Minimally Invasive Metatarsal Osteotomies (MIMOs) for the Treatment of Plantar Diabetic Forefoot Ulcers (PDFUs): A Systematic Review and Meta-Analysis with Meta-Regressions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Reporting
2.2. Search Strategy
2.3. Selection Criteria
2.4. Exclusion Criteria
2.5. Outcome Measures
2.6. Selection Method
2.7. Data Extraction
2.8. Quality Assessment
2.9. Statistical Analysis
3. Results
3.1. Search Yield
3.2. Quality Assesment
3.3. Study Characteristics
3.4. Outcomes of the Selected Studies
3.5. Systematic Review
3.5.1. Healing Rate and Healing Time
3.5.2. AOFAS and VAS
3.5.3. Peak Pressure under the Head of the Osteotomized Metatarsal
3.5.4. Infection Rate
3.5.5. Non-Union Rate
3.5.6. Swelling Rate
3.5.7. Recurrence/Relapse Rate
3.5.8. Acute Charcot
3.5.9. Transfer Lesion Rate
3.5.10. Overall Complication Rate
3.6. Meta-Analysis
3.6.1. Healing Rate
3.6.2. Infection Rate
3.6.3. Recurrence/Relapse Rate
3.6.4. Non-Union Rate
3.6.5. Transfer Lesion Rate
3.6.6. Redo-Surgery Rate
3.6.7. Overall Complication Rate
4. Discussion
4.1. MIMOs for PDFU Healing and Prevention (1986–2021)
4.2. MIMO Complications
4.3. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Batista, F.; Magalhães, A.A.; Nery, C.; Baumfeld, D.; Monteiro, A.C.; Batista, F. Minimally invasive surgery for diabetic plantar foot ulcerations. Diabet. Foot Ankle 2011, 2, 10358. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Boulton, A.J.M.; Bus, S.A. Diabetic Foot Ulcers and Their Recurrence. N. Engl. J. Med. 2017, 376, 2367–2375. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J. The diabetic foot. Diabetes Metab. Syndr. 2016, 10, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Lavery, L.A.; Davis, K.E.; Berriman, S.J.; Braun, L.; Nichols, A.; Kim, P.J.; Margolis, D.; Peters, E.J.; Attinger, C. WHS guidelines update: Diabetic foot ulcer treatment guidelines. Wound Repair Regen. 2016, 24, 112–126. [Google Scholar] [CrossRef]
- Hoffstad, O.; Mitra, N.; Walsh, J.; Margolis, D.J. Diabetes, lower-extremity amputation, and death. Diabetes Care 2015, 38, 1852–1857. [Google Scholar] [CrossRef] [Green Version]
- Biz, C.; Ruggieri, P. Minimally Invasive Surgery: Osteotomies for Diabetic Foot Disease. Foot Ankle Clin. 2020, 25, 441–460. [Google Scholar] [CrossRef]
- Astasio-Picado, Á.; Cobos-Moreno, P.; Gómez-Martín, B. Self-Care Planning and Sanitary Education in the Prevention of the Diabetic Foot. Appl. Sci. 2021, 11, 7281. [Google Scholar] [CrossRef]
- Pendsey, S.P. Understanding diabetic foot. Int. J. Diabetes Dev. Ctries. 2010, 30, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Schaper, N.C.; van Netten, J.J.; Apelqvist, J.; Bus, S.A.; Hinchliffe, R.J.; Lipsky, B.A.; Board, I.E. Practical Guidelines on the prevention and management of diabetic foot disease (IWGDF 2019 update). Diabetes/Metab. Res. Rev. 2020, 36, e3266. [Google Scholar] [CrossRef] [Green Version]
- Hwang, D.J.; Lee, K.M.; Park, M.S.; Choi, S.H.; Park, J.I.; Cho, J.H.; Park, K.H.; Woo, S.J. Association between diabetic foot ulcer and diabetic retinopathy. PLoS ONE 2017, 12, e0175270. [Google Scholar] [CrossRef] [Green Version]
- Bandyk, D.F. The diabetic foot: Pathophysiology, evaluation, and treatment. Semin. Vasc. Surg. 2018, 31, 43–48. [Google Scholar] [CrossRef]
- Astasio-Picado, Á.; Escamilla Martínez, E.; Gómez-Martín, B. Comparative thermal map of the foot between patients with and without diabetes through the use of infrared thermography. Enferm. Clin. 2020, 30, 119–123. [Google Scholar] [CrossRef]
- Astasio-Picado, Á.; Martínez, E.E.; Gómez-Martín, B. Comparison of Thermal Foot Maps between Diabetic Patients with Neuropathic, Vascular, Neurovascular, and No Complications. Curr. Diabetes Rev. 2019, 15, 503–509. [Google Scholar] [CrossRef]
- Bus, S.A.; Valk, G.D.; van Deursen, R.W.; Armstrong, D.G.; Caravaggi, C.; Hlaváček, P.; Bakker, K.; Cavanagh, P.R. The effectiveness of footwear and offloading interventions to prevent and heal foot ulcers and reduce plantar pressure in diabetes: A systematic review. Diabetes/Metab. Res. Rev. 2008, 24, S162–S180. [Google Scholar] [CrossRef]
- Elraiyah, T.; Prutsky, G.; Domecq, J.P.; Tsapas, A.; Nabhan, M.; Frykberg, R.G.; Firwana, B.; Hasan, R.; Prokop, L.J.; Murad, M.H. A systematic review and meta-analysis of off-loading methods for diabetic foot ulcers. J. Vasc. Surg. 2016, 63, 59S–68S. [Google Scholar] [CrossRef] [Green Version]
- Mohammedi, K.; Potier, L.; François, M.; Dardari, D.; Feron, M.; Nobecourt-Dupuy, E.; Dolz, M.; Ducloux, R.; Chibani, A.; Eveno, D.F.; et al. The evaluation of off-loading using a new removable oRTHOsis in DIABetic foot (ORTHODIAB) randomized controlled trial: Study design and rational. J. Foot Ankle Res. 2016, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Burns, J.; Begg, L. Optimizing the offloading properties of the total contact cast for plantar foot ulceration. Diabet. Med. J. Br. Diabet. Assoc. 2011, 28, 179–185. [Google Scholar] [CrossRef]
- Götz, J.; Lange, M.; Dullien, S.; Grifka, J.; Hertel, G.; Baier, C.; Koeck, F. Off-loading strategies in diabetic foot syndrome-evaluation of different devices. Int. Orthop. 2017, 41, 239–246. [Google Scholar] [CrossRef]
- Prompers, L.; Schaper, N.; Apelqvist, J.; Edmonds, M.; Jude, E.; Mauricio, D.; Uccioli, L.; Urbancic, V.; Bakker, K.; Holstein, P.; et al. Prediction of outcome in individuals with diabetic foot ulcers: Focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia 2008, 51, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Dayer, R.; Assal, M. Chronic diabetic ulcers under the first metatarsal head treated by staged tendon balancing: A prospective cohort study. J. Bone Jt. Surg. Br. Vol. 2009, 91, 487–493. [Google Scholar] [CrossRef]
- Cychosz, C.C.; Phisitkul, P.; Belatti, D.A.; Wukich, D.K. Preventive and Therapeutic Strategies for Diabetic Foot Ulcers. Foot Ankle Int. 2016, 37, 334–343. [Google Scholar] [CrossRef]
- Willrich, A.; Angirasa, A.K.; Sage, R.A. Percutaneous tendo Achillis lengthening to promote healing of diabetic plantar foot ulceration. J. Am. Podiatr. Med. Assoc. 2005, 95, 281–284. [Google Scholar] [CrossRef]
- Dallimore, S.M.; Kaminski, M.R. Tendon lengthening and fascia release for healing and preventing diabetic foot ulcers: A systematic review and meta-analysis. J. Foot Ankle Res. 2015, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- La Fontaine, J.; Lavery, L.A.; Hunt, N.A.; Murdoch, D.P. The role of surgical off-loading to prevent recurrent ulcerations. Int. J. Low. Extrem. Wounds 2014, 13, 320–334. [Google Scholar] [CrossRef]
- Hamilton, G.A.; Ford, L.A.; Perez, H.; Rush, S.M. Salvage of the neuropathic foot by using bone resection and tendon balancing: A retrospective review of 10 patients. J. Foot Ankle Surg. Off. Publ. Am. Coll. Foot Ankle Surg. 2005, 44, 37–43. [Google Scholar] [CrossRef]
- Yammine, K.; Assi, C. Conservative Surgical Options for the Treatment of Forefoot Diabetic Ulcers and Osteomyelitis: An Evidence-Based Review and a Decision-Making Tool. JBJS Rev. 2020, 8, e0162. [Google Scholar] [CrossRef]
- Biz, C.; Gastaldo, S.; Dalmau-Pastor, M.; Corradin, M.; Volpin, A.; Ruggieri, P. Minimally Invasive Distal Metatarsal Diaphyseal Osteotomy (DMDO) for Chronic Plantar Diabetic Foot Ulcers. Foot Ankle Int. 2018, 39, 83–92. [Google Scholar] [CrossRef]
- Finestone, A.S.; Tamir, E.; Ron, G.; Wiser, I.; Agar, G. Surgical offloading procedures for diabetic foot ulcers compared to best non-surgical treatment: A study protocol for a randomized controlled trial. J. Foot Ankle Res. 2018, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Tillo, T.H.; Giurini, J.M.; Habershaw, G.M.; Chrzan, J.S.; Rowbotham, J.L. Review of metatarsal osteotomies for the treatment of neuropathic ulcerations. J. Am. Podiatr. Med. Assoc. 1990, 80, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Tamir, E.; Finestone, A.S.; Avisar, E.; Agar, G. Mini-Invasive floating metatarsal osteotomy for resistant or recurrent neuropathic plantar metatarsal head ulcers. J. Orthop. Surg. Res. 2016, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Laffenêtre, O.; Perera, A. Distal Minimally Invasive Metatarsal Osteotomy (“DMMO” Procedure). Foot Ankle Clin. 2019, 24, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Biz, C.; Corradin, M.; Kuete Kanah, W.T.; Dalmau-Pastor, M.; Zornetta, A.; Volpin, A.; Ruggieri, P. Medium-Long-Term Clinical and Radiographic Outcomes of Minimally Invasive Distal Metatarsal Metaphyseal Osteotomy (DMMO) for Central Primary Metatarsalgia: Do Maestro Criteria Have a Predictive Value in the Preoperative Planning for This Percutaneous Technique? BioMed Res. Int. 2018, 2018, 1947024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yammine, K.; Assi, C. Surgical Offloading Techniques Should be Used More Often and Earlier in Treating Forefoot Diabetic Ulcers: An Evidence-Based Review. Int. J. Low. Extrem. Wounds 2020, 19, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Wray, C. The Helal osteotomy in a diabetic patient. Pract. Diabetes Int. 1986, 3, 156. [Google Scholar] [CrossRef]
- Moola, S.; Munn, Z.; Tufanaru, C.; Aromataris, E.; Sears, K.; Sfetcu, R.; Currie, M.; Qureshi, R.; Mattis, P.; Lisy, K. Chapter 7: Systematic reviews of etiology and risk. In Joanna Briggs Institute Reviewer’s Manual; The Joanna Briggs Institute: Adelaide, Australia, 2017; Volume 5. [Google Scholar]
- Khan, S. Meta-analysis on One Proportion. In Meta-Analysis: Methods for Health and Experimental Studies; Khan, S., Ed.; Springer: Singapore, 2020; pp. 119–137. [Google Scholar] [CrossRef]
- Fleischli, J.E.; Anderson, R.B.; Davis, W.H. Dorsiflexion metatarsal osteotomy for treatment of recalcitrant diabetic neuropathic ulcers. Foot Ankle Int. 1999, 20, 80–85. [Google Scholar] [CrossRef]
- Tamir, E.; Smorgick, Y.; Ron, G.Z.; Gilat, R.; Agar, G.; Finestone, A.S. Mini Invasive Floating Metatarsal Osteotomy for Diabetic Foot Ulcers Under the First Metatarsal Head: A Case Series. Int. J. Low. Extrem. Wounds 2020. [Google Scholar] [CrossRef]
- Chiu, W.K.; Yang, T.F.; Wang, H.J.; Chen, C. Assessment of Outcomes of a Metatarsal Bone Ostectomy for Chronic Plantar Ulcers: A Preliminary Study. Ann. Plast. Surg. 2020, 84, S112–S115. [Google Scholar] [CrossRef]
- Tamir, E.; Tamar, M.; Ayalon, M.; Koren, S.; Shohat, N.; Finestone, A.S. Effect of Mini-invasive Floating Metatarsal Osteotomy on Plantar Pressure in Patients with Diabetic Plantar Metatarsal Head Ulcers. Foot Ankle Int. 2021, 42, 536–543. [Google Scholar] [CrossRef]
- Mavrogenis, A.F.; Megaloikonomos, P.D.; Antoniadou, T.; Igoumenou, V.G.; Panagopoulos, G.N.; Dimopoulos, L.; Moulakakis, K.G.; Sfyroeras, G.S.; Lazaris, A. Current concepts for the evaluation and management of diabetic foot ulcers. EFORT Open Rev. 2018, 3, 513–525. [Google Scholar] [CrossRef]
- Peter-Riesch, B. The Diabetic Foot: The Never-Ending Challenge. Endocr. Dev. 2016, 31, 108–134. [Google Scholar] [CrossRef]
- Hoban, C.; Sareen, J.; Henriksen, C.A.; Kuzyk, L.; Embil, J.M.; Trepman, E. Mental health issues associated with foot complications of diabetes mellitus. Foot Ankle Surg. Off. J. Eur. Soc. Foot Ankle Surg. 2015, 21, 49–55. [Google Scholar] [CrossRef]
- Wilkinson, H.N.; Hardman, M.J. Wound healing: Cellular mechanisms and pathological outcomes. Open Biol. 2020, 10, 200223. [Google Scholar] [CrossRef]
- Perez-Favila, A.; Martinez-Fierro, M.L.; Rodriguez-Lazalde, J.G.; Cid-Baez, M.A.; Zamudio-Osuna, M.d.J.; Martinez-Blanco, M.d.R.; Mollinedo-Montaño, F.E.; Rodriguez-Sanchez, I.P.; Castañeda-Miranda, R.; Garza-Veloz, I. Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina 2019, 55, 714. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Armstrong, D.G.; Lipsky, B.A. Preventing foot ulcers in patients with diabetes. JAMA 2005, 293, 217–228. [Google Scholar] [CrossRef]
- Wukich, D.K.; Motko, J. Safety of Total Contact Casting in High-Risk Patients with Neuropathic Foot Ulcers. Foot Ankle Int. 2004, 25, 556–560. [Google Scholar] [CrossRef]
- Rizzo, L.; Tedeschi, A.; Fallani, E.; Coppelli, A.; Vallini, V.; Iacopi, E.; Piaggesi, A. Custom-made orthesis and shoes in a structured follow-up program reduces the incidence of neuropathic ulcers in high-risk diabetic foot patients. Int. J. Low. Extrem. Wounds 2012, 11, 59–64. [Google Scholar] [CrossRef]
- Lin, S.S.; Lee, T.H.; Wapner, K.L. Plantar forefoot ulceration with equinus deformity of the ankle in diabetic patients: The effect of tendo-Achilles lengthening and total contact casting. Orthopedics 1996, 19, 465–475. [Google Scholar] [CrossRef]
- Giannini, S.; Cavallo, M.; Faldini, C.; Luciani, D.; Vannini, F. The SERI distal metatarsal osteotomy and Scarf osteotomy provide similar correction of hallux valgus. Clin. Orthop. Relat. Res. 2013, 471, 2305–2311. [Google Scholar] [CrossRef] [Green Version]
- Lipsky, B.A.; Uçkay, İ. Treating Diabetic Foot Osteomyelitis: A Practical State-of-the-Art Update. Medicina 2021, 57, 339. [Google Scholar] [CrossRef]
- Aragón-Sánchez, J.; Lázaro-Martínez, J.L.; Alvaro-Afonso, F.J.; Molinés-Barroso, R. Conservative Surgery of Diabetic Forefoot Osteomyelitis: How Can I Operate on This Patient Without Amputation? Int. J. Low. Extrem. Wounds 2014, 14, 108–131. [Google Scholar] [CrossRef]
- White, J.R. A Brief History of the Development of Diabetes Medications. Diabetes Spectr. 2014, 27, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Mehlhorn, A.T.; Harrasser, N.; Walther, M. Treatment of plantar, neuropathic and metatarsal ulcers by minimally invasive metatarsal osteotomy. Orthopade 2020, 49, 625–631. [Google Scholar] [CrossRef]
Checklist | Wray et al. 1986 [35] | Tillo et al. 1990 [29] | Fleischli et al. 1999 [38] | Tamir et al. 2016 [30] | Biz et al. 2018 [27] | Tamir et al. 2020 [39] | Chiu et al. 2020 [40] | Tamir et al. 2021 [41] |
---|---|---|---|---|---|---|---|---|
Were there clear criteria for inclusion in the case series? | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Was the condition measured in a standard, reliable way for all participants included in the case series? | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Were valid methods used for identification of the condition for all participants included in the case series? | NA | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Did the case series have consecutive inclusion of participants? | NA | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Did the case series have complete inclusion of participants? | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Was there clear reporting of the demographics of the participants in the study? | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Was there clear reporting of clinical information of the participants? | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Were the outcomes or follow up results of cases clearly reported? | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Was there clear reporting of the presenting site(s)/clinic(s) demographic information? | No | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Was statistical analysis appropriate? | NA | No | No | No | Yes | Yes | Yes | Yes |
Total number of NO | 7 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
Wray et al. 1986 [35] | Tillo et al. 1990 [29] | Fleischli et al. 1999 [38] | Tamir et al. 2016 [30] | Biz et al. 2018 [27] | Tamir et al. 2020 [39] | Chiu et al. 2020 [40] | Tamir et al. 2021 [41] | |
---|---|---|---|---|---|---|---|---|
N° of patients | 1 | 52 | 20 | 17 | 30 | 21 | 16 | 32 |
Gender (males/females) | (38/14) | (13/7) | (16/1) | (20/10) | (16/5) | (12/4) | (29/3) | |
Age (mean ± SD) | 52 | 55.4 | 62 (range 31–82) | 57 (range 42–75) | 66.7 ± 6.8 (range, 53–75) | 64 (range 45–83) | 57.81 | 60.1 ± 7.5 |
Type of diabetes | NA | 27: type I; 25: type II | NA | NA | 2 type 1; 28: type II | NA | NA | 2 |
HbA1C | NA | NA | NA | 8.1 (median 7.1, range 4.9 to 12.2 g/dL) | 7.1% ± 0.8% (range, 5.9–8.4%) | 8.1% (range 6.4–13.8) | 9.14 (range, 5.2–13.2 g/dL) | 7.9% ± 1.7% (63 ± 18 mmol/mol) |
Wound Size | NA | NA | NA | NA | 16.3 ± 0.6 mm (range, 5–25) | length 21.8 ± 9.0 mm, width 15.8 ± 7.6 mm, | 5.72 (cm2) | mean area 97.9 ± 86.6 mm2 (range 19.6–392.7, median 78.5 mm2) |
Ulcer grade | NA | NA | NA | All 1A 1 | IA 2: 4; IIA: 2; IIB:6; IIC:2; IIIA:2; IIIB:15; IIIC:1; IIID:3 | All 1A 1 | NA | A0 1: 3; A1:30; A2:1 |
Ulcer age (months) | NA | NA | NA | 19 (median 11, range 1 to 60) | 10.3 ± 3.8 (range, 6–19) | NA | NA | median of 1.5 months (range 0.5–18) |
Mean follow-up (months) | 24 | 19 | 17 (range 4–66) | NA | 25.3 ± 10.0 (range, 18–71) | 19.3 (median 17.6, range 12–34) | 15.2 (±3.21) | 18.6 months (median: 18.4, range 12.2–27.5) |
Wray et al. 1986 [35] | Tillo et al. 1990 [29] | Fleischli et al. 1999 [38] | Tamir et al. 2016 [30] | Biz et al. 2018 [27] | Tamir et al. 2020 [39] | Chiu et al. 2020 [40] | Tamir et al. 2021 [41] | |
---|---|---|---|---|---|---|---|---|
Healing rate | 27/49 (55.1%) | 1/1 (100.0%) | 21/22 (95.5%) | 20/20 (100.0%, 17/20, 85.0%, completely healed; 3/20, 15.0%, improved) | 30/30 (100.0%) | 19/21 (90.5%) | 14/16 (87.5%) | 31/32 (96.9%) |
Healing time | NA | NA | 40 days (range of 8 to 113 days) | Six weeks | 7.9 ± 4.0 (range 4–17) weeks; ulcers with a diameter 1.5 cm or less required 6.8 ± 4.1 (range 4–17) weeks to heal, while ulcers with a diameter more than 1.5 cm required 9.4 ± 3.6 (range 4–15) weeks | Mean of 3.7 (median 3, range 2–11) weeks; in 13 of the 21 patients, the wound was healed within 3 weeks or less | 2.14 (±1.38) months | Mean of 3.7 weeks (SD 4.2, median 3, range 1–23, IQR 2–4) |
Peak pressure under the head of the osteotomized metatarsal | NA | NA | NA | NA | NA | NA | NA | Decreased from 338.1 to 225.4 kPa (33%, p < 0.0001) following surgery; the pressure time integral under the head of the osteotomized metatarsal decreased as well from 82.4 kPa·s to 65.0 kPa·s (21%, p < 0.0001) |
AOFAS score preop | NA | NA | NA | NA | 55.3 ± 8.3 (range, 42–71) | NA | NA | NA |
AOFAS last follow-up | NA | NA | NA | NA | 81.4 ± 9.1 (range, 64–100) | NA | NA | NA |
VAS (satisfaction) post op | NA | NA | NA | NA | 9.8 ± 0.7 (range, 7–10) | NA | NA | NA |
Infections | NA | NA | 7/22 (31.8%; 3/22, 13.6%, deep wound infections were successfully treated with irrigation and debridement, pin removal, and antibiotics; 4/22, 18.2%, superficial wound infections successfully treated with pin removal and oral antibiotics) | 1/20 (5.0%) | 1/30 (3.3%, wound infection by Streptococcus agalactiae) | 3/21 (14.3%, related to the surgery within 1 year, one needing excision of the first metatarsal head, one requiring drainage, and one requiring hospitalization for administration of intravenous antibiotics) | NA | 2/32 (6.3%, operative site infections that recovered with parenteral and oral antibiotics, respectively; one was a deep postoperative wound infection and one was a foot infection not related to the surgery) |
Wound discharge | NA | NA | NA | NA | NA | 5/21 (23.8%, without other signs of infection, which were successfully treated with oral antibiotics) | NA | NA |
Necrosis | NA | NA | NA | NA | NA | 1/21 (4.8%, necrosis of the fifth toe related to the casting, resulting in the amputation of the toe) | NA | NA |
Swelling | NA | NA | NA | NA | 18/32 feet (56.3%, persistent moderate swelling of the forefoot for more than 6 weeks without infection, which improved after some months with complete callus formation at the osteotomy levels and without further treatment) | NA | NA | NA |
Recurrence/relapse | NA | 3/49 (6.1%) | 3/22 (13.6%; residual deformity from acute Charcot episode, resulting in plantar midfoot ulcers under bony prominences) | NA | NA | NA | 0/16 (0.0%) | 1/32 (3.1%, under the callus formed at the osteotomy site) |
Acute Charcot | NA | NA | 7/22 (31.8%, treated with serial total contact casting until the resolution of the acute inflammatory process and bony consolidation identified on radiographs) | NA | NA | NA | NA | NA |
Non-unions | NA | NA | 1/22 (4.5%, asymptomatic) | 6/20 (30.0%, asymptomatic, 6 months after the procedure, three after osteotomy of the neck and three after osteotomy of the shaft) | NA | 3/21 (14.3%, asymptomatic) | NA | 4 (12.5%, asymptomatic) |
Transfer lesions | NA | 13 (26.5%, transfer ulceration; six patients (12.2%) developed transfer calluses) | 2/22 (9.1%, under adjacent metatarsal heads) | 2/20 (10.0%; one below the fourth metatarsal head 5 months after an osteotomy of the second metatarsal neck and the other below the second metatarsal head, 10 months after osteotomy of the third metatarsal neck) | NA | 3/21 (14.3%, five transfer lesions in three patients) | 2/16 (12.5%, at an average of 7.5 months after the surgical procedure) | 4/32 (12.5%; under the heads of adjacent metatarsals) |
Loss of screw fixation | NA | NA | 1/22 (4.5%, with an acceptable metatarsal alignment being maintained) | NA | NA | NA | NA | NA |
Redo-surgery | NA | NA | 2/22 (9.1%, exostectomy) | NA | NA | NA | NA | 3/32 (9.4%, two patients were treated conservatively, while three had further offloading surgery) |
Overall complications | NA | 22/49 (44.9%) | 15/22 (68.2%; major complications occurred in 13/22 cases, 59.1%; minor complications were noted in 6/22 cases, 27.3%) | NA | NA | NA | NA | 18/32 (56.3%; 23 adverse events/complications in 18 patients, 16 of which not related to surgery) |
Outcome | Effect Size | Moderators | Publication Bias |
---|---|---|---|
Healing rate | 91.9% [95% CI 74.9–97.8] I2 = 80.0%; Q = 30.04; mixed-effect model | Univariate Metaregression Age: coefficient = 0.2724 (SE = 0.1180), p = 0.0209 Gender: coefficient = 0.0353 (SE = 0.0708), p = 0.6182 Type of surgery: Q = 27.24, p = 0.0000 Diabetes type: coefficient = 0.0522 (SE = 0.0102), p = 0.0000 Length of diabetes: coefficient = −0.1606 (SE = 0.2705), p = 0.5526 Glycated hemoglobin: coefficient = −0.9868 (SE = 0.6758), p = 0.1442 Study year: coefficient = 0.0733 (SE = 0.0312), p = 0.0189 Follow-up time: coefficient = 0.1664 (SE = 0.2708), p = 0.5389 Ulcer’s grade: coefficient = −0.0163 (SE = 0.0179), p = 0.3646 Multivariate Metaregression Age: coefficient = –0.0077 (SE = 0.1954), p = 0.9688 Diabetes type: coefficient 0.0576 (SE = 0.0424), p = 0.1742 Study year: coefficient = 0.0056 (SE = 0.0627), p = 0.9283 | “Adjusted” effect-size = 70.9% [95% CI 41.0–89.5]; trimmed k = four studies |
Infection rate | 10.9% [95% CI 4.2–25.2] I2 = 61.0%; Q = 10.27; mixed-effect model | Univariate Metaregression Age: coefficient = −0.0034 (SE = 0.2100), p = 0.9872 Gender: coefficient = −0.0515 (SE = 0.0369), p = 0.1630 Type of surgery: Q = 8.90, p = 0.0117 Diabetes type: coefficient = 0.2245 (SE = 0.2094), p = 0.2837 Length of diabetes: coefficient = −0.3405 (SE = 0.4261), p = 0.4242 Glycated haemoglobin: coefficient = 1.2551 (SE = 1.1480), p = 0.2743 Study year: coefficient = −0.0799 (SE = 0.0295), p = 0.0067 Follow-up time: coefficient = −0.2980 (SE = 0.1529), p = 0.0513 Ulcer grade: coefficient = 0.0132 (SE = 0.0130), p = 0.3121 Multivariate Metaregression Not enough studies | No publication bias; trimmed k = zero studies |
Recurrence/relapse | 7.2% [95% CI 3.6–14.2] I2 = 0.0%; Q = 2.57; fixed-effect model | Univariate Metaregression Age: coefficient = 0.1129 (SE = 0.1279), p = 0.3774 Gender: coefficient = −0.0655 (SE = 0.0462), p = 0.1564 Type of surgery: not enough studies Diabetes type: coefficient = 0.0042 (SE = 0.0196), p = 0.8291 Length of diabetes: not enough studies Glycated haemoglobin: not enough studies Study year: coefficient = −0.0264 (0.0332), p = 0.4266 Follow-up time: coefficient = −0.1327 (SE = 0.3539), p = 0.7077 Ulcer grade: not enough studies | No publication bias; trimmed k = zero studies |
Non-unions | 16.9% [95% CI 10.2–26.7] I2 = 38.6%; Q = 4.89; fixed-effect model | Univariate Metaregression Age: coefficient = −0.1842 (SE = 0.1591), p = 0.2470 Gender: coefficient = 0.0529 (SE = 0.0316), p = 0.0944 Type of surgery: Q = 1.5676 (SE = 1.1323), p = 0.1662 Diabetes type: cannot be performed because of collinearity issues Length of diabetes: not enough studies Glycated haemoglobin: not enough studies Study year: coefficient = 0.0521 (SE = 0.0613), p = 0.3947 Follow-up time: not enough studies Ulcer grade: not enough studies | No publication bias; trimmed k = zero studies |
Transfer lesions | 17.4% [95% CI 12.1–24.4] I2 = 8.3%; Q = 5.45; fixed-effect model | Univariate Metaregression Age: coefficient = −0.1253 (SE = 0.0706), p = 0.0759 Gender: coefficient = −0.0226 (SE = 0.0266), p = 0.3963 Type of surgery: Q = 4.99, p = 0.0825 Diabetes type: coefficient = −0.0206 (SE = 0.0091), p = 0.0241 Length of disease: coefficient = 0.0042 (SE = 0.2281), p = 0.9854 Glycated haemoglobin: coefficient = 0.0034 (SE = 0.7250), p = 0.9962 Study year: coefficient = −0.0286 (SE = 0.0153), p = 0.0610 Follow-up time: coefficient = 0.2248 (SE = 0.1964), p = 0.2523 Ulcer grade: not enough studies Multivariate Metaregression Age: coefficient = 0.0397 (SE = 0.1313), p = 0.7622 Diabetes type: coefficient = −0.0364 (SE = 0.0291), p = 0.2122 Study year: coefficient = 0.0210 (SE = 0.0390), p = 0.5898 | No publication bias; trimmed k = zero studies |
Redo-surgery | 9.3% [95% CI 3.9–20.4] I2 = 0.0%; Q = 0.00; fixed-effect model | Not enough studies | Not enough studies |
Overall complications | 53.2% [95% CI 43.4–62.7] I2 = 40.9%; Q = 3.38; fixed-effect model | Not enough studies | “Adjusted” effect-size = 44.9% [95% CI 37.2–52.9]; trimmed k = two studies |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biz, C.; Belluzzi, E.; Crimì, A.; Bragazzi, N.L.; Nicoletti, P.; Mori, F.; Ruggieri, P. Minimally Invasive Metatarsal Osteotomies (MIMOs) for the Treatment of Plantar Diabetic Forefoot Ulcers (PDFUs): A Systematic Review and Meta-Analysis with Meta-Regressions. Appl. Sci. 2021, 11, 9628. https://doi.org/10.3390/app11209628
Biz C, Belluzzi E, Crimì A, Bragazzi NL, Nicoletti P, Mori F, Ruggieri P. Minimally Invasive Metatarsal Osteotomies (MIMOs) for the Treatment of Plantar Diabetic Forefoot Ulcers (PDFUs): A Systematic Review and Meta-Analysis with Meta-Regressions. Applied Sciences. 2021; 11(20):9628. https://doi.org/10.3390/app11209628
Chicago/Turabian StyleBiz, Carlo, Elisa Belluzzi, Alberto Crimì, Nicola Luigi Bragazzi, Pietro Nicoletti, Fabiana Mori, and Pietro Ruggieri. 2021. "Minimally Invasive Metatarsal Osteotomies (MIMOs) for the Treatment of Plantar Diabetic Forefoot Ulcers (PDFUs): A Systematic Review and Meta-Analysis with Meta-Regressions" Applied Sciences 11, no. 20: 9628. https://doi.org/10.3390/app11209628
APA StyleBiz, C., Belluzzi, E., Crimì, A., Bragazzi, N. L., Nicoletti, P., Mori, F., & Ruggieri, P. (2021). Minimally Invasive Metatarsal Osteotomies (MIMOs) for the Treatment of Plantar Diabetic Forefoot Ulcers (PDFUs): A Systematic Review and Meta-Analysis with Meta-Regressions. Applied Sciences, 11(20), 9628. https://doi.org/10.3390/app11209628