Effect of the Concentration of Extracellular Polymeric Substances (EPS) and Aeration Intensity on Waste Glycerol Valorization by Docosahexaenoic Acid (DHA) Produced in Heterotrophic Culture of Schizochytrium sp
Abstract
:1. Introduction
2. Methods
2.1. Materials
2.2. Cultivation Conditions
2.3. Analytical Methods
2.4. Statistical Analysis
3. Results and Discussion
3.1. EPS Concentration and Composition
3.2. Effect of Oxygen Mass Transfer Rate (kla) on Culture Technological Effectiveness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yadav, A.K.; Rossi, W.; Habte-Tsion, H.-M.; Kumar, V. Impacts of dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) level and ratio on the growth, fatty acids composition and hepatic-antioxidant status of largemouth bass (Micropterus salmoides). Aquaculture 2020, 529, 735683. [Google Scholar] [CrossRef]
- Tan, K.; Ma, H.; Li, S.; Zheng, H. Bivalves as future source of sustainable natural omega-3 polyunsaturated fatty acids. Food Chem. 2020, 311, 125907. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, K.; Roy, R.K.; Chadha, A. Docosahexaenoic acid production by a novel high yielding strain of Thraustochytrium sp. of Indian origin: Isolation and bioprocess optimization studies. Algal Res. 2018, 32, 93–100. [Google Scholar] [CrossRef]
- Shafiq, M.; Zeb, L.; Cui, G.; Jawad, M.; Chi, Z. High-Density pH-Auxostat Fed-Batch Culture of Schizochytrium limacinum SR21 with Acetic Acid as a Carbon Source. Appl. Biochem. Biotechnol. 2020, 192, 1163–1175. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Clevenger, A.L.; Zheng, P.; Huang, Q.; Wang, Z. Low-temperature effects on docosahexaenoic acid biosynthesis in Schizochytrium sp. TIO01 and its proposed underlying mechanism. Biotechnol. Biofuels 2020, 13, 1–14. [Google Scholar] [CrossRef]
- Da Silva, T.L.; Moniz, P.; Silva, M.; Reis, A. The Dark Side of Microalgae Biotechnology: A Heterotrophic Biorefinery Platform Directed to ω-3 Rich Lipid Production. Microorganisms 2019, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wu, W.; Guo, X.; Weichen, Y.; Qi, F.; Jiang, X.; Huang, J. Mathematical modeling of fed-batch fermentation of Schizochytrium sp. FJU-512 growth and DHA production using a shift control strategy. 3 Biotech 2018, 8, 162. [Google Scholar] [CrossRef]
- Yin, F.-W.; Guo, D.-S.; Ren, L.-J.; Ji, X.-J.; Huang, H. Development of a method for the valorization of fermentation wastewater and algal-residue extract in docosahexaenoic acid production by Schizochytrium sp. Bioresour. Technol. 2018, 266, 482–487. [Google Scholar] [CrossRef]
- Bi, Z.Q.; Ren, L.J.; Hu, X.C.; Sun, X.M.; Zhu, S.Y.; Ji, X.J.; Huang, H. Transcriptome and gene expression analysis of do-cosahexaenoic acid producer Schizochytrium sp. under different oxygen supply conditions. Biotechnol. Biofuels 2018, 11, 249. [Google Scholar] [CrossRef]
- Dai, K.; Zhao, J.; Cheng, Y.; Tian, C.; Zhang, C.; Chen, M. Inulin as a Promising Alternative Feedstock for Docosahexaenoic Acid Production by Schizochytrium sp. ATCC 20888. Eur. J. Lipid Sci. Technol. 2020, 122, 2000079. [Google Scholar] [CrossRef]
- Sun, X.-M.; Ren, L.-J.; Bi, Z.-Q.; Ji, X.-J.; Zhao, Q.-Y.; Jiang, L.; Huang, H. Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp. Biotechnol. Biofuels 2018, 11, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dȩbowski, M.; Zieliński, M.; Kazimierowicz, J.; Kujawska, N.; Talbierz, S. Microalgae cultivation technologies as an oppor-tunity for bioenergetic system development—Advantages and limitations. Sustainability 2020, 12, 9980. [Google Scholar] [CrossRef]
- Hu, X.; Tang, X.; Bi, Z.; Zhao, Q.; Ren, L. Adaptive evolution of microalgae Schizochytrium sp. under high temperature for efficient production of docosahexaeonic acid. Algal Res. 2021, 54, 102212. [Google Scholar] [CrossRef]
- Kothri, M.; Mavrommati, M.; Elazzazy, A.M.; Baeshen, M.N.; Moussa, T.A.; Aggelis, G. Microbial sources of polyunsaturated fatty acids (PUFAs) and the prospect of organic residues and wastes as growth media for PUFA-producing microorganisms. FEMS Microbiol. Lett. 2020, 367, 1–11. [Google Scholar] [CrossRef]
- Wang, X.-L.; Zhou, J.-J.; Shen, J.-T.; Zheng, Y.-F.; Sun, Y.-Q.; Xiu, Z.-L. Sequential fed-batch fermentation of 1,3-propanediol from glycerol by Clostridium butyricum DL07. Appl. Microbiol. Biotechnol. 2020, 104, 9179–9191. [Google Scholar] [CrossRef] [PubMed]
- Seretis, A.; Tsiakaras, P. Hydrogenolysis of glycerol to propylene glycol by in situ produced hydrogen from aqueous phase reforming of glycerol over SiO2–Al2O3 supported nickel catalyst. Fuel Process. Technol. 2016, 142, 135–146. [Google Scholar] [CrossRef]
- Kaur, J.; Sarma, A.K.; Jha, M.K.; Gera, P. Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol. Rep. 2020, 27, e00487. [Google Scholar] [CrossRef]
- Dang, C.; Wu, S.; Cao, Y.; Wang, H.; Peng, F.; Yu, H. Co-production of high quality hydrogen and synthesis gas via sorption-enhanced steam reforming of glycerol coupled with methane reforming of carbonates. Chem. Eng. J. 2019, 360, 47–53. [Google Scholar] [CrossRef]
- Chiosso, M.E.; Casella, M.L.; Merlo, A.B. Synthesis and catalytic evaluation of acidic carbons in the etherification of glycerol obtained from biodiesel production. Catal. Today 2021, 372, 107–114. [Google Scholar] [CrossRef]
- Bouriakova, A.; Mendes, P.S.; Katryniok, B.; De Clercq, J.; Thybaut, J.W. Co-metal induced stabilization of alumina-supported copper: Impact on the hydrogenolysis of glycerol to 1,2-propanediol. Catal. Commun. 2020, 146, 106134. [Google Scholar] [CrossRef]
- Okhlopkova, E.A.; Serafimov, L.A.; Frolkova, A. Methods of Preparing Epichlorohydrin. Theor. Found. Chem. Eng. 2019, 53, 864–870. [Google Scholar] [CrossRef]
- Bindea, M.; Rusu, B.; Rusu, A.; Trif, M.; Leopold, L.F.; Dulf, F.; Vodnar, D.C. Valorification of crude glycerol for pure fractions of docosahexaenoic acid and β-carotene production by using Schizochytrium limacinum and Blakeslea trispora. Microb. Cell Factories 2018, 17, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mantzouridou, F.; Naziri, E.; Tsimidou, M.Z. Industrial Glycerol as a Supplementary Carbon Source in the Production of β-Carotene by Blakeslea trispora. J. Agric. Food Chem. 2008, 56, 2668–2675. [Google Scholar] [CrossRef] [PubMed]
- Yu, K.O.; Jung, J.; Kim, S.W.; Park, C.H.; Han, S.O. Synthesis of FAEEs from glycerol in engineered Saccharomyces cerevisiae using endogenously produced ethanol by heterologous expression of an unspecific bacterial acyltransferase. Biotechnol. Bioeng. 2012, 109, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Bianco, F.; Race, M.; Forino, V.; Pacheco-Ruiz, S.; Rene, E.R. Bioreactors for wastewater to energy conversion: From pilot to full scale experiences. Waste Biorefinery 2021, 103–124. [Google Scholar] [CrossRef]
- Dąbrowski, W.; Karolinczak, B.; Malinowski, P.; Boruszko, D. Modeling of Pollutants Removal in Subsurface Vertical Flow and Horizontal Flow Constructed Wetlands. Water 2019, 11, 180. [Google Scholar] [CrossRef] [Green Version]
- Karolinczak, B.; Miłaszewski, R.; Dąbrowski, W. Cost Optimization of Wastewater and Septage Treatment Process. Energies 2020, 13, 6406. [Google Scholar] [CrossRef]
- Kazimierowicz, J.; Dzienis, L. Giant miscanthus as a substrate for biogas production. J. Ecol. Eng. 2015, 16, 139–142. [Google Scholar] [CrossRef]
- Markowski, M.; Bialobrzewski, I.; Zielinski, M.; Dębowski, M.; Krzemieniewski, M. Optimizing low-temperature biogas pro-duction from biomass by anaerobic digestion. Renew. Energy 2014, 69, 219–225. [Google Scholar] [CrossRef]
- Zieliński, M.; Rusanowska, P.; Dębowski, M.; Hajduk, A. Influence of static magnetic field on sludge properties. Sci. Total Environ. 2018, 625, 738–742. [Google Scholar] [CrossRef]
- Bani, A.; Fernandez, F.G.A.; D’Imporzano, G.; Parati, K.; Adani, F. Influence of photobioreactor set-up on the survival of microalgae inoculum. Bioresour. Technol. 2021, 320, 124408. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kwak, M.; Seo, J.; Ju, J.; Heo, S.; Park, S.; Hong, W. Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess Biosyst. Eng. 2018, 41, 1355–1370. [Google Scholar] [CrossRef] [PubMed]
- Krzemieniewski, M.; Debowski, M.; Dobrzynska, A.; Zielinski, M. Chemical oxygen demand reduction of various wastewater types using magnetic field-assisted fenton reaction. Water Environ. Res. 2004, 76, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-L.; Ji, X.-J.; Ren, L.-J.; Li, G.-L.; Huang, H. Improving Docosahexaenoic acid production by Schizchytrium sp. using a newly designed high-oxygen-supply bioreactor. AIChE 2015, 63, 4278–4286. [Google Scholar] [CrossRef]
- Ren, L.-J.; Ji, X.-J.; Huang, H.; Qu, L.; Feng, Y.; Tong, Q.-Q.; Ouyang, P.-K. Development of a stepwise aeration control strategy for efficient docosahexaenoic acid production by Schizochytrium sp. Appl. Microbiol. Biotechnol. 2010, 87, 1649–1656. [Google Scholar] [CrossRef] [PubMed]
- Petersen, N.; Stocks, S.; Gernaey, K. Multivariate models for prediction of rheological characteristics of filamentous fermenta-tion broth from the size distribution. Biotechnol. Bioeng. 2008, 100, 61–71. [Google Scholar] [CrossRef]
- Yao, C.; Zhao, Y.; Zheng, J.; Zhang, Q.; Chen, G. The effect of liquid viscosity and modeling of mass transfer in gas–liquid slug flow in a rectangular microchannel. AIChE J. 2020, 66, 66. [Google Scholar] [CrossRef]
- Blunt, W.; Gaugler, M.; Collet, C.; Sparling, R.; Gapes, D.J.; Levin, D.B.; Cicek, N. Rheological Behavior of High Cell Density Pseudomonas putida LS46 Cultures during Production of Medium Chain Length Polyhydroxyalkanoate (PHA) Polymers. Bioeng. 2019, 6, 93. [Google Scholar] [CrossRef] [Green Version]
- Bodie, E.; Virag, A.; Pratt, R.J.; Leiva, N.; Ward, M.; Dodge, T. Reduced viscosity mutants of Trichoderma reesei with improved industrial fermentation characteristics. J. Ind. Microbiol. Biotechnol. 2021, 48, kuab014. [Google Scholar] [CrossRef]
- De Swaaf, M.E.; Grobben, G.J.; Eggink, G.; De Rijk, T.C.; Van Der Meer, P.; Sijtsma, L. Characterisation of extracellular polysaccharides produced by Crypthecodinium cohnii. Appl. Microbiol. Biotechnol. 2001, 57, 395–400. [Google Scholar]
- Becker, A.; Katzen, F.; Pühler, A.; Ielpi, L. Xanthan gum biosynthesis and application: A biochemical /genetic perspective. Appl. Microbiol. Biotechnol. 1998, 50, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Yang, X.; Li, M.; Li, X.; Wei, Y.Z.; Cao, M.; Ragauskas, A.; Thies, M.; Ding, J.H.; Zheng, Y. Investigation of composi-tion, structure and bioactivity of extracellular polymeric substances from original and stress-induced strains of Thrausto-chytrium striatum. Carbohydr. Polym. 2018, 195, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Olvera-Sosa, M.; Rosales-Mendoza, S.; García-Briones, G.S.; Betancourt-Mendiola, M.D.L.; González-Ortega, O.; Palestino, G. A novel acrylic acid-Schizochytrium sp. bio-based polymer: Design, synthesis, and properties. Mater. Today Commun. 2021, 26, 102029. [Google Scholar] [CrossRef]
- Garcia-Ochoa, F.; Gomez, E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnol. Adv. 2009, 27, 153–176. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.M.; Geng, L.J.; Ren, L.J.; Ji, X.J.; Hao, N.; Chen, K.Q.; Huang, H. Influence of oxygen on the biosynthesis of polyun-saturated fatty acids in microalgae. Bioresour. Technol. 2018, 250, 868–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kujawska, N.; Talbierz, S.; Dębowski, M.; Kazimierowicz, J.; Zieliński, M. Optimizing Docosahexaenoic Acid (DHA) Production by Schizochytrium sp. Grown on Waste Glycerol. Energies 2021, 14, 1685. [Google Scholar] [CrossRef]
- Kujawska, N.; Talbierz, S.; Dębowski, M.; Kazimierowicz, J.; Zieliński, M. Cultivation Method Effect on Schizochytrium sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon. Energies 2021, 14, 2952. [Google Scholar] [CrossRef]
- Underwood, G.J.C.; Paterson, D.M.; Parkes, R.J. The measurement of microbial carbohydrate exopolymers from intertidal sediments. Limnol. Oceanogr. 1995, 40, 1243–1253. [Google Scholar] [CrossRef] [Green Version]
- Dubois, M.; Gilles, K.; Hamilton, J.; Reberes, P.; Smith, F. Colorimetric method for determination of sugars and related sub-stances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Chaplin, M.; Kennedy, J. Carbohydrate Analysis: A practical Approach; IRL Press: Oxford, UK, 1986.
- Kucuk, C.; Merih, K. Extracellular polysaccharide production by Rhizobium ciceri from Turkey. Ann. Microbiol. 2009, 59, 141–144. [Google Scholar] [CrossRef]
- Nouha, K.; Kumar, R.S.; Ram, S.K.; Tyagi, R.D. Critical review of EPS production, synthesis and composition for sludge flocculation. J. Environ. Sci. 2018, 66, 225–245. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, N.; Browman, J.; Guezennec, J. Effects of incuba- tion temperature on growth and production of exopolysaccha-rides by an Antarctic sea ice bacterium grown in batch culture. Appl. Environ. Microbiol. 2005, 71, 3519–3523. [Google Scholar]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The Microbial “Protective Clothing” in Extreme Environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [Green Version]
- Bhaskar, P.; Bhosle, N. Microbial extracellular polymeric substances in marine biogeochemical processes. Curr. Sci. 2005, 88, 45–53. [Google Scholar]
- Jaroszuk-Ściseł, J.; Nowak, A.; Komaniecka, I.; Choma, A.; Jarosz-Wilkołazka, A.; Osińska-Jaroszuk, M.; Tyśkiewicz, R.; Wiater, A.; Rogalski, J. Differences in Production, Composition, and Antioxidant Activities of Exopolymeric Substances (EPS) Obtained from Cultures of Endophytic Fusarium culmorum Strains with Different Effects on Cereals. Molecules 2020, 25, 616. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Kastanek, P.; Adhikary, S.P. Exopolysaccharides from cyanobacteria and microalgae and their commercial ap-plication. Curr. Sci. 2018, 115, 234. [Google Scholar] [CrossRef]
- Delattre, C.; Pierre, G.; Laroche, C.; Michaud, P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol. Adv. 2016, 34, 1159–1179. [Google Scholar] [CrossRef] [PubMed]
- Markou, G.; Nerantzis, E. Microalgae for high-value compounds and biofuels production: A review with focus on cultivation under stress conditions. Biotechnol. Adv. 2013, 31, 1532–1542. [Google Scholar] [CrossRef] [PubMed]
- Pierre, G.; Delattre, C.; Dubessay, P.; Jubeau, S.; Vialleix, C.; Cadoret, J.-P.; Probert, I.; Michaud, P. What Is in Store for EPS Microalgae in the Next Decade? Molecules 2019, 24, 4296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, R.; Raghukumar, S.; Tharanathan, R.; Bhosle, N. Extracellular polysaccharide production by thraustochytrid protists. Mar. Biotechnol. 2005, 7, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.; Wu, J.; Jiang, C.; Tian, G.; Wu, Q.; Chang, M.; Wang, X. The relationship of oxygen uptake rate and kLa with rheological properties in high cell density cultivation of docosahexaenoic acid by Schizochytrium sp. S31. Bioresour. Technol. 2014, 152, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhou, X.; Xu, Y. Improvement of fermentation performance of Gluconobacter oxydans by combination of enhanced oxygen mass transfer in compressed-oxygen-supplied sealed system and cell-recycle technique. Bioresour. Technol. 2017, 244, 1137–1141. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Ji, X.-J.; Ren, L.-J.; Nie, Z.-K.; Feng, Y.; Wu, W.-J.; Ouyang, P.-K.; Huang, H. Enhancement of docosahexaenoic acid production by Schizochytrium sp. using a two-stage oxygen supply control strategy based on oxygen transfer coefficient. Lett. Appl. Microbiol. 2010, 52, 22–27. [Google Scholar] [CrossRef]
- Yang, X.; Xu, T.; Cao, P.; Qiao, K.; Wang, L.; Zhao, T.; Zhu, J. The viscosity behaviors of bacterial suspensions or extracellular polymeric substances and their effects on aerobic granular sludge. Environ. Sci. Pollut. Res. 2019, 26, 30087–30097. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, A.; Aasen, I.; Strom, A. Endogenously synthesized (-)-proto-quercitol and glycine betaine are principal compatible solutes fo Schizochytrium sp. strain S8 (ATCC 20889) and three new isolates of phylogenetically related thraustochytrids. Appl. Environ. Microbiol. 2007, 73, 5848–5856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, G.; Gao, N.; Tian, G.; Wu, Q.; Chang, M.; Wang, X. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresour. Technol. 2013, 142, 400–406. [Google Scholar] [CrossRef]
Properties | Unit | Concentration |
---|---|---|
Color | [-] | light-brown |
Odor | [-] | characteristic |
pH | [-] | 5 |
Glycerol | [% w/w] | 80 |
Water | [% w/w] | 15 |
Sulphated ash | [% w/w] | 5 |
Methanol | [% w/w] | 0.3 |
MONG (Matter Organic Non Glycerol) | [% w/w] | 6 |
Chlorides | [ppm] | 10 |
Halogen derivatives | [ppm] | 35 |
Acidity | [cm3] of NaOH consumed | 0.25 |
Esters | [cm3] of NaOH consumed | 8–10 |
Heavy metals | [ppm] | 5 |
Aldehydes | [ppm] | 10 |
Temperature of melting/freezing | [°C] | 18 |
Temperature of initial boiling | [°C] | 290 |
Temperature of ignition | [°C] | 177 |
Temperature of self-ignition | [°C] | 429 |
Temperature of decomposition | [°C] | >290 |
Vapor pressure | [mbar] | 0.01 |
Relative density/density converted to 20 °C | [kg/dm3] | 1.26 |
Viscosity at 20 °C | [mm2/s] | 1.5 |
Density at 15 °C | [kg/dm3] | 1.2 |
Explosive properties | [-] | - |
Culture Variant | kLa [1/h] | Turbine Speed [rpm] | Volumetric Air Flow Rate [dm3/h] | Bioreactor Tank Volume [dm3] |
---|---|---|---|---|
1 | 150 | 185 | 0.80 | 20.0 |
2 | 300 | 370 | 1.60 | 20.0 |
3 | 450 | 555 | 2.40 | 20.0 |
4 | 600 | 740 | 3.20 | 20.0 |
5 | 750 | 925 | 4.00 | 20.0 |
Saccharide Monomer | Molar Percentage [% mol] |
---|---|
Glucose | 60.64 ± 1.93 |
Galactose | 18.00 ± 1.13 |
Mannose | 11.47 ± 0.71 |
Fucose | 7.23 ± 0.62 |
Xylose | 2.66 ± 1.28 |
Parameter | Unit | kLa = 150 [1/h] | kLa = 300 [1/h] | kLa = 450 [1/h] | kLa = 600 [1/h] | kLa = 750 [1/h] |
---|---|---|---|---|---|---|
Time [h] | [h] | 120 | 120 | 120 | 120 | 120 |
DCW | [g/dm3] | 112.77 ± 2.65 | 113.45 ± 2.05 | 139.90 ± 3.86 | 147.89 ± 4.77 | 149.03 ± 3.31 |
Lipid concentration | [g/dm3] | 48.90 ± 1.56 | 49.34 ± 1.25 | 60.03 ± 1.24 | 69.44 ± 0.76 | 69.88 ± 0.81 |
DHA | [g/dm3] | 21.02 ± 0.73 | 22.15 ± 0.65 | 25.32 ± 0.56 | 29.44 ± 0.36 | 30.05 ± 0.71 |
rDCW | [g/dm3·h] | 0.94 ± 0.15 | 0.95 ± 0.09 | 1.17 ± 0.21 | 1.23 ± 0.25 | 1.24 ± 0.13 |
rDHA | [g/dm3·h] | 0.18 ± 0.08 | 0.18 ± 0.05 | 0.21 ± 0.02 | 0.25 ± 0.15 | 0.25 ± 0.09 |
Glycerol consumption | [g/dm3·h] | 3.57 ± 0.32 | 3.60 ± 0.26 | 3.68 ± 0.28 | 3.76 ± 0.31 | 3.82 ± 0.19 |
[g/gDCW] | 3.97 ± 0.76 | 3.99 ± 0.64 | 3.28 ± 0.59 | 3.16 ± 0.22 | 3.18 ± 0.15 | |
EPS | [g/dm3] | 8.73 ± 0.09 | 8.62 ± 0.12 | 8.94 ± 0.06 | 9.17 ± 0.23 | 9.08 ± 0.17 |
Viscosity | [mm2/s] | 20.97 ± 0.74 | 21.03 ± 1.02 | 21.33 ± 0.68 | 21.07 ± 0.91 | 21.43 ± 1.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kujawska, N.; Talbierz, S.; Dębowski, M.; Kazimierowicz, J.; Zieliński, M. Effect of the Concentration of Extracellular Polymeric Substances (EPS) and Aeration Intensity on Waste Glycerol Valorization by Docosahexaenoic Acid (DHA) Produced in Heterotrophic Culture of Schizochytrium sp. Appl. Sci. 2021, 11, 9573. https://doi.org/10.3390/app11209573
Kujawska N, Talbierz S, Dębowski M, Kazimierowicz J, Zieliński M. Effect of the Concentration of Extracellular Polymeric Substances (EPS) and Aeration Intensity on Waste Glycerol Valorization by Docosahexaenoic Acid (DHA) Produced in Heterotrophic Culture of Schizochytrium sp. Applied Sciences. 2021; 11(20):9573. https://doi.org/10.3390/app11209573
Chicago/Turabian StyleKujawska, Natalia, Szymon Talbierz, Marcin Dębowski, Joanna Kazimierowicz, and Marcin Zieliński. 2021. "Effect of the Concentration of Extracellular Polymeric Substances (EPS) and Aeration Intensity on Waste Glycerol Valorization by Docosahexaenoic Acid (DHA) Produced in Heterotrophic Culture of Schizochytrium sp" Applied Sciences 11, no. 20: 9573. https://doi.org/10.3390/app11209573
APA StyleKujawska, N., Talbierz, S., Dębowski, M., Kazimierowicz, J., & Zieliński, M. (2021). Effect of the Concentration of Extracellular Polymeric Substances (EPS) and Aeration Intensity on Waste Glycerol Valorization by Docosahexaenoic Acid (DHA) Produced in Heterotrophic Culture of Schizochytrium sp. Applied Sciences, 11(20), 9573. https://doi.org/10.3390/app11209573