Understanding the Adsorption Capacity for CO2 in Reduced Graphene Oxide (rGO) and Modified Ones with Different Heteroatoms in Relation to Surface and Textural Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Monoliths
2.3. Characterization
3. Results
3.1. FTIR–Solid 13C-NMR
3.1.1. FTIR
3.1.2. Solid 13C-NMR
3.2. SEM-EDX
3.3. Porosity Results
3.4. CO2 Adsorption
4. Analysis of CO2 Adsorption in Correlation to the Porosity and the Elemental Functionalities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC. Available online: https://www.ipcc.ch/report/ar4/wg1/ (accessed on 14 October 2021).
- Climate Change. In The Physical Science Basis, Ipcc (Intergovernmental Panel on Climate Change); Chapter 10; Cambridge University Press: Cambridge, UK, 2013; pp. 916–917.
- Jackson, R.B.; Le Quéré, C.; Andrew, R.M.; Canadell, J.G.; Peters, G.P.; Roy, J.; Wu, L. Warning signs for stabilizing global CO2 emissions. Environ. Res. Lett. 2017, 12, 110202. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.J.; Caldeira, K.; Matthews, H.D. Future CO2 Emissions and Climate Change from Existing Energy Infrastructure. Science 2010, 329, 1330–1333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivier, J.G.J.; Peters, J.A.H.W. Trends in Global CO2 and Total Greenhouse Gas Emissions, 2020 Report. Available online: https://www.pbl.nl/en/publications/trends-in-global-co2-and-total-greenhouse-gas-emissions-2020-report (accessed on 14 October 2021).
- Miricioiu, M.G.; Zaharioiu, A.; Oancea, S.; Bucura, F.; Simona, R.M.; Filote, C.; Ionete, R.E.; Niculescu, V.-C.; Constantinescu, M. Sewage Sludge Derived Materials for CO2 Adsorption. Appl. Sci. 2021, 11, 7139. [Google Scholar] [CrossRef]
- Miricioiu, M.; Niculescu, V.-C.; Filote, C.; Simona, R.M.; Nechifor, G. Coal Fly Ash Derived Silica Nanomaterial for MMMs—Application in CO2/CH4 Separation. Membranes 2021, 11, 78. [Google Scholar] [CrossRef] [PubMed]
- Politakos, N.; Barbarin, I.; Cordero-Lanzac, T.; Gonzalez, A.; Zangi, R.; Tomovska, R. Reduced Graphene Oxide/Polymer Monolithic Materials for Selective CO2 Capture. Polymers 2020, 12, 936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Politakos, N.; Barbarin, I.; Serrano Cantador, L.; Cecilia, J.A.; Mehravar, E.; Tomovska, R. Graphene-Based Monolithic Nanostructures for CO2 Capture. Ind. Eng. Chem. Res. 2020, 59, 8612–8621. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef]
- Jovanović, S.; Holclajtner-Antunović, I.; Uskoković-Marković, S.; Bajuk-Bogdanović, D.; Pavlović, V.; Tošić, D.; Milenković, M.; Todorović Marković, B. Modification of graphene oxide surfaces with 12-molybdophosphoric acid: Structural and antibacterial study. Mater. Chem. Phys. 2018, 213, 157–167. [Google Scholar] [CrossRef]
- Badri, A.; Whittaker, M.R.; Zetterlund, P.B. Modification of graphene/graphene oxide with polymer brushes using controlled/living radical polymerization. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 2981–2992. [Google Scholar] [CrossRef]
- Kuila, T.; Bose, S.; Kumar Mishra, A.; Khanra, P.; Kim, N.H.; Lee, J.H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105. [Google Scholar] [CrossRef]
- Yang, A.; Li, J.; Zhang, C.; Zhang, W.; Ma, N. One-step amine modification of graphene oxide to get a green trifunctional metal-free catalyst. Appl. Surf. Sci. 2015, 346, 443–450. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, H.; Zhu, R.; Sheng, X.; Xie, D.; Mei, Y. Facile modification of graphene oxide with Lysine for improving anti-corrosion performances of water-borne epoxy coatings. Prog. Org. Coat. 2019, 136, 105200. [Google Scholar] [CrossRef]
- Kang, S.M.; Park, S.; Kim, D.; Park, S.Y.; Ruoff, R.S.; Lee, H. Simultaneous Reduction and Surface Functionalization of Graphene Oxide by Mussel-Inspired Chemistry. Adv. Funct. Mater. 2011, 21, 108–112. [Google Scholar] [CrossRef]
- Maleki, A.; Hajizadeh, Z.; Abbasi, H. Surface modification of graphene oxide by citric acid and its application as a heterogeneous nanocatalyst in organic condensation reaction. Carbon Lett. 2018, 27, 42–49. [Google Scholar]
- Pruna, A.I.; Barjola, A.; Cárcel, A.C.; Alonso, B.; Giménez, E. Effect of Varying Amine Functionalities on CO2 Capture of Carboxylated Graphene Oxide-Based Cryogels. Nanomaterials 2020, 10, 1446. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Liu, S.; Wang, L.; Wu, J.; Wu, Z.; Ma, C.; Yu, Q.; Hu, X. Novel Nitrogen-Doped Porous Carbons Derived from Graphene for Effective CO2 Capture. Ind. Eng. Chem. Res. 2019, 58, 3349–3358. [Google Scholar] [CrossRef]
- Iamprasertkun, P.; Krittayavathananon, A.; Sawangphruk, M. N-doped reduced graphene oxide aerogel coated on carboxyl-modified carbon fiber paper for high-performance ionic-liquid supercapacitors. Carbon 2016, 102, 455–461. [Google Scholar] [CrossRef]
- Pruna, A.; Cárcel, A.C.; Benedito, A.; Giménez, E. Effect of synthesis conditions on CO2 capture of ethylenediamine-modified graphene aerogels. Appl. Surf. Sci. 2019, 487, 228–235. [Google Scholar] [CrossRef]
- Ma, X.-X.; Dai, X.-H.; He, X.-Q. Co9S8-Modified N, S, and P Ternary-Doped 3D Graphene Aerogels as a High-Performance Electrocatalyst for Both the Oxygen Reduction Reaction and Oxygen Evolution Reaction. ACS Sustain. Chem. Eng. 2017, 11, 9848–9857. [Google Scholar] [CrossRef]
- Thomou, E.; Diamanti, E.K.; Enotiadis, A.; Spyrou, K.; Mitsari, E.; Boutsika, L.G.; Sapalidis, A.; Moretón Alfonsín, E.; De Luca, O.; Gournis, D.; et al. New Porous Heterostructures Based on Organo-Modified Graphene Oxide for CO2 Capture. Front. Chem. 2020, 8, 564838. [Google Scholar] [CrossRef]
- Yap, P.L.; Kabiri, S.; Auyoong, Y.L.; Tran, D.N.H.; Losic, D. Tuning the Multifunctional Surface Chemistry of Reduced Graphene Oxide via Combined Elemental Doping and Chemical Modifications. ACS Omega 2019, 4, 19787–19798. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zeng, H.C. Hierarchical Nanocomposite by the Integration of Reduced Graphene Oxide and Amorphous Carbon with Ultrafine MgO Nanocrystallites for Enhanced CO2 Capture. Environ. Sci. Technol. 2017, 51, 12998–13007. [Google Scholar] [CrossRef] [PubMed]
- Khalili, D. Graphene oxide: A promising carbocatalyst for the regioselective thiocyanation of aromatic amines, phenols, anisols and enolizable ketones by hydrogen peroxide/KSCN in water. New J. Chem. 2016, 40, 2547–2553. [Google Scholar] [CrossRef]
- Yu, B.; Wang, X.; Xing, W.; Yang, H.; Wang, X.; Song, L.; Hu, Y.; Lo, S. Enhanced thermal and mechanical properties of functionalized graphene/thiol-ene systems by photopolymerization technology. Chem. Eng. J. 2013, 228, 318–326. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.; Zhou, X.; Jiang, W.; Wang, T.; Zhang, N.; Lu, Y.; Yu, L.; Yin, Z. (3-Mercaptopropyl)trimethoxysilane-Assisted Synthesis of Macro- and Mesoporous Graphene Aerogels Exhibiting Robust Superhydrophobicity and Exceptional Thermal Stability. Ind. Eng. Chem. Res. 2016, 55, 948–953. [Google Scholar] [CrossRef]
- Suddai, A.; Nuengmatcha, P.; Sricharoen, P.; Limchoowong, N.; Chanthai, S. Feasibility of hard acid–base affinity for the pronounced adsorption capacity of manganese(II) using amino-functionalized graphene oxide. RSC Adv. 2018, 8, 4162–4171. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Ma, J.; Wang, J.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Lipase Immobilized on Graphene Oxide as Reusable Biocatalyst. Ind. Eng. Chem. Res. 2014, 53, 19878–19883. [Google Scholar] [CrossRef]
- Salehi, Z.; Ghahfarokhi, H.H.; Kodadadi, A.A.; Rahimnia, R. Thiol and urea functionalized magnetic nanoparticles with highly enhanced loading capacity and thermal stability for lipase in transesterification. J. Ind. Eng. Chem. 2016, 35, 224–230. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Wang, L.; Chen, J.; Chen, J.; Ren, L.; Shi, X.; Wang, Y. Modifying graphene oxide with short peptide via click chemistry for biomedical applications. Appl. Mater. Today 2016, 5, 111–117. [Google Scholar] [CrossRef]
- Najafi-Shoa, S.; Roghani-Mamaqani, H.; Salami-Kalajahi, M.; Azimi, R.; Gholipour-Mahmoudalilou, M. Incorporation of epoxy resin and carbon nanotube into silica/siloxane network for improving thermal properties. J. Mater. Sci. 2016, 51, 9057–9073. [Google Scholar] [CrossRef]
- Bagkar, N.; Ganguly, R.; Choudhury, S.; Hassan, P.A.; Sawant, S.; Yakhmi, J.V. Synthesis of surfactant encapsulated nickel hexacyanoferrate nanoparticles and deposition of their Langmuir–Blodgett film. J. Mater. Chem. 2004, 14, 1430–1436. [Google Scholar] [CrossRef]
- Ran, R.; Yu, Y.; Wan, T. Photoinitiated RAFT polymerization in the presence of trithiocarbonate. J. Appl. Polym. Sci. 2007, 105, 398–404. [Google Scholar] [CrossRef]
- Yin, Z.-G.; Sun, W.; Hu, Y.-H.; Guan, Q.-J.; Zhang, C.-H.; Gao, Y.-S.; Zhai, J.-H. Depressing behaviors and mechanism of disodium bis (carboxymethyl) trithiocarbonate on separation of chalcopyrite and molybdenite. Trans. Nonferrous Met. Soc. China 2017, 27, 883–890. [Google Scholar] [CrossRef]
- Dong, P.; Cui, K.; Xu, F.; Jiang, T.; Ma, Z. Synthesis of new ionic crosslinked polymer hydrogel combining polystyrene and poly(4-vinyl pyridine) and its self-healing through a reshuffling reaction of the trithiocarbonate moiety under irradiation of ultraviolet light. Polym. Int. 2018, 67, 868–873. [Google Scholar] [CrossRef]
- Calovi, M.; Callone, E.; Ceccato, R.; Deflorian, F.; Rossi, S.; Dirè, S. Effect of the Organic Functional Group on the Grafting Ability of Trialkoxysilanes onto Graphene Oxide: A Combined NMR, XRD, and ESR Study. Materials 2019, 12, 3828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Liu, Y.; Han, L.; Wang, J.; Ishida, H. Synthesis and thermally induced structural transformation of phthalimide and nitrile-functionalized benzoxazine: Toward smart ortho-benzoxazine chemistry for low flammability thermosets. RSC Adv. 2019, 9, 1526–1535. [Google Scholar] [CrossRef] [Green Version]
- Summers, G.J.; Motsoeneng, T.S.; Summers, C.A. RAFT polymerization of styrene mediated by oxazolyl-functionalized trithiocarbonate RAFT agents. Polym. Bull. 2021, 78, 2251–2285. [Google Scholar] [CrossRef]
- Vrettos, K.; Karouta, N.; Loginos, P.; Donthula, S.; Gournis, D.; Georgakilas, V. The Role of Diamines in the Formation of Graphene Aerogels. Front. Mater. 2018, 5, 20. [Google Scholar] [CrossRef]
- Garcia-Bordejé, E.; Benito, A.M.; Maser, W.K. Graphene aerogels via hydrothermal gelation of graphene oxide colloids: Fine-tuning of its porous and chemical properties and catalytic applications. Adv. Colloid. Interface Sci. 2021, 292, 102420. [Google Scholar] [CrossRef]
- Qian, Y.; Ismail, I.M.; Stein, A. Ultralight, high-surface-area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol. Carbon 2014, 68, 221–231. [Google Scholar] [CrossRef]
- Sui, Z.-Y.; Cui, Y.; Zhu, J.-H.; Han, B.-H. Preparation of Three-Dimensional Graphene Oxide–Polyethylenimine Porous Materials as Dye and Gas Adsorbents. ACS Appl. Mater. Interfaces 2013, 5, 9172–9179. [Google Scholar] [CrossRef] [PubMed]
- Iakunkov, A.; Skrypnychuk, V.; Nordenström, A.; Shilayeva, E.A.; Korobov, M.; Prodana, M.; Enachescu, M.; Larsson, S.H.; Talyzin, A.V. Activated graphene as a material for supercapacitor electrodes: Effects of surface area, pore size distribution and hydrophilicity. Phys. Chem. Chem. Phys. 2019, 21, 17901–17912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seredych, M.; Rodríguez-Castellón, E.; Bandosz, T.J. Alterations of S-doped porous carbon-rGO composites surface features upon CO2 adsorption at ambient conditions. Carbon 2016, 107, 501–509. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, Y.; Zhang, T.C.; Yuan, S. rGO/N-porous carbon composites for enhanced CO2 capture and energy storage performances. J. Alloy. Compd. 2021, 857, 157534. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Zhang, T.C.; Yuan, S.; Liang, B. N-doped porous carbon derived from rGO-Incorporated polyphenylenediamine composites for CO2 adsorption and supercapacitors. J. Power Sources 2020, 472, 228610. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Bao, A. Design of Hierarchically Structured Porous Boron/Nitrogen-Codoped Carbon Materials with Excellent Performance for CO2 Capture. Ind. Eng. Chem. Res. 2021, 60, 2710–2718. [Google Scholar] [CrossRef]
Sample | Temperature (°C) | GO/AsA wt Ratio | Functionalization |
---|---|---|---|
rGO60_0.5 | 60 | 1:0.5 | - |
rGO60_2 | 60 | 1:2 | - |
rGO90_0.5 | 90 | 1:0.5 | - |
rGO90_2 | 90 | 1:2 | - |
S60_0.5 | 60 | 1:0.5 | TMOS |
S60_2 | 60 | 1:2 | TMOS |
S90_0.5 | 90 | 1:0.5 | TMOS |
S90_2 | 90 | 1:2 | TMOS |
N60_0.5 | 60 | 1:0.5 | TMON |
N60_2 | 60 | 1:2 | TMON |
N90_0.5 | 90 | 1:0.5 | TMON |
N90_2 | 90 | 1:2 | TMON |
SN60_0.5 | 60 | 1:0.5 | TMOSN |
SN60_2 | 60 | 1:2 | TMOSN |
SN90_0.5 | 90 | 1:0.5 | TMOSN |
SN90_2 | 90 | 1:2 | TMOSN |
Sample | C% | O% | N% | Si% | S% |
---|---|---|---|---|---|
rGO60_0.5 | 65.40 | 27.89 | 6.35 | 0.38 | 0.07 |
rGO60_2 | 76.89 | 16.75 | 6.35 | 0.01 | - |
rGO90_0.5 | 68.65 | 25.92 | 5.41 | - | 0.02 |
rGO90_2 | 80.22 | 10.11 | 9.62 | 0.05 | - |
S60_0.5 | 56.23 | 33.18 | 3.56 | 3.55 | 3.48 |
S60_2 | 61.96 | 14.98 | 3.23 | 9.80 | 10.03 |
S90_0.5 | 64.25 | 22.44 | 3.24 | 5.19 | 4.97 |
S90_2 | 66.49 | 21.59 | 3.64 | 4.19 | 4.09 |
N60_0.5 | 67.39 | 23.54 | 7.13 | 1.93 | 0.01 |
N60_2 | 63.41 | 24.05 | 8.44 | 4.10 | - |
N90_0.5 | 62.44 | 28.16 | 7.67 | 1.71 | 0.02 |
N90_2 | 66.70 | 24.41 | 7.09 | 1.80 | - |
SN60_0.5 | 61.52 | 23.00 | 4.59 | 2.84 | 8.05 |
SN60_2 | 63.07 | 20.53 | 5.00 | 2.83 | 8.57 |
SN90_0.5 | 65.02 | 17.64 | 4.46 | 3.32 | 9.56 |
SN90_2 | 65.39 | 19.77 | 3.96 | 2.68 | 8.20 |
Sample | SBET (m2/g) | VT (cm3/g) | Vmic (cm3/g) | Vmes (cm3/g) | %micr. | Avg. dp (Å) |
---|---|---|---|---|---|---|
rGO60_0.5 | 70 | 0.19 | 0.014 | 0.17 | 7.6 | 135 |
rGO60_2 | 229 | 0.76 | 0.024 | 0.74 | 3.2 | 141 |
rGO90_0.5 | 190 | 0.45 | 0.028 | 0.42 | 6.3 | 140 |
rGO90_2 | 266 | 0.83 | 0.020 | 0.81 | 2.4 | 124 |
S60_0.5 | 234 | 0.62 | 0.031 | 0.58 | 5.0 | 132 |
S60_2 | 310 | 0.78 | 0.033 | 0.74 | 4.3 | 117 |
S90_0.5 | 351 | 0.96 | 0.036 | 0.92 | 3.8 | 124 |
S90_2 | 252 | 0.73 | 0.027 | 0.70 | 3.7 | 140 |
N60_0.5 | 311 | 1.01 | 0.029 | 0.98 | 2.9 | 144 |
N60_2 | 291 | 0.84 | 0.027 | 0.81 | 3.3 | 132 |
N90_0.5 | 310 | 1.07 | 0.019 | 1.05 | 1.8 | 143 |
N90_2 | 274 | 0.94 | 0.027 | 0.91 | 2.9 | 160 |
SN60_0.5 | 157 | 0.55 | 0.027 | 0.52 | 5.0 | 179 |
SN60_2 | 203 | 0.77 | 0.030 | 0.74 | 3.9 | 160 |
SN90_0.5 | 202 | 0.66 | 0.028 | 0.64 | 4.2 | 155 |
SN90_2 | 236 | 0.95 | 0.025 | 0.92 | 2.6 | 190 |
Sample | CO2 (25 °C) mmol/g | % | CO2 (60 °C) mmol/g | % |
---|---|---|---|---|
rGO60_0.5 | 1.67 | 7.4 | 0.85 | 3.7 |
rGO60_2 | 0.68 | 3.0 | 0.53 | 2.3 |
rGO90_0.5 | 1.14 | 5.0 | 0.75 | 3.3 |
rGO90_2 | 0.60 | 2.6 | 0.40 | 1.8 |
S60_0.5 | 1.42 | 6.2 | 0.71 | 3.1 |
S60_2 | 0.78 | 3.4 | 0.47 | 2.1 |
S90_0.5 | 0.80 | 3.5 | 0.55 | 2.4 |
S90_2 | 1.10 | 4.8 | 0.55 | 2.4 |
N60_0.5 | 0.94 | 4.1 | 0.48 | 2.1 |
N60_2 | 0.86 | 3.8 | 0.47 | 2.1 |
N90_0.5 | 0.57 | 2.5 | 0.49 | 2.2 |
N90_2 | 0.86 | 3.8 | 0.51 | 2.3 |
SN60_0.5 | 1.00 | 4.4 | 0.52 | 2.3 |
SN60_2 | 0.53 | 2.3 | 0.34 | 1.5 |
SN90_0.5 | 0.60 | 2.6 | 0.44 | 2.0 |
SN90_2 | 0.47 | 2.1 | 0.33 | 1.4 |
Sample | CO2 vs. O | CO2 vs. S, Si, N, O | CO2 vs. Micro(%) | CO2 vs. Macro(%) | CO2 vs. SV | CO2 vs. Avg dp | High Ads with Green, Medium with Orange and Red, Low |
---|---|---|---|---|---|---|---|
Possible Connection | ↑ Ad. ↑ % | ↑ Ad. ↓ ratio C/S-Si-N-O | ↑ Ad. ↑ % | ↑ Ad. ↑ % | ↑ Ad. ↑ ratio | Ad. Vs. dp | |
rGO60_0.5 | √ | √ | √ | √ | √ | 1.67–13.5 | |
S60_0.5 | √ | √ | √ | √ | √ | 1.42–13.2 | |
N60_0.5 | √ | √ | X | √ | X | 0.94–14.4 | |
SN60_0.5 | √ | √ | √ | √ | √ | 1.00–17.9 | |
rGO60_2 | √ | √ | √ | X | √ | 0.68–14.1 | |
S60_2 | √ | X | X | √ | X | 0.78–11.7 | |
N60_2 | √ | √ | √ | √ | √ | 0.86–13.2 | |
SN60_2 | √ | X | X | √ | √ | 0.53–16.0 | |
rGO90_0.5 | √ | X | √ | √ | √ | 1.14–14.0 | |
S90_0.5 | X | √ | √ | √ | √ | 0.80–12.4 | |
N90_0.5 | X | X | √ | √ | √ | 0.57–14.3 | |
SN90_0.5 | √ | X | X | X | √ | 0.60–15.5 | |
rGO90_2 | √ | √ | √ | √ | X | 0.60–12.4 | |
S90_2 | X | √ | √ | X | √ | 1.10–14.0 | |
N90_2 | √ | √ | √ | X | X | 0.86–16.0 | |
SN90_2 | √ | X | √ | X | √ | 0.47–19.0 | |
Follow the trend | 13/16 | 10/16 | 12/16 | 11/16 | 12/16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Politakos, N.; Cordero-Lanzac, T.; Tomovska, R. Understanding the Adsorption Capacity for CO2 in Reduced Graphene Oxide (rGO) and Modified Ones with Different Heteroatoms in Relation to Surface and Textural Characteristics. Appl. Sci. 2021, 11, 9631. https://doi.org/10.3390/app11209631
Politakos N, Cordero-Lanzac T, Tomovska R. Understanding the Adsorption Capacity for CO2 in Reduced Graphene Oxide (rGO) and Modified Ones with Different Heteroatoms in Relation to Surface and Textural Characteristics. Applied Sciences. 2021; 11(20):9631. https://doi.org/10.3390/app11209631
Chicago/Turabian StylePolitakos, Nikolaos, Tomás Cordero-Lanzac, and Radmila Tomovska. 2021. "Understanding the Adsorption Capacity for CO2 in Reduced Graphene Oxide (rGO) and Modified Ones with Different Heteroatoms in Relation to Surface and Textural Characteristics" Applied Sciences 11, no. 20: 9631. https://doi.org/10.3390/app11209631
APA StylePolitakos, N., Cordero-Lanzac, T., & Tomovska, R. (2021). Understanding the Adsorption Capacity for CO2 in Reduced Graphene Oxide (rGO) and Modified Ones with Different Heteroatoms in Relation to Surface and Textural Characteristics. Applied Sciences, 11(20), 9631. https://doi.org/10.3390/app11209631