Uniform Pressing Mechanism in Large-Area Roll-to-Roll Nanoimprint Lithography Process
Abstract
:1. Introduction
2. R2R NIL Pressing System
2.1. Conventional Pressing System
2.2. New Large-Area R2R NIL Uniform Pressing System
3. Experiment for Uniform Pressure Distribution
3.1. Improving Uniformity Using the Center Roller
3.2. Improving Uniformity Using Multiple Rollers and Machine Learning
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chou, S.; Krauss, P.R.; Renstrom, P.J. Imprint of sub-20 nm vias and trenches in polymers. Appl. Phys. Lett. 1995, 67, 3114–3116. [Google Scholar] [CrossRef] [Green Version]
- Austin, M.D.; Ge, H.; Wu, W.; Li, M.; Yu, Z.; Wasserman, D.; Lyon, S.A.; Chou, S. Fabrication of 5 nm line width and 14 nm pitch features by nanoimprint lithography. Appl. Phys. Lett. 2004, 84, 5299–5301. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Tong, W.M.; Bartman, J.; Chen, Y.; Walmsley, R.; Yu, Z.; Xia, Q.; Park, I.; Picciotto, C.; Gao, J.; et al. Sub-10 nm nanoimprint lithography by wafer bowing. Nano Lett. 2008, 8, 3865–3869. [Google Scholar] [CrossRef]
- Cho, Y.T.; Jung, Y.G. A Study on the expectation of residual layer thickness in roller pressing imprinting process. KSMPE 2013, 12, 104–109. [Google Scholar]
- McMackin, I.; Choi, J.; Schumaker, P.; Nguyen, V.; Xu, F.; Thompson, E.; Babbs, D.; Sreenivasan, S.V.; Watts, M.; Schumaker, N. Step and repeat UV nanoimprint lithography tools and processes. Proc. SPIE 2004, 5374, 222–231. [Google Scholar]
- Ahn, S.H.; Guo, L.J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A Step toward high-throughput application of continuous nanoimprinting. ACS Nano 2009, 3, 2304–2310. [Google Scholar] [CrossRef] [PubMed]
- Kooy, N.; Mohamed, K.; Guan, O.S. A Review of roll-to-roll nanoimprint lithography. Nanoscale Res. Lett. 2014, 9, 320. [Google Scholar] [CrossRef] [Green Version]
- Ok, J.G.; Youn, H.S.; Kwak, M.K.; Lee, K.T.; Shin, Y.J.; Guo, L.J.; Greenwald, A.; Liu, Y. Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Appl. Phys. Lett. 2012, 101, 223102. [Google Scholar] [CrossRef]
- Kang, M.G.; Park, H.J.; Ahn, S.H.; Guo, L.J. Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells. Sol. Energy Mater. Sol. Cells 2010, 94, 1179–1184. [Google Scholar] [CrossRef]
- Ahn, S.H.; Kim, J.S.; Guo, L.J. Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2007, 25, 2388–2391. [Google Scholar] [CrossRef]
- Bae, S.K.; Kim, H.K.; Lee, Y.B.; Xu, X.; Park, J.S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H.R.; Song, Y.I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574. [Google Scholar] [CrossRef] [Green Version]
- Lee, H. Effect of imprinting pressure on residual layer thickness in ultraviolet nanoimprint lithography. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2005, 23, 1102–1106. [Google Scholar] [CrossRef]
- Lee, H.J.; Ro, H.W.; Soles, C.L.; Jones, R.L.; Wu, W.I. Effect of initial resist thickness on residual layer thickness of nanoimprinted structures. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2005, 23, 3023–3027. [Google Scholar] [CrossRef]
- Sun, H.W.; Wang, W.Y.; Wang, H.B.; Qi, B.S. Impact of imprint pressure on residual layer thickness in UV nanoimprint lithography. DEStech Trans. Comput. Sci. Eng. 2019. [Google Scholar] [CrossRef] [Green Version]
- Aarts, A.C.T.; van Eijndhoven, S.J.L.; Saes, L.H.; Clevers, E. The pressure distribution in nips of systems of flexible rubber-covered rollers. Int. J. Mech. Sci. 2012, 64, 155–164. [Google Scholar] [CrossRef]
- Roisum, D.R. The Mechanics of Web Handling, 1st ed.; TAPPI PRESS: Atlanta, GA, USA, 1998; pp. 119–126. [Google Scholar]
- Xiang, B.; Jia, Y.; Lei, Y.; Zhang, F.; He, J.; Liu, T.; Luo, S. Mechanical properties of microcellular and nanocellular silicone rubber foams obtained by supercritical carbon dioxide. Polym. J. 2019, 51, 559–568. [Google Scholar] [CrossRef]
- Caminero, M.Á.; Romero, A.; Chacón, J.M.; Núñez, P.J.; García-Plaza, E.; Rodríguez, G.P. Additive manufacturing of 316L stainless-steel structures using fused filament fabrication technology: Mechanical and geometric properties. Rapid Prototyp. J. 2021, 27, 583–591. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, H.; Wu, S.; Fu, J. Colourful fused filament fabrication method based on transitioning waste infilling technology with a colour surface model. Rapid Prototyp. J. 2021, 27, 145–154. [Google Scholar] [CrossRef]
- Travieso-Rodriguez, J.A.; Jerez-Mesa, R.; Llumà, J.; Gomez-Gras, G.; Casadesus, O. Comparative study of the flexural properties of ABS, PLA and a PLA–wood composite manufactured through fused filament fabrication. Rapid Prototyp. J. 2021, 27, 81–92. [Google Scholar] [CrossRef]
- Luke, S.S.; Soares, D.; Marshall, J.V.; Sheddden, J.; Keleş, Ö. Effect of fiber content and fiber orientation on mechanical behavior of fused filament fabricated continuous-glass-fiber-reinforced nylon. Rapid Prototyp. J. 2021, 27, 1346–1354. [Google Scholar] [CrossRef]
- Cereda-Avila, S.N.; Medellín-Castillo, H.I.; Lim, T. Analytical models to estimate the structural behaviour of fused deposition modelling components. Rapid Prototyp. J. 2021, 27, 658–670. [Google Scholar] [CrossRef]
- Müller, A.C.; Guido, S. Introduction to Machine Learning with Python: A Guide for Data Scientists, 1st ed.; O’Reilly Media: Sebastopol, CA, USA, 2017; pp. 53–171. [Google Scholar]
- Kosorok, M.R.; Freeman, N.B.; Leete, O.E. Precision Medicine: Lecture 03 Machine Learning; Department of Biostatistics lecture note; Gillings School of Global Public Health University of North Carolina: Chapel Hill, NC, USA, 2019. [Google Scholar]
Pressure Value | (a) | (b) | (c) |
---|---|---|---|
Min (MPa) | 1.36 | 1.19 | 1.24 |
Max (MPa) | 1.96 | 1.72 | 1.65 |
Uniformity | 44% | 44% | 33% |
Force (Input) | Left () | Center 1 () | Center 2 () | Center 3 () | Center 4 () | Center 5 () | Right () |
---|---|---|---|---|---|---|---|
Min (kgf) | 99.4 | 58.0 | 35.7 | 43.2 | 40.6 | 38.4 | 79.3 |
Max (kgf) | 100.4 | 60.0 | 37.3 | 46.1 | 41.7 | 39.4 | 80.7 |
Avg (kgf) | 100.0 | 59.0 | 36.5 | 44.5 | 41.3 | 38.8 | 79.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.E.; Kim, H.; Woo, K.; Kang, Y.; Lee, S.-H.; Jeon, Y.; Lee, M.G.; Kwon, S. Uniform Pressing Mechanism in Large-Area Roll-to-Roll Nanoimprint Lithography Process. Appl. Sci. 2021, 11, 9571. https://doi.org/10.3390/app11209571
Kim GE, Kim H, Woo K, Kang Y, Lee S-H, Jeon Y, Lee MG, Kwon S. Uniform Pressing Mechanism in Large-Area Roll-to-Roll Nanoimprint Lithography Process. Applied Sciences. 2021; 11(20):9571. https://doi.org/10.3390/app11209571
Chicago/Turabian StyleKim, Ga Eul, Hyuntae Kim, Kyoohee Woo, Yousung Kang, Seung-Hyun Lee, Yongho Jeon, Moon G. Lee, and Sin Kwon. 2021. "Uniform Pressing Mechanism in Large-Area Roll-to-Roll Nanoimprint Lithography Process" Applied Sciences 11, no. 20: 9571. https://doi.org/10.3390/app11209571
APA StyleKim, G. E., Kim, H., Woo, K., Kang, Y., Lee, S. -H., Jeon, Y., Lee, M. G., & Kwon, S. (2021). Uniform Pressing Mechanism in Large-Area Roll-to-Roll Nanoimprint Lithography Process. Applied Sciences, 11(20), 9571. https://doi.org/10.3390/app11209571