Simulation and Optimization for a Closed-Loop Vessel Dispatching Problem in the Middle East Considering Various Uncertainties
Abstract
:1. Introduction
2. Problem Statement
3. Methods
3.1. Simulation Modeling
3.1.1. Model Description
3.1.2. Simulation Logic for Large-Vessel-First-Use Policy
3.1.3. Model Validation
3.2. Optimization of the Number of Vessels and Travel Speed
3.3. Environmental Impact
4. Numerical Study
4.1. Design of Experiments
4.2. Data
5. Results and Discussions
5.1. Impact of Lowering Voyage Speed with the Current Number of Vessels
5.2. Impact of the Number of Vessels at the Current Voyage Speed under FAFU
5.3. Impact of the Number of Vessels and Voyage Speeds under FAFU
5.4. Best Solutions and Impact of LVFU
5.5. Environmental Effect
5.6. Larger Production Volumes for Future Scenarios
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Perkins, R.; Malek, M.; Perkins, R. Middle East Refinery, Petrochemicals Output to Surge by 2040: IEA; S&P Global Platts: London, UK, 2010. [Google Scholar]
- Perera, L.P.; Mo, B. Ship speed power performance under relative wind profiles in relation to sensor fault detection. J. Ocean Eng. Sci. 2018, 3, 355–366. [Google Scholar] [CrossRef]
- Karan, C. 10 Important Points Ship’s Officer on Watch Should Consider during Restricted Visibility; Marine Insight: Bangalore, India, 2018. [Google Scholar]
- World Meteorological Organization. Guide to Marine Meteorological Services; no. 471; World Meteorological Organization: Geneva, Switzerland, 2018.
- Pruzan-Jorgensen, P.M.; Farrag, A. Sustainability Trends in the Container Shipping Industry: A Future Trends Research Summary; Business for Social Responsibility Report; Business for Social Responsibility: New York, NY, USA, 2010. [Google Scholar]
- Paris, C. Clouds hover over shipping’s key antipollution law. Wall Str. J. 2018. Available online: https://www.wsj.com/articles/clouds-hover-over-shippings-key-antipollution-law-1541002430 (accessed on 11 October 2021).
- Joung, T.-H.; Kang, S.-G.; Lee, J.-K.; Ahn, J. The IMO initial strategy for reducing Greenhouse Gas(GHG) emissions, and its follow-up actions towards 2050. J. Int. Marit. Safety Environ. Aff. Shipp. 2020, 4, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bergh, I. Optimum speed—from a shipper’s perspective. DNV Contain. Ship Update 2010, 2, 10–13. [Google Scholar]
- Cheng, L.; Duran, M.A. Logistics for world-wide crude oil transportation using discrete event simulation and optimal control. Comput. Chem. Eng. 2004, 28, 897–911. [Google Scholar] [CrossRef]
- Merrick, J.R.W.; Van Dorp, J.R.; Dinesh, V. Assessing Uncertainty in Simulation-Based Maritime Risk Assessment. Risk Anal. 2005, 25, 731–743. [Google Scholar] [CrossRef]
- Franzese, L.; Fioroni, M.; Paz, D.; Botter, R.; Gratti, C.; Martinez, A.; Bacigalupo, C. Supply-chain simulation and analysis of petroleum refinery systems: A reusable template with incremental approach. In Proceedings of the Winter Simulation Conference, Monterey, CA, USA, 3–6 December 2006. [Google Scholar]
- Almaz, A.; Altiok, T. Simulation modeling of the vessel traffic in Delaware River: Impact of deepening on port performance. Simul. Model. Pract. Theory 2012, 22, 146–165. [Google Scholar] [CrossRef]
- Kulak, O.; Polat, O.; Gujjula, R.; Günther, H. Strategies for improving a long-established terminal’s performance: A simulation study of a Turkish container terminal. Flex. Serv. Manuf. J. 2011, 25, 503–527. [Google Scholar] [CrossRef]
- Ilati, G.; Sheikholeslami, A.; Hassannayebi, E. A Simulation-Based Optimization Approach for Integrated Port Resource Allocation Problem. Promet Traffic Transp. 2014, 26, 243–255. [Google Scholar] [CrossRef]
- Carotenuto, P.; Giordani, S.; Zaccaro, A. A Simulation Based Approach for Evaluating the Impact of Maritime Transport on the Inventory Levels of an Oil Supply Chain. Transp. Res. Procedia 2014, 3, 710–719. [Google Scholar] [CrossRef] [Green Version]
- Rahimikelarijani, B.; Abedi, A.; Hamidi, M.; Cho, J. Simulation modeling of Houston Ship Channel vessel traffic for optimal closure scheduling. Simul. Model. Pr. Theory 2018, 80, 89–103. [Google Scholar] [CrossRef]
- Lababidi, H.; Ahmed, M.; Alatiqi, I.; Al-Enzi, A. Optimizing the supply chain of a petrochemical company under uncertain operating and economic conditions. Ind. Eng. Chem. Res. 2004, 43, 63–73. [Google Scholar] [CrossRef]
- Saharidis, G.K.; Minoux, M.; Dallery, Y. Scheduling of loading and unloading of crude oil in a refinery using event-based discrete time formulation. Comput. Chem. Eng. 2009, 33, 1413–1426. [Google Scholar] [CrossRef]
- Oliveira, F.; Hamacher, S. Optimization of the Petroleum Product Supply Chain under Uncertainty: A Case Study in Northern Brazil. Ind. Eng. Chem. Res. 2012, 51, 4279–4287. [Google Scholar] [CrossRef]
- Nishi, T.; Izuno, T. Column generation heuristics for ship routing and scheduling problems in crude oil transportation with split deliveries. Comput. Chem. Eng. 2014, 60, 329–338. [Google Scholar] [CrossRef]
- He, J.; Huang, Y.; Chang, D. Simulation-based heuristic method for container supply chain network optimization. Adv. Eng. Inform. 2015, 29, 339–354. [Google Scholar] [CrossRef]
- Ghezavati, V.; Ghaffarpour, M.; Salimian, M. A hierarchical approach for designing the downstream segment for a supply chain of petroleum production systems. J. Ind. Syst. Eng. 2015, 8, 1–17. [Google Scholar]
- Ye, Y.; Liang, S.; Zhu, Y. A mixed-integer linear programming-based scheduling model for refined-oil shipping. Comput. Chem. Eng. 2017, 99, 106–116. [Google Scholar] [CrossRef]
- Aydin, N.; Lee, H.; Mansouri, S. Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports. Eur. J. Oper. Res. 2017, 259, 143–154. [Google Scholar] [CrossRef] [Green Version]
- An, H.; Choi, S.; Lee, J.H. Integrated scheduling of vessel dispatching and port operations in the closed-loop shipping system for transporting petrochemicals. Comput. Chem. Eng. 2019, 126, 485–498. [Google Scholar] [CrossRef]
- Bahamaish, F.; Al-Mutawa, S.A.; Sumaidaa, M.F.; An, H. Simulation modeling of the closed-loop vessel scheduling for petrochemical products. In Proceedings of the IISE Annual Conference, Orlando, FL, USA, 18–21 May 2019. [Google Scholar]
- An, H.; King, N.; Hwang, S.O. Issues and solutions in air-traffic infrastructure and flow management for sustainable aviation growth: A literature review. World Rev. Intermodal Transp. Res. 2019, 8, 293–319. [Google Scholar]
- An, H. Optimal daily scheduling of mobile machines to transport cellulosic biomass from satellite storage locations to a bioenergy plant. Appl. Energy 2019, 236, 231–243. [Google Scholar] [CrossRef]
- Tran, N.K.; Haasis, D.H. An empirical study of fleet expansion and growth of ship size in container liner shipping. Int. J. Prod. Econ. 2015, 159, 241–253. [Google Scholar] [CrossRef]
- Wei, Q.; Zhao, S. Estimating CO2 Emission and Mitigation Opportunities of Wanzhou Shipping in Chongqing Municipality, China. In Proceedings of the International Conference on Logistics Engineering and Intelligent Transportation Systems, Wuhan, China, 26–28 November 2010; pp. 1–4. [Google Scholar]
- An, H.; Byon, Y.-J.; Cho, C.-S. Economic and Environmental Evaluation of a Brick Delivery System Based on Multi-Trip Vehicle Loader Routing Problem for Small Construction Sites. Sustainability 2018, 10, 1427. [Google Scholar] [CrossRef] [Green Version]
- World Weather Online. Available online: https://www.worldweatheronline.com/ (accessed on 30 September 2021).
Indices i = L, S (L: large vessel, S: small vessel) k = B, F (B: backward, F: forward) Parameters : port dues per trip of type i vessel : rental cost per year of type i vessel : voyage cost per one-way trip of type i vessel at speed S0 : minimum target of throughput (transported amount per year) : maximum number of type i vessel : current speed (22.2 km/h (12 knots)) : minimum value of speed factor (0.7) : maximum value of speed factor (1.3) : voyage cost change rate per voyage speed (4.3% per km/h (8% per knot)) Decision variables : speed factor, integer*0.1 : the number of type i vessels, integer Outcomes : the number of trips per year by type i vessel : throughput (transported amount per year) z: total cost per year |
Case | #LV | #SV | Vessel Priority | Voyage Speed Factor | |
---|---|---|---|---|---|
FS | BS | ||||
C0 | 2 | 2 | FAFU | 1 | 1 |
C1 | 2 | 2 | FAFU | 0.7~1.0 (*) | 0.7~1.0 (*) |
C2 | 0~3 (*) | 0~4 (*) | FAFU | 1 | 1 |
C3 | 0~3 (*) | 0~4 (*) | FAFU | 0.7~1.6 (*) | 0.7~1.6 (*) |
C4 | 2 | 2 | LVFU | 1 | 1 |
C5 | 2 | 2 | LVFU | 0.7~1.0 (*) | 0.7~1.0 (*) |
C6 | 0~3 (*) | 0~4 (*) | LVFU | 1 | 1 |
C7 | 0~3 (*) | 0~4 (*) | LVFU | 0.7~1.6 (*) | 0.7~1.6 (*) |
Location | Operations | Time (h) | |
---|---|---|---|
Small Vessel | Large Vessel | ||
A | Tugging for arrival | 3 | 3 |
Loading | 12 | 16 | |
Tugging for departure | 3 | 3 | |
Sea | Voyage A<->B | 18 (=9 × 2) | 18 (=9 × 2) |
Voyage A<->C | 22 (=11 × 2) | 22 (=11 × 2) | |
B, C | Waiting at B, C | 2 + Gamma(3.86, 1.43) (shape: 3.86, scale: 1.43) | 2 + Gamma(3.86, 1.43) (shape: 3.86, scale: 1.43) |
Unloading at B, C | 14 | 16 |
Type | Small Vessel | Large Vessel |
---|---|---|
Number | 2 | 2 |
Capacity in the specification (TEU) | 650 | 950 |
Current utilized max capacity (t) | 7444 | 10,880 |
Average fuel cost per round trip (USD) | a | b |
Port dues (USD) | c | d |
# Data Points | Mean | Std dev. | Distribution Expression | Square Error | p-Value | ||
---|---|---|---|---|---|---|---|
High-speed Wind | Interarrival time (day) | 62 | 30.1 | 52.2 | 0.999 + Weibull (12, 0.38) (Scale: 12, Shape: 0.38) | 0.0018 | <0.005 |
Duration (hour) | 63 | 2.76 | 2.5 | 0.5 + 15*Beta (0.544, 3.07) (alpha: 0.544, beta: 3.07) | 0.0071 | 0.238 | |
Low Visibility | Interarrival time (day) | 43 | 34.9 | 59.8 | 0.999 + Weibull (5.76, 0.259) (Scale: 5.76, Shape: 0.259) | 0.0016 | <0.005 |
Duration (hour) | 44 | 5.5 | 2.93 | 0.5 + 12*Beta (1.4, 1.9) (alpha: 1.4, beta: 1.9) | 0.0293 | 0.213 |
Case | No | Voyage Speed Factor | Product Volume (KT) | Costs (USD/Year) | |||||
---|---|---|---|---|---|---|---|---|---|
FS | BS | Produced | Transported | Total Cost | Rental Cost | Port Dues | Voyage Cost | ||
C0 | - | 1 | 1 | 3274.83 | 3259.32 | 10,020,600 | 4,258,330 | 1,889,720 | 3,872,540 |
C1 | 1 | 1 | 0.9 | 3274.83 | 3260.30 | 9,836,700 | 4,258,330 | 1,890,240 | 3,688,120 |
2 | 0.9 | 1 | 3274.83 | 3258.92 | 9,839,440 | 4,258,330 | 1,891,120 | 3,689,990 | |
3 | 1 | 0.8 | 3274.83 | 3258.12 | 9,639,210 | 4,258,330 | 1,886,680 | 3,494,200 | |
4 | 0.8 | 1 | 3274.83 | 3259.67 | 9,643,280 | 4,258,330 | 1,887,840 | 3,497,110 | |
5 | 1 | 0.7 | 3274.83 | 3260.58 | 9,450,080 | 4,258,330 | 1,885,480 | 3,306,270 | |
6 | 0.7 | 1 | 3274.83 | 3260.70 | 9,445,440 | 4,258,330 | 1,883,960 | 3,303,150 | |
7 | 0.9 | 0.9 | 3274.83 | 3257.89 | 9,648,830 | 4,258,330 | 1,889,720 | 3,500,780 | |
8 | 0.8 | 0.8 | 3274.83 | 3257.95 | 9,261,100 | 4,258,330 | 1,884,220 | 3,118,550 | |
9 | 0.7 | 0.7 | 3274.83 | 3258.18 | 8,894,980 | 4,258,330 | 1,886,080 | 2,750,570 |
Case | Vessel Priority | #Vessel | Speed Factor | Product Volume (KT/Year) | Costs (USD/Year) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
LV | SV | FS | BS | Produced | Transported | Total | Saving | Saving (%) * | Rental | Operating | ||
C0 | FAFU | 2 | 2 | 1 | 1 | 3275.2 | 3262 | 10,034,800 | - | - | 4,258,330 | 5,776,450 |
C4 | LVFU | 2 | 2 | 1 | 1 | 3275.2 | 3263 | 9,909,600 | 125,200 | 1.2% | 4,258,330 | 5,651,270 |
C1 | FAFU | 2 | 2 | 0.7 | 0.7 | 3275.2 | 3261 | 8,892,090 | 1,142,710 | 11.4% | 4,258,330 | 4,633,750 |
C5 | LVFU | 2 | 2 | 0.7 | 0.7 | 3275.2 | 3265 | 8,866,310 | 1,168,490 | 11.6% | 4,258,330 | 4,607,980 |
C2 | FAFU | 3 | 0 | 1 | 1 | 3275.2 | 3264 | 8,306,520 | 1,728,280 | 17.2% | 3,285,000 | 5,021,520 |
C6 | LVFU | 3 | 0 | 1 | 1 | 3275.2 | 3264 | 8,306,520 | 1,728,280 | 17.2% | 3,285,000 | 5,021,520 |
C3 | FAFU | 3 | 0 | 0.7 | 0.7 | 3275.2 | 3264 | 7,342,390 | 2,692,410 | 26.8% | 3,285,000 | 4,057,390 |
C7 | LVFU | 3 | 0 | 0.7 | 0.7 | 3275.2 | 3264 | 7,342,390 | 2,692,410 | 26.8% | 3,285,000 | 4,057,390 |
Case | Vessel Priority | #Vessel | Speed Factor | #Trips | Marine Diesel Oil Consumption (T) | Emissions (T) | Reduction (%) * | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LV | SV | FS | BS | LV | SV | LV | SV | Total | CO2 | SO2 | |||
C0 | FAFU | 2 | 2 | 1 | 1 | 168 | 190 | 2589 | 2741 | 5632 | 17,903 | 39 | - |
C4 | LVFU | 2 | 2 | 1 | 1 | 190 | 159 | 2924 | 2285 | 5503 | 17,494 | 39 | 2% |
C1 | FAFU | 2 | 2 | 0.7 | 0.7 | 173 | 183 | 1892 | 1882 | 3988 | 12,676 | 28 | 29% |
C5 | LVFU | 2 | 2 | 0.7 | 0.7 | 180 | 174 | 1971 | 1781 | 3963 | 12,600 | 28 | 30% |
C2 | FAFU | 3 | 0 | 1 | 1 | 299 | - | 4596 | - | 4856 | 15,437 | 34 | 14% |
C6 | LVFU | 3 | 0 | 1 | 1 | 299 | - | 4596 | - | 4856 | 15,437 | 34 | 14% |
C3 | FAFU | 3 | 0 | 0.7 | 0.7 | 299 | - | 3272 | - | 3457 | 10,991 | 24 | 39% |
C7 | LVFU | 3 | 0 | 0.7 | 0.7 | 299 | - | 3272 | - | 3457 | 10,991 | 24 | 39% |
Case | #LV | #SV | Vessel Priority | Voyage Speed Factor | Product Volume (KT) | #Vessel | Speed Factor | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
FS | BS | Produced | Transported | LV | SV | FS | BS | ||||
C8 | 0~6 | 0~8 | LVFU | 0.7~1.6 | 0.7~1.6 | 6603 | 6580 | 5 | 0 | 0.7 | 0.7 |
C9 | 0~9 | 0~12 | LVFU | 0.7~1.6 | 0.7~1.6 | 9904 | 9860 | 8 | 0 | 0.7 | 0.7 |
C10 | 0~12 | 0~16 | LVFU | 0.7~1.6 | 0.7~1.6 | 12,942 | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, H.; Bahamaish, F.; Lee, D.-W. Simulation and Optimization for a Closed-Loop Vessel Dispatching Problem in the Middle East Considering Various Uncertainties. Appl. Sci. 2021, 11, 9626. https://doi.org/10.3390/app11209626
An H, Bahamaish F, Lee D-W. Simulation and Optimization for a Closed-Loop Vessel Dispatching Problem in the Middle East Considering Various Uncertainties. Applied Sciences. 2021; 11(20):9626. https://doi.org/10.3390/app11209626
Chicago/Turabian StyleAn, Heungjo, Fatima Bahamaish, and Dong-Wook Lee. 2021. "Simulation and Optimization for a Closed-Loop Vessel Dispatching Problem in the Middle East Considering Various Uncertainties" Applied Sciences 11, no. 20: 9626. https://doi.org/10.3390/app11209626
APA StyleAn, H., Bahamaish, F., & Lee, D. -W. (2021). Simulation and Optimization for a Closed-Loop Vessel Dispatching Problem in the Middle East Considering Various Uncertainties. Applied Sciences, 11(20), 9626. https://doi.org/10.3390/app11209626