Peri-Implant Tissue Behaviour Next to Different Titanium Surfaces: 16-Year Post-Trial Follow-Up
Abstract
:1. Introduction
2. Materials and Methods
- -
- Good systemic health with no contraindications to oral surgery [33,34]: patients with an uncontrolled medical condition such as diabetes mellitus, immune suppression, intravenous or oral bisphosphonate medication, oro-facial cancer, chemotherapy or head and neck radiotherapy, and infarct during the preceding 6 months were excluded;
- -
- No history of periodontal disease;
- -
- Partial edentulism to be rehabilitated with at least two adjacent implants;
- -
- Natural teeth or fixed prostheses supported by natural teeth as opposite dentitions (no removable prosthesis as antagonist);
- -
- Teeth in treated areas had been extracted at least 1 year before;
- -
- No heavy smokers (≥20 cigarettes/day).
2.1. Radiographic Assessment of Interproximal Bone Level Change (BLC)
2.2. Soft Tissue Health Parameters
2.3. Prosthodontic Success Criteria
- -
- Absence of any modification of the original prostheses and its maintenance in situ;
- -
- Patients’ overall satisfaction with their prosthetic rehabilitation;
- -
- Absence of mechanical and biologic complications.
2.4. Implant Success Criteria
- -
- The individual unattached implant is immobile when tested;
- -
- No evidence of peri-implant radiolucency is present as assessed on an undistorted radiograph;
- -
- Absence of peri-implant infection and the implant is capable to support a prosthodontic rehabilitation that is satisfactory both for the patient and the clinician;
- -
- Mean vertical bone loss is less than 0.2 mm annually after physiologic remodeling during the first year of function.
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Novaes, A.B., Jr.; de Souza, S.L.; de Barros, R.R.; Pereira, K.K.; Iezzi, G.; Piattelli, A. Influence of implant surfaces on osseointegration. Braz Dent. J. 2010, 21, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Pera, F.; Bagnasco, F.; Delucchi, F.; Morganti, E.; Canullo, L.; Pesce, P. Morphological and chemical characterization of titanium and zirconia dental implants with different macro- and micro-structure. Appl. Sci. 2020, 10, 7520. [Google Scholar] [CrossRef]
- Kligman, S.; Ren, Z.; Chung, C.H.; Perillo, M.A.; Chang, Y.C.; Koo, H.; Zheng, Z.; Li, C. The Impact of Dental Implant Surface Modifications on Osseointegration and Biofilm Formation. J. Clin. Med. 2021, 10, 1641. [Google Scholar] [CrossRef]
- Conserva, E.; Lanuti, A.; Menini, M. Cell behavior related to implant surfaces with different microstructure and chemical composition: An in vitro analysis. Int. J. Oral Maxillofac. Implant. 2010, 25, 1099–1107. [Google Scholar]
- Conserva, E.; Menini, M.; Ravera, G.; Pera, P. The role of surface implant treatments on the biological behavior of SaOS-2 osteoblast-like cells. An in vitro comparative study. Clin. Oral Implant. Res. 2013, 24, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Delucchi, F.; Bagnasco, F.; Pera, F.; Di Tullio, N.; Pesce, P. Analysis of the Subgingival Microbiota in Implant-Supported Full-Arch Rehabilitations. Dent. J. 2020, 8, 104. [Google Scholar] [CrossRef] [PubMed]
- Baldi, D.; Longobardi, M.G.; Cartiglia, C.; La Maestra, S.; Pulliero, A.; Bonica, P.; Micale, R.; Menini, M.; Pera, P.; Izzotti, A. Dental Implants Osteogenic Properties Evaluated by cDNA Microarrays. Implant. Dent. 2011, 20, 299–304. [Google Scholar] [CrossRef]
- Menini, M.; Delucchi, F.; Baldi, D.; Pera, F.; Bagnasco, F.; Pesce, P. Macrophagic Inflammatory Response Next to Dental Implants with Different Macro- and Micro-Structure: An In Vitro Study. Appl. Sci. 2021, 11, 5324. [Google Scholar] [CrossRef]
- Albrektsson, T.; Wennerberg, A. Oral implant surfaces: Part 1–review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int. J. Prosthodont. 2004, 17, 536–543. [Google Scholar] [PubMed]
- Folkman, M.; Becker, A.; Meinster, I.; Masri, M.; Ormianer, Z. Comparison of bone-to-implant contact and bone volume around implants placed with or without site preparation: A histomorphometric study in rabbits. Sci. Rep. 2020, 10, 12446. [Google Scholar] [CrossRef]
- Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontol. 2000 2017, 73, 22–40. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.F. A role for surface topography in creating and maintaining bone at titanium endosseous implants. J. Prosthet Dent. 2000, 84, 522–534. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.P.; Jepsen, S. Implant surfaces and design. Clin. Oral Implant. Res. 2009, 20, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Liu, H.; Zhou, N.; Li, Q.; Yang, G.; Chen, L.; Mou, Y. Surface Modified Techniques and Emerging Functional Coating of Dental Implants. Coatings 2020, 10, 1012. [Google Scholar] [CrossRef]
- Pesce, P.; Menini, M.; Santori, G.; Giovanni, E.; Bagnasco, F.; Canullo, L. Photo and Plasma Activation of Dental Implant Titanium Surfaces. A Systematic Review with Meta-Analysis of Pre-Clinical Studies. J. Clin. Med. 2020, 9, 2817. [Google Scholar] [CrossRef] [PubMed]
- Mangano, F.G.; Pires, J.T.; Shibli, J.A.; Mijiritsk, E.; Iezzi, G.; Piattelli, A.; Mangano, C. Early Bone Response to Dual Acid-Etched and Machined Dental Implants Placed in the Posterior Maxilla: A Histologic and Histomorphometric Human Study. Implant. Dent. 2017, 26, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, M.; Rizzo, A.; Leone, C.; Mangano, C. Bacterial adhesion to direct laser metal formed and mildly acid-etched implant surfaces. Surf. Coat. Technol. 2017, 328, 390–397. [Google Scholar] [CrossRef]
- Quirynen, M.; van der Mei, H.C.; Bollen, C.M.; Schotte, A.; Marechal, M.; Doornbusch, G.I.; Naert, I.; Busscher, H.J.; van Steenberghe, D. An in vivo study of the Influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. J. Dent. Res. 1993, 72, 1304–1309. [Google Scholar] [CrossRef] [PubMed]
- Bollen, C.M.; Papaioanno, W.; Van Eldere, J.; Schepers, E.; Quirynen, M.; van Steenberghe, D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin. Oral Implant. Res. 1996, 7, 201–211. [Google Scholar] [CrossRef]
- Lindhe, J.; Meyle, J. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J. Clin. Periodotol. 2008, 35, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Beutner, R.; Michael, J.; Schwenzer, B.; Scharnweber, D. Biological nano-functionalization of titanium-based biomaterial surfaces: A flexible toolbox. J. R Soc. Interface 2010, 7, 93–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lutz, R.; Srour, S.; Nonhoff, J.; Weisel, T.; Damien, C.J.; Schlegel, K.A. Biofunctionalization of titanium implants with a biomimetic active peptide (P-15) promotes early osseointegration. Clin. Oral Implants Res. 2010, 21, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Renvert, S.; Polyzois, I.; Claffey, N. How do implant surface characteristics influence peri-implant disease? J. Clin. Periodontol. 2011, 38, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Menini, M.; Setti, P.; Pera, P.; Pera, F.; Pesce, P. Peri-implant tissue health and bone resorption in immediately loaded, implant-supported full-arch prostheses. Int. J. Prosthodont. 2018, 31, 327–333. [Google Scholar] [CrossRef] [PubMed]
- Pesce, P.; Menini, M.; Tealdo, T.; Bevilacqua, M.; Pera, F.; Pera, P. Peri-implantitis: A systematic review of recently published papers. Int. J. Prosthodont. 2014, 27, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Baldi, D.; Menini, M.; Pera, F.; Ravera, G.; Pera, P. Plaque accumulation on exposed titanium surfaces and peri-implant tissue behavior. A preliminary 1-year clinical study. Int. J. Prosthodont. 2009, 22, 447–455. [Google Scholar] [PubMed]
- Menini, M.; Dellepiane, E.; Chvartszaid, D.; Baldi, D.; Schiavetti, I.; Pera, P. Influence of Different Surface Characteristics on Peri-implant Tissue Behavior: A Six-Year Prospective Report. Int. J. Prosthodont. 2015, 28, 389–395. [Google Scholar] [CrossRef]
- Menini, M.; Dellepiane, E.; Baldi, D.; Longobardi, M.G.; Pera, P.; Izzotti, A. Microarray expression in peri-implant tissue next to different titanium implant surfaces predicts clinical outcomes: A split-mouth study. Clin. Oral Implant. Res. 2017, 28, 121–134. [Google Scholar] [CrossRef]
- Menini, M.; Pesce, P.; Baldi, D.; Coronel Vargas, G.; Pera, P.; Izzotti, A. Prediction of Titanium Implant Success by Analysis of microRNA Expression in Peri-Implant Tissue. A 5-Year Follow-Up Study. J. Clin. Med. 2019, 8, 888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Angelis, N.; Kassim, Z.H.; Baharuddin, I.H.; Parker, S.; Colombo, E.; Amaroli, A.; Signore, A. Ten-Year Results of a Prospective Cohort Study on Acid-Etched and Airborne Particle-Abraded Implant Surfaces: A Comparative Study. Int. J. Periodontics Restor. Dent. 2020, 40, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Buser, D.; Janner, S.F.; Wittneben, J.G.; Brägger, U.; Ramseier, C.A.; Salvi, G.E. 10-year survival and success rates of 511 titanium implants with a sandblasted and acid-etched surface: A retrospective study in 303 partially edentulous patients. Clin. Implant. Dent. Relat Res. 2012, 14, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn-Bennett, R.; Edwards, D.; Roberts, N.; Hainsworth, A.H.; Bulbulia, R.; Bowman, L. Post-trial follow-up methodology in large randomised controlled trials: A systematic review. Trials 2018, 19, 298. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Wang, H.L. Medical contraindications to implant therapy: Part II: Relative contraindications. Implant. Dent. 2007, 16, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, M.M.; Cionca, N.; Mombelli, A. Systemic conditions and treatments as risks for implant therapy. Int. J. Oral Maxillofac Implant. 2009, 24, 12–27. [Google Scholar]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar]
- Spray, J.R.; Black, C.G.; Morris, H.F.; Ochi, S. The influence of bone thickness on facial marginal bone response: Stage 1 placement through stage 2 uncovering. Ann. Periodontol. 2000, 5, 119–128. [Google Scholar] [CrossRef]
- Tarnow, D.P.; Cho, S.C.; Wallace, S.S. The effect of inter-implant distance on the height of inter-implant bone crest. J. Periodontol. 2000, 71, 546–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, M.; Ekestubbe, A.; Grondahl, K. Radiological evaluation of marginal bone loss at tooth surfaces facing single Brånemark implants. Clin. Oral Implant. Res. 1993, 4, 151–157. [Google Scholar] [CrossRef]
- Menini, M.; Conserva, E.; Tealdo, T.; Bevilacqua, M.; Pera, F.; Signori, A.; Pera, P. Shock absorption capacity of restorative materials for implant prostheses: An in vitro study. Int. J. Prosthodont. 2013, 26, 549–556. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.E.; Zarb, G.A. Criteria for success of osseointegrated endosseous implants. J. Prosthet. Dent. 1989, 62, 567–572. [Google Scholar] [CrossRef]
- Choi, A.H.; Ben-Nissan, B. Bone Remodeling—Dental Implants. In Anatomy, Modeling and Biomaterial Fabrication for Dental and Maxillofacial Applications; Bentham eBooks, Ed.; Bentham Science Publishers, Random House Academic Marketing: New York, NY, USA, 2018; Volume 7, pp. 79–85. [Google Scholar]
- Lin, G.H.; Chan, H.L.; Wang, H.L. The significance of keratinized mucosa on implant health: A systematic review. J. Periodontol. 2013, 84, 1755–1767. [Google Scholar] [CrossRef]
- Lim, H.C.; Wiedemeier, D.B.; Hämmerle, C.H.; Thoma, D.S. The amount of keratinized mucosa may not influence peri-implant health in compliant patients: A retrospective 5-year analysis. J. Clin. Periodontol. 2019, 46, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.M.; Oh, T.J.; Shotwell, J.L.; Misch, C.E. Wang HL. Significance of keratinized mucosa in maintenance of dental implants with different surfaces. J. Periodontol. 2006, 77, 1410–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Abdaly, M.; Al-Harthi, H.; Al-Harthi, S.; Almalki, R. Oral Health Status and Gingival Response to Three Different Restorative Materials among Saudi Patients: A Clinical & Histopathological Study. Int. J. Clin. Med. 2019, 10, 78–90. [Google Scholar]
- Lazzara, R.J.; Porter, S.S.; Testori, T.; Galante, J.; Zetterqvist, L. A prospective multicenter study evaluating loading of Osseotite implants two months after placement: One-year results. J. Esthet. Dent. 1998, 10, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Nasatzky, E.; Gultchin, J.; Schwartz, Z. The role of surface roughness in promoting osteointegration. Refuat Hapeh Vehashinayim (1993) 2003, 20, 8–19. [Google Scholar]
- Roehling, S.K.; Meng, B.; Cochran, D.L. Sandblasted and Acid-Etched Implant Surfaces With or Without High Surface Free Energy: Experimental and Clinical Background. In Implant Surfaces and Their Biological and Clinical Impact; Wennerberg, A., Albrektsson, T., Jimbo, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Davies, J.E. Understanding peri-implant endosseous healing. J. Dent. Ed. 2003, 67, 932–949. [Google Scholar] [CrossRef]
- Davies, J.E. Mechanisms of endosseous integration. Int. J. Prosthodont. 1998, 11, 391–401. [Google Scholar] [PubMed]
- Alfarsi, M.A.; Hamlet, S.M.; Ivanovski, S. Titanium surface hydrophilicity enhances platelet activation. Dent. Mater. J. 2014, 33, 749–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barfeie, A.; Wilson, J.; Rees, J. Implant surface characteristics and their effect on osseointegration. Br. Dent. J. 2015, 218, E9. [Google Scholar] [CrossRef] [PubMed]
- De Bruyn, H.; Christiaens, V.; Doornewaard, R.; Jacobsson, M.; Cosyn, J.; Jacquet, W.; Vervaeke, S. Implant surface roughness and patient factors on long-term peri-implant bone loss. Periodontol. 2000 2017, 73, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Doornewaard, R.; Christiaens, V.; De Bruyn, H.; Jacobsson, M.; Cosyn, J.; Vervaeke, S.; Jacquet, W. Long-term effect of surface roughness and patients’ factors on crestal bone loss at dental implants. A systematic review and meta-analysis. Clin. Implant. Dent. Relat Res. 2016, 10, 372–399. [Google Scholar] [CrossRef] [PubMed]
- Khang, W.; Feldman, S.; Hawley, C.E.; Gunsolley, J. A multi-center study comparing dual acid-etched and machined-surfaced implants in various bone qualities. J. Periodontol. 2001, 72, 1384–1390. [Google Scholar] [CrossRef]
- Berglundh, T.; Persson, L.; Klinge, B. A systematic review of the incidence of biological and technical complications in implant dentistry reported in prospective longitudinal studies of at least 5 years. J. Clin. Periodontol. 2002, 29, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Lemos, C.A.A.; Verri, F.R.; Santiago Junior, J.F.; de Souza Batista, V.E.; Kemmoku, D.T.; Noritomi, P.Y.; Pellizzer, E.P. Splinted and Nonsplinted Crowns with Different Implant Lengths in the Posterior Maxilla by Three-Dimensional Finite Element Analysis. J. Healthc Eng. 2018, 2018, 3163096. [Google Scholar] [CrossRef]
- Vigolo, P.; Mutinelli, S.; Zaccaria, M.; Stellini, E. Clinical evaluation of marginal bone level change around multiple adjacent implants restored with splinted and nonsplinted restorations: A 10-year randomized controlled trial. Int. J. Oral Maxillofac Implant. 2015, 30, 411–418. [Google Scholar] [CrossRef]
- Pan, Y.; Tsoi, J.K.H.; Lam, W.Y.H.; Pow, E.H.N. Implant framework misfit: A systematic review on assessment methods and clinical complicatthe clinical complicationsions. Clin. Implant. Dent. Relat Res. 2021, 23, 244–258. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.Y.; Chen, Z.; Pan, W.L.; Wang, H.L. Is History of Periodontal Disease Still a Negative Risk Indicator for Peri-implant Health under Supportive Post-implant Treatment Coverage? A Systematic Review and Meta-analysis. Int. J. Oral Maxillofac Implants 2020, 35, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.; Schär, A.; Nelson, K.; Fretwurst, T.; Flügge, T.; Ramanauskaite, A.; Trimpou, G.; Sailer, I.; Karasan, D.; Fehmer, V.; et al. Recommendations for Implant-Supported Full-Arch Rehabilitations in Edentulous Patients: The Oral Reconstruction Foundation Consensus Report. Int. J. Prosthodont. 2021, 34, 8–20. [Google Scholar] [CrossRef] [PubMed]
Group 1 | Group 2 | |
---|---|---|
N° of patients | 8 | 10 |
N° of implants | 20 | 22 |
Mean age (SD) (years) | 59.8 (44–73) | 64.6 (52–76) |
Gender (n. of patients) | Men 1 Women 7 | 5 5 |
Smokers (n. of patients) | 1 | 1 |
Arch (n. of implants) | Maxilla 10 Mandible 10 | 12 10 |
Implant site | Anterior 1 Posterior 19 | 1 21 |
Implant length (n. of implants) | 10 mm 9 11.5 mm 8 13 mm 3 | 10 8 4 |
Implant diameter (n. of implants) | 4 mm 20 | 22 |
Follow-Up Months/Years) | N° of Patients | N° of Implants | Mean (SD) | ||
---|---|---|---|---|---|
Test (FOSS) | Control (OSS) | Global | |||
T0 | 18 | 42 | 0.00 | 0.00 | 0.00 |
3 months | 18 | 42 | 0.4 (0.5) [−0.1–0.9] | 1.0 (0.7) [0.3–1.7] | 0.7 (0.7) * [0.0–1.4] (p < 0.001) |
6 months | 18 | 42 | 0.7 (0.5) [0.2–1.2] | 1.4 (0.6) [0.8–2.0] | 1.0 (0.6)* (p < 0.001) [0.4–1.6] |
1 year | 18 | 42 | 0.8 (0.6) * (p = 0.002) [0.2–1.4] | 1.4 (0.6) [0.8–2.0] | 1.1 (0.6) [0.5–1.7] |
5 years | 18 | 42 | 1.4 (0.5) * (p = 0.011) [0.9–2.9] | 1.9 (0.7) [1.2–2.6] | 1.6 (0.7) * p < 0.001 [0.9–2.3] |
6 years | 15 | 36 | 1.4 (0.5) * (p = 0.008) [0.9–1.9] | 2.0 (0.7) [1.3–2.7] | 1.7 (0.7) * (p = 0.024) [1.0–2.4] |
7 years | 12 | 28 | 1.5 (0.6) * (p = 0.027) [0.9–2.1] | 2.2 (0.7) [1.5–2.9] | 1.8 (0.7) [1.1–3.5] |
8 years | 9 | 22 | 1.5 (0.6) [0.9–2.1] | 2.2 (0.7) [1.5–2.9] | 1.8 (0.7) * (p = 0.11) [1.1–3.5] |
15 years | 5 | 12 | 1.4 (0.4) [1.0–1.8] | 1.9 (0.4) [1.5–2.3] | 1.7 (0.5) * (p = 0.27) [1.2–2.3] |
16 years | 3 | 6 | 1.6 (0.8) [0.8–2.4] | 1.8 (0.6) [1.2–2.4] | 1.7 (0.7) [1.0–2.4] |
Follow-Up (Years) | N° of Patients | N° of Implants | Mean (SD) | |||
---|---|---|---|---|---|---|
Test (FOSS) | Control (OSS) | Test (FOSS) | Control (OSS) | Global | ||
T1 | 10 | 11 | 11 | 3.2 (0.9) [2.3–3.1] | 3.0 (0.6) [2.4–3.6] | 3.1 (0.7) [2.4–3.8] |
T4 | 10 | 11 | 11 | 2.9 (1.1) [1.8–4.0] | 2.8 (0.9) [1.9–3.7] | 2.8 (1.0) [1.8–3.8] |
T5 | 10 | 11 | 11 | 3.2 (1.3) [0.9–4.5] | 3.1 (1.3) [1.8–4.4] | 3.1 (1.3) [1.8–4.4] |
T6 | 16 | 19 | 19 | 2.6 (0.9) [1.7–3.5] | 2.6 (0.9) [1.7–3.5] | 2.6 (0.9) [1.7–3.5] |
T7 | 12 | 19 | 19 | 2.8 (0.8) [2.0–3.6] | 2.7 (0.7) (2.0–3.4) | 2.8 (0.8) [2.0–3.6] |
T8 | 9 | 11 | 11 | 2.8 (0.7) [2.1–3.5] | 2.9 (0.7) [2.1–3.5] | 2.8 (0.7) [2.1–3.5] |
T15 | 5 | 6 | 6 | 2.7 (0.9) [1.8–3.6] | 2.9 (0.5) [2.7–3.4] | 2.8 (0.7) [2.1–3.5] |
T16 | 3 | 3 | 3 | 2.7 (0.6) [2.1–3.2] | 3.2 (0.7) [2.5–3.9] | 3.0 (0.6) [2.4–3.6] |
Follow-Up (Years) | N° of Patients | N° of Implants | Mean (SD) | |||
---|---|---|---|---|---|---|
Test (FOSS) | Control (OSS) | Test (FOSS) | Control (OSS) | Global | ||
T1 | 18 | 21 | 21 | 1.0 (1.2) [−0.2–2.2] | 0.8 (1.2) [−0.4–2.0] | 0.9 (1.2) [−0.3–2.1] |
T2 | 18 | 21 | 21 | 1.0 (1.0) [0.0–2.0] | 0.8 (1.0) [−0.2–1.8] | 0.9 (0.9) [0.0–1.8] |
T3 | 18 | 21 | 21 | 1.1 (1.1) [0.0–2.2] | 1.1 (1.1) [0.0–2.2] | 1.1 (1.1) [0.0–2.2] |
T4 | 18 | 21 | 21 | 1.3 (1.0) [−0.2–2.3] | 1.2 (1.0) [0.2–2.2] | 1.3 (1.0) [−0.2–2.3] |
T5 | 18 | 21 | 21 | 2.0 (1.3) [0.7–3.3] | 1.6 (1.2) [0.4–3.9] | 1.8 (1.3) [0.5–3.1] |
T6 | 15 | 18 | 18 | 1.4 (1.2) [0.2–2.6] | 1.2 (1.0) [0.2–2.2] | 1.3 (1.1) [0.2–2.4] |
T7 | 12 | 14 | 14 | 1.1 (1.1) [0.0–2.2] | 1.0 (0.9) [1.1–1.9] | 1.0 (1.0) [0.0–2.0] |
T8 | 9 | 11 | 11 | 1.1 (1.4) [−0.3–2.5] | 1.2 (1.5) [−0.3–2.7] | 1.1 (1.4) [−0.3–2.5] |
T15 | 5 | 6 | 6 | 0.9 (1.0) [−0.1–1.9] | 1.0 (0.9) [0.1–1.9] | 0.9 (0.9) [0.8–1.8] |
T16 | 3 | 3 | 3 | 1.0 (1.7) [−0.7–2.7] | 1.7 (1.5) [0.2–2.3] | 1.3 (1.5) [−0.2–2.8] |
Follow-Up (Years) | N° of Patients | N° of Implants | Mean (SD) | |||
---|---|---|---|---|---|---|
Test (FOSS) | Control (OSS) | Test (FOSS) | Control (OSS) | Global | ||
T1 | 18 | 21 | 21 | 1.9 (1.2) [0.7–3.1] | 1.5 (1.1) [0.4–2.6] | 1.7 (1.1) [0.6–2.8] |
T2 | 18 | 21 | 21 | 1.8 (1.0) [0.8–2.8] | 1.5 (0.8) [0.7–2.3] | 1.6 (0.9) [0.7–2.5] |
T3 | 18 | 21 | 21 | 1.8 (1.1) [0.7–2.9] | 2.1 (1.2) [0.9–3.3] | 1.9 (1.1) [0.8–3.0] |
T4 | 18 | 21 | 21 | 2.1 (1.2) [0,9–3.3] | 1.9 (1.0) [0.9–2.9] | 2.0 (1.1) [0.9–3.1] |
T5 | 18 | 21 | 21 | 2.1 (1.5) [0.6–3.6] | 2.3 (1.6) [0.7–3.9] | 2.2 (1.5) [0.7–3.7] |
T6 | 15 | 18 | 18 | 1.9 (1.7) [0.2–3.6] | 1.9 (1.6) [0.3–3.5] | 1.9 (1.6) [0.3–3.5] |
T7 | 12 | 14 | 14 | 1.3 (1.2) [0.1–2.5] | 1.3 (1.1) [0.2–2.4] | 1.3 (1.1) [0.2–2.4] |
T8 | 9 | 11 | 11 | 1.0 (1.5) [−0.5–2.5] | 1.5 (1.3) [0.2–2.8] | 1.3 (1.4) [−0.1–2.7] |
T15 | 5 | 6 | 6 | 1.5 (1.4) [0.1–2.9] | 1.7 (1.5) [0.2–3.2] | 1.6 (1.4) [0.2–3.0] |
T16 | 3 | 3 | 3 | 1.0 (1.0) [0.0–2.0] | 1.0 (1.0) [0.0–2.0] | 1.0 (0.9) [0.1–1.9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delucchi, F.; Pozzetti, E.; Bagnasco, F.; Pesce, P.; Baldi, D.; Pera, F.; Di Tullio, N.; Pera, P.; Menini, M. Peri-Implant Tissue Behaviour Next to Different Titanium Surfaces: 16-Year Post-Trial Follow-Up. Appl. Sci. 2021, 11, 9625. https://doi.org/10.3390/app11209625
Delucchi F, Pozzetti E, Bagnasco F, Pesce P, Baldi D, Pera F, Di Tullio N, Pera P, Menini M. Peri-Implant Tissue Behaviour Next to Different Titanium Surfaces: 16-Year Post-Trial Follow-Up. Applied Sciences. 2021; 11(20):9625. https://doi.org/10.3390/app11209625
Chicago/Turabian StyleDelucchi, Francesca, Enrico Pozzetti, Francesco Bagnasco, Paolo Pesce, Domenico Baldi, Francesco Pera, Nicolò Di Tullio, Paolo Pera, and Maria Menini. 2021. "Peri-Implant Tissue Behaviour Next to Different Titanium Surfaces: 16-Year Post-Trial Follow-Up" Applied Sciences 11, no. 20: 9625. https://doi.org/10.3390/app11209625
APA StyleDelucchi, F., Pozzetti, E., Bagnasco, F., Pesce, P., Baldi, D., Pera, F., Di Tullio, N., Pera, P., & Menini, M. (2021). Peri-Implant Tissue Behaviour Next to Different Titanium Surfaces: 16-Year Post-Trial Follow-Up. Applied Sciences, 11(20), 9625. https://doi.org/10.3390/app11209625