. [46] | 2019 | P | |
Settar et al. [47] | 2019 | J | |
Liu et al. [48] | 2020 | J | |
Moreno et al. [49] | 2020 | J | |
Health | Kristensen and Wathes [50] | 2000 | J |
McGovern et al. [51] | 2001 | J | |
Donham et al. [52] | 2002 | J | |
Beker et al. [53] | 2004 | J | |
Olanrewaju et al. [54] | 2007 | J | |
Olanrewaju et al. [55] | 2008 | J | |
Smit et al. [56] | 2008 | J | |
European Commission [57] | 2012 | R | |
Aland and Banhazi [58] | 2013 | B | |
Ngajilo [59] | 2014 | J | |
FAO [60] | 2016 | R | |
O’Neill [61] | 2016 | R | |
Yi et al. [62] | 2016 | J | |
Hristov et al. [63] | 2018 | J | |
Laurent [64] | 2018 | R | |
Ranjan et al. [65] | 2019 | J | |
Yasmeen et al. [66] | 2020 | J | |
Energy use | Thornton and Herrero [67] | 2010 | R |
El Mogharbel et al. [68] | 2014 | J | |
Fabrizio et al. [69] | 2014 | J | |
Costantino et al. [70] | 2016 | J | |
Costantino et al. [71] | 2017 | P | |
Zhou et al. [72] | 2017 | P | |
Costantino et al. [73] | 2018 | J | |
Costantino and Fabrizio [74] | 2019 | P | |
Xie et al. [75] | 2019 | J | |
Lee et al. [76] | 2020 | J |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costantino, A.; Fabrizio, E.; Calvet, S. The Role of Climate Control in Monogastric Animal Farming: The Effects on Animal Welfare, Air Emissions, Productivity, Health, and Energy Use. Appl. Sci. 2021, 11, 9549. https://doi.org/10.3390/app11209549
Costantino A, Fabrizio E, Calvet S. The Role of Climate Control in Monogastric Animal Farming: The Effects on Animal Welfare, Air Emissions, Productivity, Health, and Energy Use. Applied Sciences. 2021; 11(20):9549. https://doi.org/10.3390/app11209549
Chicago/Turabian StyleCostantino, Andrea, Enrico Fabrizio, and Salvador Calvet. 2021. "The Role of Climate Control in Monogastric Animal Farming: The Effects on Animal Welfare, Air Emissions, Productivity, Health, and Energy Use" Applied Sciences 11, no. 20: 9549. https://doi.org/10.3390/app11209549
APA StyleCostantino, A., Fabrizio, E., & Calvet, S. (2021). The Role of Climate Control in Monogastric Animal Farming: The Effects on Animal Welfare, Air Emissions, Productivity, Health, and Energy Use. Applied Sciences, 11(20), 9549. https://doi.org/10.3390/app11209549