
applied
sciences

Article

Smart Recommendations for Renting Bikes in
Bike-Sharing Systems

Holger Billhardt, Alberto Fernández * and Sascha Ossowski

����������
�������

Citation: Billhardt, H.; Fernández,

A.; Ossowski, S. Smart

Recommendations for Renting Bikes

in Bike-Sharing Systems. Appl. Sci.

2021, 11, 9654. https://doi.org/

10.3390/app11209654

Academic Editors: Juan-Carlos Cano

and Paola Pellegrini

Received: 21 September 2021

Accepted: 14 October 2021

Published: 16 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

CETINIA, Universidad Rey Juan Carlos, 28933 Móstoles, Madrid, Spain; holger.billhardt@urjc.es (H.B.);
sascha.ossowski@urjc.es (S.O.)
* Correspondence: alberto.fernandez@urjc.es

Abstract: Vehicle-sharing systems—such as bike-, car-, or motorcycle-sharing systems—have become
increasingly popular in big cities in recent years. On the one hand, they provide a cheaper and envi-
ronmentally friendlier means of transportation than private cars, and on the other hand, they satisfy
the individual mobility demands of citizens better than traditional public transport systems. One of
their advantages in this regard is their availability, e.g., the possibility of taking (or leaving) a vehicle
almost anywhere in a city. This availability obviously depends on different strategic and operational
management decisions and policies, such as the dimension of the fleet or the (re)distribution of
vehicles. Agglutination problems—where, due to usage patterns, available vehicles are concentrated
in certain areas, whereas no vehicles are available in others—are quite common in such systems, and
need to be dealt with. Research has been dedicated to this problem, specifying different techniques
to reduce imbalanced situations. In this paper, we present and compare strategies for recommending
stations to users who wish to rent or return bikes in station-based bike-sharing systems. Our first
contribution is a novel recommendation strategy based on queuing theory that recommends stations
based on their utility to the user in terms of lower distance and higher probability of finding a bike or
slot. Then, we go one step further, defining a strategy that recommends stations by combining the
utility of a particular user with the utility of the global system, measured in terms of the improvement
in the distribution of bikes and slots with respect to the expected future demand, with the aim of
implicitly avoiding or alleviating balancing problems. We present several experiments to evaluate
our proposal with real data from the bike sharing system BiciMAD in Madrid.

Keywords: bike sharing; agent-based coordination; smart transportation; smart mobility; multi-
agent systems

1. Introduction

Due to the growing need for reducing air pollution and, at the same time, offering
mobility services of satisfactory quality to citizens, new means of urban mobility are being
explored in many large cities around the world. Bike-sharing systems (BSSs) are just
one of the many solutions that have been proposed and implemented in recent years.
In some cities, they have grown to considerable size. For example, the system Vélib
(http://www.velib-metropole.fr/) in Paris has ~15,000 bikes, the Santander Cycles project
in London (tfl.gov.uk/modes/cycling/santander-cycles) has ~11,000 bikes and cities in
China such as Hangzhou or Wuhan employ as many as 78,000 and 90,000 bikes, respec-
tively [1]. Some of those systems are so called free-floating systems (e.g., BikeShare in Seattle
or DB Callabike in Munich) that allow citizens to pick up and return a bike at any location
within a certain area. Others are station-based—that is, they rely on a set of rental stations
with fixed locations. Station-based BSSs have the advantage of providing better control to
avoid unauthorized access. When electric bikes are deployed in the BSS—as, for example,
in the BiciMAD system in Madrid (Spain)—stations usually serve as charging spots for the
bicycles’ batteries as well.

Appl. Sci. 2021, 11, 9654. https://doi.org/10.3390/app11209654 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8962-6856
https://doi.org/10.3390/app11209654
https://doi.org/10.3390/app11209654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://www.velib-metropole.fr/
tfl.gov.uk/modes/cycling/santander-cycles
https://doi.org/10.3390/app11209654
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11209654?type=check_update&version=2

Appl. Sci. 2021, 11, 9654 2 of 25

Effectiveness and user satisfaction within station-based BSSs strongly depend on the
availability of bikes (or slots for returning rented bikes) at the places where users search for
them or demand them. Therefore, proper management policies need to be implemented
not only for strategic decisions (e.g., regarding the positioning and dimensioning of rental
stations, the selection of adequate bicycle models, etc.), but also at the operational level. In
particular, BSSs are usually faced with agglomeration or unbalancing problems: available
bikes are concentrated at certain areas (and at certain times of the day), whereas in other
areas few or no bikes are available. The effect is that users may experience a poor quality
of service, being unable to find a bike (or a return slot) at a given station or area. Solutions
such as reserving bikes (or slots) at some stations palliate this problem, but proper bike
balancing mechanisms are needed in order to tackle the problem at its core.

In many systems, trucks are used to address such balancing problems, by moving
bicycles from (almost) full to (almost) empty stations. Truck movements are scheduled
either statically (usually at night) or dynamically (during BSS operation), with the aim of
finding a near-optimal match between the expected demand and the available resources.
However, truck movements are expensive, and raise environmental concerns.

Today, BSSs are often conceived as cyber–physical systems [2,3]. Bikes may be en-
dowed with several battery-powered sensors that measure important information such
as position or battery level (in case of electric bicycles). Sensors at stations may capture
rental attempts that were frustrated—e.g., due to mechanical failures of slot clamps—and,
of course, gather key information regarding the operating state of the system, such as the
numbers of available and occupied slots. This information is then transmitted to a software
application at the BSS control centre, and helps operators to make timely management
decisions in an online manner. Part of this information is often shared with the BSS users,
who may use smartphone apps that inform them about the current state of stations in real
time. Users can then use this information to make more informed decisions as to where to
rent or to return a bike. However, due to the dynamic nature of the BSS environment, it
often transpires that, when a user reaches a certain station, initially available bikes have
already been taken by other users. Similarly, information on available parking slots may
already be outdated when a user arrives to a station. Dynamic reservation schemes can be
used to address such problems, but may have a negative impact on the overall capacity
of a BSS.

BSSs are also often perceived from the perspective of the smart cities paradigm as
part of a more sophisticated, heterogeneous, intelligent transportation solution—a system
of systems that integrates different modes of transport (buses, trains, private and shared
vehicles, on-demand transportation services, etc.) and enables dynamic collaborations
among users, such as crowdshipping [4] or crowdsensing [5,6] scenarios. In a multimodal
context [7,8], real-time recommendation systems may suggest any type of appropriate
means of transport (not just bikes) that fits the particular needs and preferences of a user
at a particular moment. In some cases, this may alleviate the quality of service problems
within a BSS due to imbalances, as mentioned above. For example, if there are no available
bikes in the area of a user, the system may recommend an on-demand shared taxi service,
instead of walking to another BSS station. This perspective is very appealing, and research
in this direction will pave the way towards better and greener transportation services in
smart cities [9,10]; however, it does not explicitly account for the agglomeration problems
that reduce the quality of service at the level of the BSS. Therefore, we argue that addressing
the imbalance problem in BSSs is still a relevant endeavour, as it can impact positively on
the overall service level of intelligent transportation systems within a smart city.

In this work, we focus on the aforementioned problems within station-based BSSs.
Our first contribution is a novel recommendation strategy based on a notion of cost that
combines distance (between a user’s origin/destination and a rental/return station) with
(an expectation of) availability of slots or bikes. To account for the dynamic nature of the BSS
environment as mentioned earlier, instead of recommending stations that have available
bikes or slots at the time a search request is made, we use demand prediction to estimate

Appl. Sci. 2021, 11, 9654 3 of 25

the expected probability of finding an available bike or slot at the time the user will arrive at
a recommended station. In particular, we model stations as queues, and apply techniques
from queuing theory for probability estimation.

The second contribution of this work is an extension of the aforementioned recommen-
dation strategy that also addresses balancing problems by combining individual objectives
with social welfare. For this purpose, the system not only tries to recommend stations
with a low cost for the user, but also uses demand predictions to estimate the impact of
renting or returning a bike at a given station on society (potential future users). Here,
recommendations prioritise stations (for rental or return actions) that combine a low cost
for the user with an improved overall impact on the distribution of bikes and slots in the
BSS (and, thus, for potential future users).

To evaluate the proposed recommendation strategies, we used a simulation tool
for station-based bike-sharing systems: Bike3S (https://github.com/gia-urjc/Bike3S-
Simulator). This simulator performs semi-realistic simulations of the operation of a bike-
sharing system in a given area of interest, and allows for evaluating and testing different
management decisions and strategies. In our simulations, we used real data from the
BiciMAD BSS, which is operating in Madrid (Spain).

The rest of the paper is organised as follows: In Section 2 we discuss related works on
bicycle-sharing systems. Section 3 outlines the general functioning of a station-based BSS,
and introduces the basic notation used in the rest of the paper. Section 4 focuses on station
recommendation strategies that are centred on BSS users. In particular, we sketch some
simple, straightforward selection strategies, before introducing our more sophisticated
proposal. Section 5 puts forward several experiments that compare the performance
of the different strategies. In Section 6, we present our estimation of the impact of a
rental/return action at a station on potential future users, and define our proposal for a
station recommendation strategy that combines cost for users and future global impact. In
Section 7, we analyse the performance of this strategy in a set of simulation experiments.
Finally, Section 8 summarises our work, outlines the lessons we have learned, and points
to future lines of work.

2. Related Work

Bike-sharing systems’ management decisions can be made with different tempo-
ral horizons.

Long-term or strategic decisions are mainly related to system design and deployment
(location and size of stations, number of bikes, etc.) [11–14], as well as the analysis of
different exploitation policies for existing systems [15].

At an operational level, decisions are made in order to maintain a good performance
of the system, which usually means maximizing the number of users that rent bikes.
Thus, actions are aimed at reducing imbalances produced at stations due to heterogeneous
demand for bikes and empty slots. In this regard, offline or static approaches are mid-term
decisions oriented at repositioning bikes using vehicles (trucks)—typically at night, or
during off-peak times—in such a way that bike distribution through stations is optimal for
the expected demand. These systems estimate the best way of distributing not only the
existing bikes, but also the routes taken by the trucks (see e.g., [16–18]).

A natural evolution of such systems is their online application during the actual
operation of the fleet. The challenge is in combining the current state of the system with
demand prediction, so as to propose short-term balancing actions. Many works propose
solutions to the problem of dynamically repositioning bikes using trucks as efficiently as
possible [19–22]. It has become clear that optimal solutions to the optimization problem do
not scale as the size of the BSS grows, so authors use heuristics to find solutions applicable
in real-world systems.

Furthermore, using trucks to rebalance a bike-sharing fleet has several disadvantages,
including cost of operation, contribution to congestion and pollution, etc. Recently, several
approaches have proposed crowdsourcing this task, so that users can contribute by taking

https://github.com/gia-urjc/Bike3S-Simulator
https://github.com/gia-urjc/Bike3S-Simulator

Appl. Sci. 2021, 11, 9654 4 of 25

or returning bikes at stations other than their target station. Typically, users receive some
type of incentive (e.g., discounts) to compensate the extra (usually small) effort of modifying
their initial choices.

This paper focuses on dynamic rebalancing systems; thus, we describe related works
in this area in further detail.

Chemla et al. [19] studied the problem of obtaining the optimal policy to determine
the best action that a repositioning vehicle can take in order to maximise the number of
users that find a bike. Since this is an NP-hard problem, they proposed several heuristic
solutions that, roughly speaking, are based on choosing the station with the most or least
excess of bikes with regard to a given target state. They also employed a pricing strategy
in which each station has a price that is paid when the bike is returned, regardless of the
origin of the trip; users choose the destination station based on its current price and the
user’s walking and biking distances. This solution consists of optimizing station prices
assuming certain user models.

Pfrommer et al. [23] presented a dynamic rebalancing system that combines truck-
based vehicle redistribution and price incentives for users. In this approach, users either
find a bike at their origin stations or leave the system. Upon arrival at their target station,
users decide whether or not to accept an incentive to return the bike at a neighbouring
station. This decision is taken according to their “perceived cost” of the additional distance
travelled (biking and walking) and the incentives received. Dynamic prices are calculated
through an optimization problem that combines the quality of the resulting state and the
cost of paying out the incentives. The key component of the system quality is the analysis
of each station’s utility, based on an optimal “fill level” (the available bikes at a station).

Haider et al. [24] proposed a method that combines trucks and price incentives. In
this approach, the authors intentionally tried to make some stations even more imbal-
anced (hubs), so that bike redistribution could be carried out more efficiently with shorter
truck trips. The objective was to minimize the number of imbalanced stations, which the
authors solved heuristically. Prices (which include incentives) were established for O–D
station pairs.

Singla et al. [25] presented a mechanism that incentivizes the users in the bike repo-
sitioning process; they employed optimal pricing policies using regret minimization in
online learning, and investigated the incentive compatibility of their mechanism. This
approach was evaluated through simulations based on historical data from the Boston
Hubway system, as well as on data collected via a survey study with MVGmeinRad in
Mainz, Germany.

Reiss and Bogenberger [26] proposed a hybrid approach for a free-floating bike-
sharing system in which user discounts (60–100%) are applied when the imbalance is low
(less than 15%), or trucks are used in case of high imbalances. The decision is updated
once for each of five predefined time slots during the day. Imbalances are measured as the
difference between the current and a desired fleet distribution. The latter is calculated for
the entire day from historical data.

Wang and Hou [27] proposed a repositioning strategy that assumes that there is a
number of voluntary riders during each time period. Trips (including bike repositioning
by volunteers) are considered for time periods of 30 min. The authors used integer pro-
gramming to solve two optimization problems: first (1) the “ideal bike inventory” for each
station and time period (with unlimited voluntary riders), and then (2) the voluntary rider
flow (O–D pairs), so as to obtain an inventory as close to the “ideal” as possible.

Chung et al. [28] analysed Bike Angels—the incentive program of New York City’s
Citi Bike system. Angels are users who earn points and rewards for helping to rebalance
the system. The authors analysed the Bike Angels program and proposed several offline
and online incentivizing policies, one of which has been adopted by Citi Bike.

O’Mahony [29] designed a raffle-based incentive system in which users can gain tickets
for taking bikes from surplus stations and returning them at shortage stations. According
to [30], this type of incentive is more effective than micro-incentives (e.g., smal discounts).

Appl. Sci. 2021, 11, 9654 5 of 25

Fricker and Gast [31] studied homogeneous BSSs and calculated the optimal fleet size
to minimise the proportion of problematic stations (empty or full). They concluded that
simply returning bikes to non-saturated stations does not produce a sufficient impact on the
system behaviour. However, the mere incentive of suggesting users to return bikes at the
“worst” among (only) two stations (chosen at random) improves the system dramatically,
even if only some of the users follow the recommendations.

Chiariotti et al. [32] proposed a solution that combines rebalancing (with trucks) and
incentivising users with rewards and prizes, as this combination has a lower cost than
using trucks alone. Using a finite Markov birth–death process, their approach was to
minimise the average expected time for which stations are empty or full. The authors were
only interested in the overall effect of incentives on the system, rather than the effects of
specific types of incentives.

Li and Shan [33] proposed a bidirectional incentive model where two types of users
are considered—namely, commuters and leisure travellers. The users’ travel behaviours are
characterised as peak, flat peak, or inverse peak travel. The goal of this system is to persuade
commuters to move from peak to flat peak behaviour, and leisure travellers from flat peak to
inverse peak. This change in behaviour is incentivised by charging more to commuters or
rewarding leisure users, respectively. Subsidies from the government are also included in
their strategies.

User behaviour models are also relevant to static rebalancing approaches [22]. In [22],
the behaviour of users when arriving at empty stations was simulated, i.e., whether they
leave the system or walk to another station. Based on a survey, the authors calculated
the rate of users who are willing to walk to a neighbouring station, depending on the
existing distance.

In the present work, we do not focus on explicitly incentivizing users, but assume that
they follow the recommendations made. As users gain experience with our recommenda-
tion service, we expect them to learn that it helps them to achieve a better user experience
and to establish trust that the suggestions made are aligned with their goals. In this respect,
our work is similar to [34], the authors of which created Cityride—a bike-sharing journey
advisor for the city of Dublin. In their system, origin and destination stations are recom-
mended based on the overall travel time and the probability of finding a bike at origin
and a slot at destination stations at the respective expected arrival times. Even though
rebalancing the system is not the primary goal of the recommendations, this is achieved
indirectly as a side effect.

With respect to the applied mathematical tools and methods, our approach is re-
lated to the work by Waserhole and Jost [35], who theoretically studied the regulation of
station-based vehicle-sharing systems through pricing using queuing networks. How-
ever, their study makes a series of assumptions that hinder its applicability—namely, null
transportation times, infinite capacities of stations, and stationary demand over time.

As in the present paper, López Santiago et al. [36] also used historical data from the
BiciMAD BSS in Madrid. They used social simulations to analyse the impact of several
simple price incentive schemes and compare them to the policy currently employed in
the BiciMAD BSS. Their work mainly focused on adequately modelling expected user
behaviour and, in particular, the willingness to participate in rebalancing for given distances
and incentives, based on existing surveys. In contrast, in the present work, we aim
at systematically determining efficient solutions based on queuing theory as the basis
for recommendations.

3. Station-Based BSSs

A station-based BSS consists of a set of stations distributed around the city at different,
fixed geographical locations. Each station has a number of slots to park a bike (its capacity),
which may differ from station to station. At a given point in time, some slots may be
empty or available (e.g., can be used to return a bike), while others have an available bike
plugged in that can be taken by a user. The total sum of bikes in the system is always much

Appl. Sci. 2021, 11, 9654 6 of 25

smaller than the sum of capacities of all stations, so as to allow users to find empty slots to
return bikes.

Users who want to use the system would go to a station, take a bike, and return it
after some time at another station close to the location of their destination. Normally, when
a user decides to take a bike, they would be interested in finding the one closest to their
initial position. In the same way, when they want to return a rented bike, they would like
to do that at an available slot as close as possible to their final destination.

Usually, BSSs are supported by software applications that provide the users with real-
time information about the current state of stations. Users may consult these applications in
order to find appropriate stations to rent or to return a bike. In some cases, recommendation
systems exist that propose appropriate stations to users. However, even if a user applies
this real-time information to identify appropriate stations with available bikes or slots,
it may occur that when they actually arrive at that station, the initially available bikes
(or slots) have already been taken (or occupied) by other users. We call this situation an
unsuccessful rental (or return) attempt. If a user has arrived at a station and there are no
bikes available, they might consider going to a neighbouring station and trying there,
or they may desist. A user will usually desist if they do not find an available bike after
walking a certain distance (and perhaps trying at several stations). They might also desist if,
based on the real-time information provided by their software application, they realize that
there are currently no bikes available within a reasonable distance of their initial position.
Once a user has rented a bike, they are obliged to return it at some station—that is, there is
no possibility of desisting; the user must go to another station if there are no available slots
at the first station they tried.

In this work, we intend to provide users with a recommendation system that suggests
the “best” station to them when they want to rent a bike in the system (or they have
to return a rented bike)—that is, we assume that potential users, when they decide to
rent a bike or to return a rented bike, consult our system for recommendations of “good”
stations. Furthermore, users would usually follow the given recommendation and move
to a recommended station. In this sense, our aim in this paper is to define and analyse
recommendation strategies that, if followed by the users, provide improved performance
at both the individual and social (system) levels. The general objective is to recommend
stations that (1) are likely to have the requested resource (bike or slot) once a user arrives
there, and (2) provide short travel times, e.g., are close to the location of the user in case of
a bike rental, or close to their final destination in case of a bike return.

In the rest of the paper, we use the following notations (see Table 1): S = {s1, . . . , sn}
denotes the set of stations, each with geographical location l(si) and capacity c(si). bikes(si, t)
and slots(si, t) represent the number of available bikes and slots, respectively, at station
si at time t. A user uk who wishes to rent out a bike will request a recommendation for
an appropriate rental station. Such a request, denoted by rentk = 〈lk, t, md〉, consists of
the current (or desired origin) location lk of the user, the current time t when the request is
issued, and the maximum distance md that a user would be willing to walk to get a bike. If
there is no station within distance md, the user will desist and abandon the system. In a
similar way, a user who wishes to return a rented bike will request a recommendation for a
station to return that bike. This request is denoted by returnk = 〈lk, dk, t〉, and consists of
the current location lk, the issuing time t, and the location of the user’s final destination
dk. In the case of a return request, a maximum distance does not apply, since the user is
required to return the bike in any case. wtime(x, y) and btime(x, y) denote the expected
time and wdist(x, y), and bdist(x, y)—the expected distance to walk/cycle from location
x to location y. Both time and distance measures depend on the walking and cycling
velocities of each user, and we assume that they can be estimated using standard velocities.

Appl. Sci. 2021, 11, 9654 7 of 25

Table 1. List of symbols and functions used.

Symbols Description

S = {s1, . . . , sn} Set of stations
l(si) Location of station si
c(si) Capacity of station si
bikes(si, t) Number of available bikes at time t
slots(si, t) Number of empty slots at station si at time t
uk User k

rentk = 〈lk, t, md〉 Rental request of user k, with: lk (initial user location), t (time the request is issued), md
(maximum distance the user is willing to walk to get a bike)

returnk = 〈lk, dk, t〉 Return request of user k, with: lk (initial user location), dk (location of the user’s final destination),
t (time the request is issued)

wtime(x, y) Expected walking time from x to y
btime(x, y) Expected cycling time ¡ from x to y
wdist(x, y) Expected walking distance from x to y
bdist(x, y) Expected cycling distance from x to y
RentStation(rentk) Ordered sequence of recommended rental stations (s1, . . . , sm) = (si)

m
i=1

ReturnStation(returnk) Ordered sequence of recommended return stations (s1, . . . , sm) = (si)
m
i=1

texp Expected arrival time of a user at a station
tx Time of the last known expected event

changes (si, t, texp) Expected change in the number of bikes at station si in interval [t, texp] with respect to the number
of bikes at time t (e.g., +2 indicates there will be two more bikes at time texp)

committedSlots (si, t) Maximum number of “committed” slots at station si after time t. This value is ≥ 0
committedBikes (si, t) Maximum number of “committed” bikes at station si after time t. This value is ≥ 0

estimatedBikes (si, rentk)
Number of expected available bikes at si at the time user k is expected to arrive and taking into
account the expected changes and “committed” bikes

estimatedSlots (si, returnk)
Number of expected available slots at si at the time user k is expected to arrive and taking into
account the expected changes and “committed” slots

We define rental and return recommendations as functions that map a rental or return
request (rentk = 〈lk, t, md〉 or returnk = 〈lk, dk, t〉) to a ranking of stations (e.g., an ordered
list with distinct pairwise elements): RentStation(rentk) = (s1, . . . , sm) = (si)

m
i=1 and

ReturnStation(returnk) = (s1, . . . , sm) = (si)
m
i=1 with si ∈ S.

4. User-Centred Station Recommendation

In this section, we define several strategies for recommending the best stations for
renting/returning a bike from a user’s perspective. We first present simple, straightforward
versions of such user-centred recommendation strategies as baselines, and then develop
a smarter strategy that forecasts expected changes in order to improve the estimation of
available bikes/slots for the time when a user will actually arrive at a station. Finally,
we present an even more sophisticated strategy that estimates the probability of finding
available bikes/slots based on current demand data and uses this information to calculate
a “cost” for renting or returning a bike at a station.

4.1. Standard Strategies
4.1.1. Shortest Distance

This is a basic selection strategy, where a user simply prefers the station that is closest
to their origin/destination position. This strategy represents the behaviour of a user who
just goes to the closest station, without knowing whether there are available bikes or slots:

RentStation(rentk) = (si)
m
i=1 (1)

where:

∀ si : wdist(lk, l(si)) ≤ md ∧ ∀ si, sj, i < j : wdist(lk, l(si)) ≤ wdist
(
lk, l

(
sj
))

ReturnStation(returnk) = (si)
m
i=1 (2)

Appl. Sci. 2021, 11, 9654 8 of 25

where:
∀ si, sj, i < j : wdist(l(si), dk) ≤ wdist

(
l
(
sj
)
, dk
)

4.1.2. Informed Shortest Distance

In this strategy, the system proposes the closest stations that have available bikes
(or slots). Thus, a user avoids going to stations that are empty (at the moment of station
selection). However, a station may no longer hold available bikes or slots at the time when
the user actually arrives at it, because other users have taken the available bikes (or have
occupied the available slots):

RentStation(rentk) = (si)
m
i=1 (3)

where:
∀ si : wdist(lk, l(si)) ≤ md ∧ bikes(si, t) > 0 ∧
∀ si, sj, i < j : wdist(lk, l(si)) ≤ wdist

(
lk, l

(
sj
))

ReturnStation(returnk) = (si)
m
i=1 (4)

where:

∀ si : slots(si, t) > 0 ∧ ∀si, sj, i < j : wdist(l(si), dk) ≤ wdist(l(si), dk)

4.1.3. Distance Resources

Here, stations are selected by combining distance and available resources. The pre-
ferred stations are the ones that are closer to the origin (or destination) location of the user
and have more available bikes (slots) at the time a recommendation is requested:

RentStation(rentk) = (si)
m
i=1 (5)

where:
∀ si : wdist(lk, l(si)) ≤ md ∧ bikes(si, t) > 0 ∧
∀ si, sj, i < j : wdist(lk , l(si))

bikes(si ,t)
≤ wdist(lk , l(sj))

bikes(sj ,t)

ReturnStation(returnk) = (si)
m
i=1 (6)

where:

∀ si : slots(si, t) > 0 ∧ ∀si, sj, i < j :
wdist(l(si), dk)

slots(si, t)
≤

wdist
(
l
(
sj
)
, dk

)
slots

(
sj, t
)

4.2. Distance Expected Resources

If a recommendation or information system is used by users to select a station to rent
or return a bike, this system could take into account past requests in order to make better
estimations of available bikes at a station in the near future. In particular, if a user uk asks at
time t to rent or return a bike, the system may recommend a station si, and can assume that
the user will take or return a bike there when they arrive, i.e., at time t + wtime(lk, l(si)) or
t + btime(lk, l(si)), respectively. This information can be used to better determine whether
or not there will be available bikes at si if another user requests information. In the same
way, expected returns of bikes can help to predict available slots.

Figure 1 explains this idea in more detail. Suppose that at time t, user uk (at location lk)
asks for a station to rent a bike, and the given option would be station si. At time t, there
are n available bikes at station si, and the system tries to estimate the available bikes at the
moment when uk would actually arrive at si, i.e., at time texp = t + wtime(lk, l(si)). Before
instant t, the system has already recommended station si to other users for either renting
or returning bikes, and assumes that those users will actually follow the recommendations
and, thus, will return or take bikes at their expected arrival times. These actions are reflected

Appl. Sci. 2021, 11, 9654 9 of 25

in Figure 1: at time t1, a bike is expected to be taken; at t2, a bike is expected to be returned,
and so on. Let changes

(
si, t, texp

)
denote the sum of the expected changes in the number of

available bikes at station si in the time interval between the time of issuing a user request
t and the potential arrival of the user at texp. Here, each bike rental in this period counts
as −1, and each bike return counts as +1. In the example, changes

(
si, t, texp

)
would be −1.

We can now estimate the number of bikes or slots expected to be available at the arrival time
texp of user uk by bikes(si, t) + changes

(
si, t, texp

)
and slots(si, t) − changes

(
si, t, texp

)
.

Appl. Sci. 2021, 11, 9654 9 of 25

𝑤𝑡𝑖𝑚𝑒൫𝑙, 𝑙(𝑠)൯ or 𝑡 + 𝑏𝑡𝑖𝑚𝑒൫𝑙, 𝑙(𝑠)൯, respectively. This information can be used to better
determine whether or not there will be available bikes at 𝑠 if another user requests infor-
mation. In the same way, expected returns of bikes can help to predict available slots.

Figure 1 explains this idea in more detail. Suppose that at time 𝑡, user 𝑢 (at location 𝑙) asks for a station to rent a bike, and the given option would be station 𝑠. At time 𝑡,
there are 𝑛 available bikes at station 𝑠, and the system tries to estimate the available bikes
at the moment when 𝑢 would actually arrive at 𝑠, i.e., at time 𝑡௫ = 𝑡 + 𝑤𝑡𝑖𝑚𝑒൫𝑙, 𝑙(𝑠)൯.
Before instant 𝑡, the system has already recommended station 𝑠 to other users for either
renting or returning bikes, and assumes that those users will actually follow the recom-
mendations and, thus, will return or take bikes at their expected arrival times. These ac-
tions are reflected in Figure 1: at time 𝑡ଵ, a bike is expected to be taken; at 𝑡ଶ, a bike is
expected to be returned, and so on. Let 𝑐ℎ𝑎𝑛𝑔𝑒𝑠(𝑠, 𝑡, 𝑡௫) denote the sum of the expected
changes in the number of available bikes at station 𝑠 in the time interval between the time
of issuing a user request 𝑡 and the potential arrival of the user at 𝑡௫. Here, each bike
rental in this period counts as –1, and each bike return counts as +1. In the example, 𝑐ℎ𝑎𝑛𝑔𝑒𝑠൫𝑠, 𝑡, 𝑡௫൯ would be –1. We can now estimate the number of bikes or slots ex-
pected to be available at the arrival time 𝑡௫ of user 𝑢 by 𝑏𝑖𝑘𝑒𝑠(𝑠, 𝑡) +𝑐ℎ𝑎𝑛𝑔𝑒𝑠൫𝑠, 𝑡, 𝑡௫൯ and 𝑠𝑙𝑜𝑡𝑠(𝑠, 𝑡) − 𝑐ℎ𝑎𝑛𝑔𝑒𝑠൫𝑠, 𝑡, 𝑡௫൯.

Figure 1. Example of the evolution of the number of bikes at a station. Values of 𝑐ℎ𝑎𝑛𝑔𝑒𝑠൫𝑠, 𝑡, 𝑡௫൯, 𝑐𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝐵𝑖𝑘𝑒𝑠൫𝑠, 𝑡௫൯, and 𝑐𝑜𝑚𝑚𝑖𝑡𝑒𝑑𝑆𝑙𝑜𝑡𝑠൫𝑠, 𝑡௫൯ are shown.

The system may also take into account the possibility that even if there are some bikes
or slots available when user 𝑢 arrives, some of those may have been already “commit-
ted”, e.g., they have been the basis for recommendations to other users who will eventu-
ally arrive after the expected arrival time of user 𝑢. In Figure 1, this refers to the events
at 𝑡ସ, 𝑡ହ, … 𝑡௫. Such events could be conceived as “implicit reservations”, and the system
could try to “block” a number of bikes or slots for further recommendations. Here, we do
not refer to a real blocking of a bike or slot for future users. Instead, the system would
simply factor in this information when determining recommendations.

The number of “committed” bikes or slots depends on the sequence of expected
events, and corresponds to the worst cases: the maximum and minimum values of 𝑐ℎ𝑎𝑛𝑔𝑒𝑠൫𝑠, 𝑡௫, 𝑡௫൯, the expected changes after the user arrives, up to the last known
event at time 𝑡௫ (or 𝑡௫ = 𝑡௫, if there is none). We denote these two values by: 𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑𝑆𝑙𝑜𝑡𝑠൫𝑠, 𝑡௫൯ = max௧ೣஸ௧ஸ௧ೣ ቀ𝑐ℎ𝑎𝑛𝑔𝑒𝑠൫𝑠, 𝑡௫, 𝑡൯ቁ (7)

and:

Figure 1. Example of the evolution of the number of bikes at a station. Values of changes
(
si, t, texp

)
, commitedBikes

(
si, texp

)
,

and commitedSlots
(
si, texp

)
are shown.

The system may also take into account the possibility that even if there are some bikes
or slots available when user uk arrives, some of those may have been already “committed”,
e.g., they have been the basis for recommendations to other users who will eventually
arrive after the expected arrival time of user uk. In Figure 1, this refers to the events at t4,
t5, . . . tx. Such events could be conceived as “implicit reservations”, and the system could
try to “block” a number of bikes or slots for further recommendations. Here, we do not
refer to a real blocking of a bike or slot for future users. Instead, the system would simply
factor in this information when determining recommendations.

The number of “committed” bikes or slots depends on the sequence of expected
events, and corresponds to the worst cases: the maximum and minimum values of
changes

(
si, texp, tx

)
, the expected changes after the user arrives, up to the last known

event at time tx (or tx = texp, if there is none). We denote these two values by:

committedSlots
(
si, texp

)
= max

texp≤ti≤tx

(
changes

(
si, texp, ti

))
(7)

and:

committedBikes
(
si, texp

)
=

∣∣∣∣ min
texp≤ti≤tx

(
changes

(
si, texp, ti

))∣∣∣∣ (8)

In Figure 1, commitedSlots
(
si, texp

)
= 3 signifies that three extra slots have to be

“reserved” because a sequence of two taken and five returned bikes reaches a peak of 3
before tx. On the other hand, commitedBikes

(
si, texp

)
= 2 indicates that, at some point (in

this case at t5), two extra bikes will be taken from the station.
Taking into account the changes expected to occur at a station si after t and before

the expected arrival of user uk, as well as the “committed” bikes and slots, the estimated

Appl. Sci. 2021, 11, 9654 10 of 25

available bikes and slots at station si for a rental and a return request rentk = 〈lk, t, md〉
and returnk = 〈lk, dk, t〉 are defined as:

estimatedBikes(si, rentk)
= bikes(si, t) + changes

(
si, t, texp

)
− commitedBikes

(
si, texp

) (9)

estimatedSlots(si, returnk)
= slots(si, t) − changes

(
si, t, texp

)
− commitedSlots

(
si, texp

) (10)

where texp is the estimated expected arrival time of user uk at si.
With these definitions, we can define the DistanceExpectedResources strategy as follows:

RentStation(rentk) = (si)
m
i=1 (11)

where:
∀ si : wdist(lk, l(si)) ≤ md ∧ estimatedBikes(si, rentk) > 0 ∧
∀ si, sj, i < j : wdist(lk , l(si))

estimatedBikes(si ,rentk)
≤ wdist(lk , l(sj))

estimatedBikes(sj ,rentk)

ReturnStation(returnk) = (si)
m
i=1 (12)

where:
∀ si : estimatedSlots(si, returnk) > 0 ∧
∀ si, sj, i < j : wdist(l(si), dk))

estimatedSlots(si ,returnk)
≤ wdist(l(sj), dk)

estimatedSlots(sj ,returnk)

4.3. Expected Cost

It seems obvious that a better estimation of the available bikes or slots at the time of a
user’s arrival at a station would prevent unsuccessful rental or return attempts. One way
to achieve this is by estimating the probability distributions of available bikes at a station
at a future instance in time, based on known demand patterns. In the following section, we
describe how demands can be estimated, how we estimate the probabilities of finding an
available bike/slot at a station at any time in the future, and how we use such probabilities
to rank stations increasingly based on cost, combining the probability of finding a bike/slot
and the expected time to reach a station.

Table 2 summarises the symbols and functions introduced in this section.

Table 2. List of symbols and functions used.

Symbols Description

rentDemand(si , ta, tb) Number of expected rent attempts at si between ta and tb
returnDemand(si , ta, tb) Number of expected return attempts at si between ta and tb
πi(t) (Transient) state probability distribution of the number of bikes at station si at time t
πi

j(t) Probability that there are j available bikes at station si at time t
bikeProb(si , rentk) Probability that uk would find an available bike at station si when they arrive
slotProb(si , returnk) Probability that uk would find an available slot at station si when they arrive
λ Average bike arrival rate
µ Average bike rental rate
RentFailCost Cost of getting to a station and finding no available bike
ReturnFailCost Cost of getting to a station and finding no available slot

localRentCost(si, rentk, RentFailCost) Estimated cost for user uk to rent a bike at si, resulting from combining the walking time to
the station and the probability of finding an available bike

localReturnCost(si, returnk, ReturnFailCost)
Estimated cost for user uk to return a bike at si, resulting from combining the cycling time
to the station, walking time to the final destination, and the probability of finding an
available slot

Appl. Sci. 2021, 11, 9654 11 of 25

4.3.1. Demand Estimation

The demand for bike rentals and returns at a given station can be estimated from
historical data and for different time intervals, days, weather conditions, etc. Supposing
that such data are available, we use rentDemand(si, ta, tb) and returnDemand(si, ta, tb) to
reflect the number of expected rental and return attempts at station si during the time
interval between ta and tb (ta < tb). Given sufficient historical data, the calculation of these
values is straightforward and, as such, we omit it here.

4.3.2. Probability Calculation

Using queueing theory, a station for renting bikes can be modelled as an M/M/1/K
queue (see, e.g., [21,31,35]. We consider that bikes arrive at a station and request the
“service” to be rented. The arrival process (e.g., the return of bikes through users) and
the “service” process (e.g., the rental of bikes by users) follow a Poisson distribution. The
number of service channels is 1 and the maximum number of bikes waiting to be rented is K
(the capacity of the station). The M/M/1/K queue is a special case of a birth–death process
and of continuous-time Markov chains with K+1 states. Let λ be the average bike arrival
rate and µ the average bike rental rate; given a station si, let πi(t) denote the (transient)
state probability distribution and πi

j(t) the probability that the system is in state j at time

t—that is, πi
j(t) represents the probability that there are j available bikes at station si at

time t.
The time-dependent behaviour of the probability distribution can be determined by

the system of differential equations (known as the forward Kolmogorov equations):

dπi
0(t)
dt

= −λ πi
0(t) + µ πi

1(t) (13)

dπi
j(t)

dt
= λ πi

j−1(t) + µ πi
j+1(t) − (λ + µ)πi

j(t), for 0 < j < K (14)

dπi
K(t)
dt

= λ πi
K−1(t) − µ πi

K(t) (15)

Given an initial distribution πi(0) with
K
∑

j=0
πi

j(, 0) = 1, the system can be solved,

obtaining the distribution πi(t) at time t. Solving Equation (1) is mathematically complex,
but an acceptable approximation can be found. In particular, in our experimental imple-
mentation, we use the fourth-order Runge–Kutta method for iteratively approximating
solutions of differential equations (given an initial problem defined by dy

dt = f (t, y), and
y(t0) = y0, solutions for y(t0 + ∆t) are approximated by iteratively calculating y(ti + h)
based on y(ti) and ti. Taking small steps h < ∆t, this process is repeated for i steps, until
ti + h is approximately t0 + ∆t. In this case, y(ti + h) approximates y(t0 + ∆t)).

Let rentk = 〈lk, t, md〉 be a user rental request, si a potential station, and
texp = t + wtime(lk, l(si)) the expected arrival time of user uk at station si. Then,
Equations (13)–(15) can be used to calculate the probability that uk would find an available
bike (or slot) at station si when they arrive at time texp. These probabilities are denoted as
bikeProb(si, rentk) and slotProb(si, returnk), respectively.

We define πi(0), the current probability distribution of (available) bikes locked at
station si and the current time t, by:

πi
j(0) =

{
1, i f j = bikes(si, t) + changes

(
si, t, texp

)
0, otherwise

(16)

Note that, similarly to the DistanceExpectedResources strategy defined before, we in-
clude changes in the number of available bikes at the station that are expected to take place

Appl. Sci. 2021, 11, 9654 12 of 25

between t and texp. In particular, we approach such changes as if they had already been
“blocked” at the moment of the user request (t).

Using πi(0) as described above, setting λ = returnDemand
(
si, t, texp

)
and µ =

rentDemand
(
si, t, texp

)
, and solving the system in the sense of Equations (13)–(15), we

can approximate a solution for the probability distribution of available bikes at the time
when the user arrives at the station: πi(texp

)
; meanwhile, πi(texp

)
can be used to calculate

the probability that user uk will find a bike when they arrive at station si (at expected
arrival time texp):

bikeProb(si, rentk) =
c(si)

∑
j=1+committedBikes(si ,texp)

πi
j
(
texp
)

(17)

As defined previously, comittedBikes
(
si, texp

)
represents the maximum number of

bikes that are “committed”, e.g., that should be “blocked” for other users already known
to arrive at station si. Thus, bikeProb(si, rentk) is not just the probability that a given user
uk will find an available bike at a station when they arrive, but the probability of having
enough bikes for the user as well as all other users who have been recommended to rent
a bike at this station and are expected to arrive after user uk. For instance, if there are a
maximum of two “committed” bikes, bikeProb(si, rentk) would be the probability that the
number of available bikes at the expected arrival time texp is three or more.

In a similar way, in the case of a return request returnk, we must estimate the prob-
ability that, at the expected arrival time texp, there is at least one slot available, plus the
maximum required number of “committed” slots for future expected users. Considering
the capacity of a station (c(si)), the probability of having at least 1+ committedSlots

(
si, texp

)
slots is equivalent to having at most c(si) −

(
1 + committedSlots

(
si, texp

))
locked bikes.

Thus, we calculate the return probability by:

slotProb(si, returnk) =
c(si)−(1+committedSlots(si ,texp))

∑
j=0

πi
j
(
texp
)

(18)

4.3.3. Expected Cost Recommendation

We combine distance and bike or slot probabilities to define the (local) rental or return
cost of a station si for a user uk:

localRentCost(si, rentk, RentFailCost)
= wtime(lk, l(si)) + (1− bikeProb(si, rentk))
· RentFailCost

(19)

localReturnCost(si, returnk, ReturnFailCost)
= btime(lk, l(si)) + slotProb(si, returnk) · wtime(l(si), dk)
+ (1− slotProb(si, returnk)) · ReturnFailCost

(20)

RentFailCost and ReturnFailCost are parameters that represent the associated
cost of getting to a station and finding no available bike or slot, respectively.
In order to avoid distortions, in case wtime(l(si), dk) > ReturnFailCost, we set
localReturnCost(si, returnk, ReturnFailCost) = btime(lk, l(si)) + wtime(l(si), dk). It
should also be noted that in the return cost we take into account not only the walking time
from the station to the final destination, but also the cycling time to the selected station.

Using the cost functions, the definition of the ExpectedCost recommendation strategy
simply orders stations by increasing cost:

entStation(rentk) = (si)
m
i=1 (21)

Appl. Sci. 2021, 11, 9654 13 of 25

where:
∀ si : wdist(lk, l(si)) ≤ md ∧
∀ si, sj, i < j : localRentCost(si, rentk, RentFailCost)

≤ localRentCost
(
sj, rentk, RentFailCost

)
ReturnStation(returnk) = (si)

m
i=1 (22)

where:

∀ si, sj, i < j : localReturnCost(si, returnk, ReturnFailCost)
≤ localReturnCost

(
sj, returnk, ReturnFailCost

)
5. Evaluation of User-Centred Recommendation

We used the Bike3S simulation tool [37] to validate the proposed strategies and
compare their performance to the standard strategies. Bike3S is intended to evaluate
different rebalancing strategies. The simulated infrastructure includes the location, capacity,
and available bikes for each station. During a simulation, users are generated and interact
with the infrastructure to rent or return bikes. They may ask a service (strategy) for a
recommendation to choose their target station. Several user models can be defined and
used in the same simulation run. Users’ appearance time, initial location, and destination
are loaded into the simulator. A tool facilitates the creation of this information randomly.
Different strategies can be implemented and easily integrated into Bike3S.

We replicated the operation of the BiciMAD public bike-sharing system in Madrid
(Spain). This system covers an area of approximately 5 × 5 km of central Madrid, and is
continuously growing. Currently it utilises ~200 stations and 2500 bicycles. The capacity of
the stations is between 12 and 30 (most stations have 24 slots).

5.1. Simulation Experiment Setup

There are publicly available data on the usage of the BiciMAD system, in particular:

• Data on the trips: Including, for each trip, the time of taking a bike, origin station, des-
tination station, travel time, and approximate route. However, in order to anonymize
the data, only the day and hour of the pick-up time of each trip are given (without
minutes). Each trip includes a user type, with possible values representing regular or
occasional users, BiciMAD staff, or unidentifiable users;

• Situation of the stations: including the number of available bikes and slots, and
whether or not a station was active.

In order to replicate a real-world scenario, we extracted the user data for a 24-h period
(in particular, from 7:00 on 20 July 2018 to 7:00 on 21 July 2018). That period comprised
12,296 real user trips, whose data were used to generate the artificial users of our simulation.
These data, however, only include the stations where a user took or returned a bike, but
not their origin or destination location. Therefore, and in order to reflect the real situation
as accurately as possible, we generated random origin and destination locations in an area
spanned by a circle of 300 m around the rental station and the return station, respectively.
Finally, the instant of creation of the simulated user was generated randomly within the
hour of their appearance in the real-world data (with a uniform distribution), since the
exact minute and second of appearance were unknown.

For specifying the initial station configuration in the simulated scenario, we used the
official (real) data at the initial time (20 July 2018 at 7:00), at which there were 169 active
stations with a total capacity of 4086 slots and 1792 bikes plugged in. However, since we
wanted to analyse the performance of the different recommendation strategies in rather
critical situations (where it is more likely to have empty and full stations), we reduced the
station capacities and the number of plugged-in bikes at each station to approximately
half of the original values—that is, in our experiments, we used 169 stations with a total
capacity of 1995 slots and 896 bikes.

Appl. Sci. 2021, 11, 9654 14 of 25

Even though the Bike3S tool can simulate the movements of people walking or cycling
on real networks of roads and footpaths (using OpenStreetMap data), in our simulation,
we used straight-line movements on the geographical map. The impact of this choice on
the performance comparison of the analysed strategies was marginal, but it allowed us
to reduce the simulation time considerably. We considered a default walking and cycling
velocity of 1.4 m/s and 4 m/s, respectively [38,39]. However, since we used straight-line
movements, and in order to adjust to more realistic values, we applied a velocity factor
of 0.614. This factor was established based on comparing real and straight-line travel
times between a set of origin/destination locations in Madrid (using OpenStreetMap data).
Thus, the actual applied velocities were 0.8596 m/s for walking and 2.456 m/s for cycling.
These velocities were used to simulate the movements of users; they were also used in the
recommendation strategies to estimate the expected arrival times of users.

Using the specified setup, we carried out experiments to compare the performance of
the five previously defined recommendation strategies:

• ShortestDistance (SD);
• InformedShortestDistance (ISD);
• DistanceResources (DR);
• DistanceExpectedResources (DER);
• ExpectedCost (EC(x,y)), where x = RentFailCost and y = ReturnFailCost.

The user behaviour for renting a bike in the simulations was as follows:

1. A user uk appears at a geographical location lk at time t and asks the recommendation
system for a rental recommendation (with request rentk = 〈lk, t, md〉). The maximum
acceptable distance in the experiments is set to md = 600 m;

2. The recommendation system applies its strategy and returns a ranking of possi-
ble stations;

3. Given the ranking, the user filters out all stations that they have already tried. If
no stations are left, the user will abandon the system without renting a bike. Other-
wise, they walk towards the first station in the list of recommendations in order to
rent a bike;

4. In case the user gets to a station and there are no available bikes, they repeat the
whole process until they either abandon the search or finally find a bike. In this case,
the value of the maximum acceptable distance (md) is reduced by the distance the
user has walked already.

With this behaviour, a user will effectively abandon the system if they do not find any
bikes within md = 600 m.

For finding a return station, the process is as follows:

1. In the moment a user uk has rented a bike at a station si, they issue a return request
returnk = 〈lk, t, ld〉, where lk and t are the current position and time, and ld is their
final destination location;

2. The recommendation system returns a ranking of stations for returning the bike;
3. Given the ranking, the user filters out any stations that they have already tried, and

selects the first remaining station for returning the bike;
4. In case the user gets to a station and there are no available slots, they repeat the whole

process until they finally find a station to leave the bike (there is no possibility to
abandon the attempt).

5.2. Simulation Results

The main aim of the recommendation strategies is to allow an efficient usage of a BSS
in terms of the time the users spend to go from their origin location to their destination, as
well as the unsuccessful rental and return attempts.

Table 3 compares the performance of the different user-centred recommendation
strategies. The measurements we present are the following:

Appl. Sci. 2021, 11, 9654 15 of 25

• #a: number of users who dropped out (abandoned) the system, and percentage with
regards to users that finished;

• #fh: number of failed user rental attempts and percentage over all user rental attempts;
• #fr: number of failed user return attempts and percentage over all user return attempts;
• tt: average total time of users in the system; this is based on the time a user requires to

go from their origin to a bike rental station, to cycle from there to a station to return
the bike and, finally, to walk to their final destination. The value is averaged over all
users who were able to rent a bike (i.e., who did not abandon the attempt);

• AET: average station empty time; this is the time for which a station has been empty
(without available bikes) and, thus, would potentially have been denying service. The
value is the average over all 169 stations for the whole simulation period.

Table 3. Experimental results for Madrid. Bold numbers indicate the best obtained result for
each metric.

Strategy #a/% #fh/% #fr/% tt (min) AET (min)

OPTIMUM 0 0 0 19.21

SD 1573/12.85 1834/14.67 5148/32.6 22.47 378.4

ISD 895/7.3 415/3.53 1965/14.7 21.86 398.1

DR 461/3.76 126/1.06 225/1.9 21.54 201.9

DER 243/1.98 0/0 0/0 21.62 189.7

EC (1000/2000) 428/3.49 72/0.6 269/2.2 21.12 362.7

EC (3000/2000) 367/2.99 13/0.11 183/1.5 21.24 309.0

EC (70000/2000) 240/1.96 3/0.02 260/2.1 21.6 197.5

EC (106/106) 148/1.21 1/0.01 0/0 23.21 75.7

The first row of Table 3 specifies a hypothetical optimal situation, where every user can
obtain a bike at the station closest to their origin and return it at the station closest to their
destination (i.e., the station capacities for rental and return are assumed to be unlimited).
In this case, the average travel time would be 19.21 min. This travel time can obviously not
be obtained in a real scenario.

Analysing the standard strategies (the first four strategies in Table 3), there are differ-
ent conclusions:

SD has the worst behaviour. Here, users go to the closest station, and many users will
abandon their search because there are no bikes available. Furthermore, the travel time is
quite high, because after an unsuccessful rental or return attempt, users may try at other
stations and, thus, increase the time that they spend in the system. In comparison, ISD has
a much better performance, because the probability of finding an available bike or slot is
much higher if a user only goes to the stations that have available resources at the moment
of the recommendation request.

DR combines the distance and availability of resources. In this way, it obtains a better
dropout rate and, at the same time, a shorter travel time than SD and ISD. It should also
be noted that, here, users would slightly prefer to rent/return bikes where there are more
bikes or slots (within closed stations). This means, here, users implicitly improve the
distribution of the bikes (and slots) among the stations. This can be seen in the reduction of
the average empty time of stations.

The DistanceExpectedResources strategy (DER) clearly outperforms the standard strate-
gies. Compared to DR, DER not only includes the bikes/slots in the analysis of appropriate
stations that are available at the precise moment when a user issues a recommendation
request, but also the expected changes up to the expected arrival of the user. In this case,
the dropout rate can be reduced from 3.76% to 1.98%, whereas the average travel time
remains nearly the same (21.62 versus 21.54 min). It should be noted that, with DER, the
failed rental and return attempts are both 0. This is because with the specified experimental
setting, the estimation of available bikes/slots is exact because (1) users always go to

Appl. Sci. 2021, 11, 9654 16 of 25

the recommended stations, and (2) the estimated travel time of users is the same as their
actual travel time. In a real scenario, the benefit of DER with respect to DR should be
somewhat smaller.

The last four rows in Table 3 correspond to different instances of the ExpectedCost
strategy (EC), which prioritises stations with a lower cost, calculated based on travel time
and the (demand-dependent) probability of finding a bike/slot at the expected time of
arrival of the user. This strategy’s performance varies for different values of RentFailCost
and ReturnFailCost. In general, higher penalizations produce a lower abandonment
rate, but increase the travel time. With RentFailCost = ReturnFailCost = 1,000,000,
for example, the abandonment rate is reduced to 1.21%, but the travel time increases
to 23.21 min, which is considerable. A rather high value for RentFailCost and low value
for ReturnFailCost obtains a good compromise. In this sense, for RentFailCost = 70,000
and ReturnFailCost = 2000, both dropout rate and travel time can be slightly reduced with
regard to DER. With rather low penalizations, the abandonment rate is higher, but the
travel time can be reduced, as with EC (1000,2000).

In Figures 2–4, we analyse the behaviour of EC with varying values for RentFailCost
and ReturnFailCost.

As shown in Figure 2, the abandonment rate decreases with increasing ReturnFailCost,
and the travel time decreases up to a value of ~2000, and then increases. At higher
values, both travel time and abandonment rate become almost stable. The lowest travel
time is obtained with a value of ~2000. Exactly the same behaviour is observed for
other values of RentFailCost. We also observed in our experiments that, as the value of
ReturnFailCost increases, the number of failed returns (#fr) falls rapidly towards ~0 at the
value of ReturnFailCost = 4000 (for the sake of clarity, this is not shown in the figure).

Appl. Sci. 2021, 11, 9654 16 of 25

remains nearly the same (21.62 versus 21.54 min). It should be noted that, with DER, the
failed rental and return attempts are both 0. This is because with the specified experi-
mental setting, the estimation of available bikes/slots is exact because (1) users always go
to the recommended stations, and (2) the estimated travel time of users is the same as their
actual travel time. In a real scenario, the benefit of DER with respect to DR should be
somewhat smaller.

The last four rows in Table 3 correspond to different instances of the ExpectedCost
strategy (EC), which prioritises stations with a lower cost, calculated based on travel time
and the (demand-dependent) probability of finding a bike/slot at the expected time of ar-
rival of the user. This strategy’s performance varies for different values of 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡
and 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡. In general, higher penalizations produce a lower abandonment rate,
but increase the travel time. With 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 1000000, for exam-
ple, the abandonment rate is reduced to 1.21%, but the travel time increases to 23.21 min,
which is considerable. A rather high value for 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 and low value for 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 obtains a good compromise. In this sense, for 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 70000 and 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 2000, both dropout rate and travel time can be slightly reduced with
regard to DER. With rather low penalizations, the abandonment rate is higher, but the
travel time can be reduced, as with EC (1000,2000).

In Figures 2–4, we analyse the behaviour of EC with varying values for 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡
and 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡.

As shown in Figure 2, the abandonment rate decreases with increasing 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡, and the travel time decreases up to a value of ~2000, and then increases.
At higher values, both travel time and abandonment rate become almost stable. The low-
est travel time is obtained with a value of ~2000. Exactly the same behaviour is observed
for other values of 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡. We also observed in our experiments that, as the value
of 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 increases, the number of failed returns (#fr) falls rapidly towards ~0 at
the value of 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 4000 (for the sake of clarity, this is not shown in the figure).

Figure 2. ExpectedCost strategy with fixed RentFailCost = 50,000 and varying ReturnFailCost.

In Figure 3, we show a fixed value of 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 2000 (the value that gener-
ally obtains the lowest travel time for different values of 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡), and we increase 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡. As can be seen, higher values of 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 produce lower abandonment
rates and fewer failed rental attempts, but lead to increased travel times. It seems that the
values remain almost stable at a certain point.

21

21.2

21.4

21.6

21.8

22

22.2

22.4

0

50

100

150

200

250

300

100
0

200
0

400
0

600
0

800
0

100
00

200
00

300
00

400
00

500
00

600
00

700
00

800
00

900
00

100
00

0

120
00

0

min# users

ReturnFailCost

ExpectedCost strategy

#a #fh tt(min)

Figure 2. ExpectedCost strategy with fixed RentFailCost = 50,000 and varying ReturnFailCost.

In Figure 3, we show a fixed value of ReturnFailCost = 2000 (the value that gener-
ally obtains the lowest travel time for different values of RentFailCost), and we increase
RentFailCost. As can be seen, higher values of RentFailCost produce lower abandonment
rates and fewer failed rental attempts, but lead to increased travel times. It seems that the
values remain almost stable at a certain point.

Appl. Sci. 2021, 11, 9654 17 of 25
Appl. Sci. 2021, 11, 9654 17 of 25

Figure 3. ExpectedCost strategy with variable RentFailCost and fixed ReturnFailCost = 2000.

If we increase 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 and 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 at the same time, as shown in Fig-
ure 4, the abandonment rate reduces continuously and considerably, but at the cost of an
increase in travel time. The failed rental attempts tend towards 0.

Figure 4. ExpectedCost strategy with increasing equal values of RentFailCost and fixed Return-
FailCost.

Comparing the ExpectedCost strategy with DistanceExpectedResources, the former can
be parametrised in order to prioritise abandonment rate or travel time. However, it is in-
teresting to observe that for the same ratio of travel time, both methods obtain almost the
same dropout rate, and vice versa. In other words, the rather simple DER strategy per-
forms as well as the much more sophisticated EC strategy. In our opinion, the explanation
of this fact is that the DER strategy not only proposes an appropriate station to rent or
return a bike in terms of the utility for an individual user, but also encourages users to
take or return bikes at stations with more bikes/slots. In this way, the strategy implicitly
improves the unbalancing problem, helping to obtain a better distribution of bikes (and
slots) and, thus, to reduce the abandonment rate and the travel time of potential future
users.

20.6

20.8

21

21.2

21.4

21.6

21.8

22

0
50

100
150
200
250
300
350
400
450

10
00

20
00

30
00

40
00

50
00

60
00

80
00

10
000

20
000

30
000

40
000

50
000

60
000

70
000

80
000

10
000

0

20
000

0

40
000

0

60
000

0

80
000

0

10
000

00

min# users

RentFailCost

ExpectedCost strategy

#a #fh tt(min)

20

20.5

21

21.5

22

22.5

23

23.5

0

50

100

150

200

250

300

350

400

450

500

10
00

20
00

30
00

40
00

50
00

60
00

80
00

10
000

20
000

30
000

40
000

50
000

60
000

70
000

80
000

10
000

0

15
000

0

20
000

0

40
000

0

60
000

0

80
000

0

10
000

00

min# users

RentFailCost = ReturnFailCost

ExpectedCost strategy

#a #fh tt (min)

Figure 3. ExpectedCost strategy with variable RentFailCost and fixed ReturnFailCost = 2000.

If we increase RentFailCost and ReturnFailCost at the same time, as shown in Figure 4,
the abandonment rate reduces continuously and considerably, but at the cost of an increase
in travel time. The failed rental attempts tend towards 0.

Appl. Sci. 2021, 11, 9654 17 of 25

Figure 3. ExpectedCost strategy with variable RentFailCost and fixed ReturnFailCost = 2000.

If we increase 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 and 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 at the same time, as shown in Fig-
ure 4, the abandonment rate reduces continuously and considerably, but at the cost of an
increase in travel time. The failed rental attempts tend towards 0.

Figure 4. ExpectedCost strategy with increasing equal values of RentFailCost and fixed Return-
FailCost.

Comparing the ExpectedCost strategy with DistanceExpectedResources, the former can
be parametrised in order to prioritise abandonment rate or travel time. However, it is in-
teresting to observe that for the same ratio of travel time, both methods obtain almost the
same dropout rate, and vice versa. In other words, the rather simple DER strategy per-
forms as well as the much more sophisticated EC strategy. In our opinion, the explanation
of this fact is that the DER strategy not only proposes an appropriate station to rent or
return a bike in terms of the utility for an individual user, but also encourages users to
take or return bikes at stations with more bikes/slots. In this way, the strategy implicitly
improves the unbalancing problem, helping to obtain a better distribution of bikes (and
slots) and, thus, to reduce the abandonment rate and the travel time of potential future
users.

20.6

20.8

21

21.2

21.4

21.6

21.8

22

0
50

100
150
200
250
300
350
400
450

10
00

20
00

30
00

40
00

50
00

60
00

80
00

10
000

20
000

30
000

40
000

50
000

60
000

70
000

80
000

10
000

0

20
000

0

40
000

0

60
000

0

80
000

0

10
000

00

min# users

RentFailCost

ExpectedCost strategy

#a #fh tt(min)

20

20.5

21

21.5

22

22.5

23

23.5

0

50

100

150

200

250

300

350

400

450

500

10
00

20
00

30
00

40
00

50
00

60
00

80
00

10
000

20
000

30
000

40
000

50
000

60
000

70
000

80
000

10
000

0

15
000

0

20
000

0

40
000

0

60
000

0

80
000

0

10
000

00

min# users

RentFailCost = ReturnFailCost

ExpectedCost strategy

#a #fh tt (min)

Figure 4. ExpectedCost strategy with increasing equal values of RentFailCost and fixed ReturnFailCost.

Comparing the ExpectedCost strategy with DistanceExpectedResources, the former can
be parametrised in order to prioritise abandonment rate or travel time. However, it is
interesting to observe that for the same ratio of travel time, both methods obtain almost the
same dropout rate, and vice versa. In other words, the rather simple DER strategy performs
as well as the much more sophisticated EC strategy. In our opinion, the explanation of
this fact is that the DER strategy not only proposes an appropriate station to rent or return
a bike in terms of the utility for an individual user, but also encourages users to take or
return bikes at stations with more bikes/slots. In this way, the strategy implicitly improves
the unbalancing problem, helping to obtain a better distribution of bikes (and slots) and,
thus, to reduce the abandonment rate and the travel time of potential future users.

Appl. Sci. 2021, 11, 9654 18 of 25

6. Recommendation Based on Local and Global Utility

As argued previously, the DER strategy with a rather simple calculation model has a
quite acceptable performance, because it combines the local utility of a recommendation for
a user with a certain improvement of the global situation for the future. In this section, we
use this idea to extend the ExpectedCost strategy in the same sense. The idea is to account
not only for the cost of a station for a certain user, but also for the changes in the costs to
potential future users, if they decide to take (or return) a bike at given station. In particular,
taking into account the future demand of bikes or slots at a station, we estimate how taking
or returning a bike will increase or decrease the number of expected unsuccessful rental
and return attempts of future users at a station within a certain timeframe.

6.1. Calculating the Future Impact of Rentals and Returns

To estimate the impact that a bike rental or return has globally on system performance,
we analysed how such an event would change the number of expected unsuccessful rental
and return attempts of future users—that is, the impact can be measured through the
difference in expected unsuccessful events during a given time interval [ta, tb], if a bike
is taken (or returned) at the beginning of this time interval. Moreover, given a station
si and the expected rental rate during the interval [ta, tb] (obtained by analysing historical
demands, for example), the number of expected unsuccessful rental attempts is the number
of all rental attempts multiplied by the probability that such attempts fail. We formalize
this idea below.

Modelling a station si as a queue, the average probability of the station being in state
0—that is, having no available bikes—during a time interval [ta, tb] with tb > ta is given by:

πi
0(ta → tb) =

1
tb − ta

∫ tb

ta
πi

0(w)dw (23)

Based on the system of differential Equations (13)–(15), and given the initial
probability distribution πi(ta) and a step-size h with (tb − ta) > h > 0, we can
use the fourth-order Runge–Kutta method (RK4) to estimate πi

0(ta → tb).
Let

(
πi

0(ta), πi
0(ta + h), πi

0(ta + 2h), . . . , πi
0(ta + kh)

)
, where ta + kh = tb, denote the se-

quence of iteratively calculated values for πi
0(t) from t = ta to tb at steps h with RK4. Then,

we can use a Riemann sum to approximate πi
0(ta → tb):

πi
0(ta → tb) =

1
tb − ta

k−1

∑
j=0

h
πi

0(ta + jh) + πi
0(ta + (j + 1)h)

2
(24)

Finally, given the rental appearance rate for a station si in the interval [ta, tb],
rentDemand(si, ta, tb), the expected number of failed rental attempts in the interval is
estimated by:

eh f (si, ta, tb) = πi
0(ta → tb) · rentDemand(si, ta, tb) (25)

In a similar way, we can calculate the expected failed return attempts for a station si in
an interval [ta, tb]:

er f (si, ta, tb) = πi
c(si)

(ta → tb) · returnDemand(si, ta, tb) (26)

where c(si) is the capacity of station si.
If a user uk issues a rental request rentk = 〈lk, t, md〉, we use eh f and er f to esti-

mate the future impact that a potential rental would have at a station si. The idea is to
first calculate the probability distribution of available bikes when the user arrives at the
station. Afterwards, we analyse the expected rental and return failures that would arise
after the arrival and during a given timeframe (t f) if the user rented out a bike and if
they did not do so. The difference between these values can be used as a measure for
estimating the future impact of renting a bike at a station. Formally, we first calculate the

Appl. Sci. 2021, 11, 9654 19 of 25

probability distribution of bike availability at the expected arrival time of user uk : πi(texp
)
,

with texp = t + wtime(lk, l(si)), as explained in Section 4. Using πi(texp
)

as the initial
distribution, and applying Equations (24)–(26), we can calculate eh f

(
si, texp, texp + t f

)
and

er f
(
si, texp, texp + t f

)
. Then, we transform from πi(texp

)
to a distribution πi,rent(texp

)
,

where one bike is “taken” away. This means:

πi,rent
0

(
texp
)
= πi

0
(
texp
)
+ πi

1
(
texp
)

(27)

πi,rent
k

(
texp
)
= πi

k+1
(
texp
)
, for c(si) > k > 0 (28)

πi,rent
k

(
texp
)
= 0, for k = c(si) (29)

Now, taking πi,rent(texp
)

as the initial distribution, we calculate eh f rent(si, texp, texp + t f
)

and er f rent(si, texp, texp + t f
)
. Finally, we can obtain the rental failure impact (eh f Imrent)

and return failure impact (er f Imrent) of the potential rental:

eh f Imrent(uk, si, t f) = eh f rent(si, texp, texp + t f
)
− eh f

(
si, texp, texp + t f

)
(30)

er f Imrent(uk, si, t f) = er f rent(si, texp, texp + t f
)
− er f

(
si, texp, texp + t f

)
(31)

It should be noted that eh f rent(si, texp, texp + t f
)
≥ eh f

(
si, texp, texp + t f

)
, because

the expected rental failure rate is necessarily higher if a bike is taken from a station; thus,
eh f Imrent(uk, si, t f) would be positive. On the other hand, er f Imrent(uk, si, t f) ≤ 0, since
the number of available slots increases if a bike is taken from the station. Thus, the values
of eh f Imrent(uk, si, t f) and er f Imrent(uk, si, t f) represent the expectation of failed rental and
return attempts that are caused by user uk when they take a bike at station si.

In a similar way—but transforming πi(texp
)

to a distribution πi,return(texp
)
, where

one bike is “added”—we can calculate the expected failed rental and return attempts that
are caused if user uk returns a bike at station si:

eh f Imreturn(uk, si, t f) = eh f return(si, texp, texp + t f
)
− eh f

(
si, texp, texp + t f

)
(32)

er f Imreturn(uk, si, t f) = er f return(si, texp, texp + t f
)
− er f

(
si, texp, texp + t f

)
(33)

6.2. Recommendation Based on Expected Cost and Future Impact

We calculate the global cost of renting at a station by combing its local cost with the
impact on the overall system in the next given timeframe:

globalRentCost(si, rentk, t f , RentFailCost, FRentFC, FReturnFC) =
localRentCost(si, rentk, RentFailCost) + f ·bikeProb(si, rentk) ·
(eh f Imrent(uk, si, t f) · rentCost(si, lk, t f , FRentFC) +

er f Imrent(uk, si, t f) · returnCost(si, lk, t f , FReturnFC))

(34)

globalReturnCost(si , returnk , t f , ReturnFailCost, FRentFC, FReturnFC) =
localReturnCost(si , returnk , ReturnFailCost) +

f ·slotProb(si , returnk) · (eh f Imreturn(uk , si , t f) · rentCost(si , lk , t f , FRentFC) + er f Imreturn(uk , si , t f) · returnCost(si , lk , t f , FReturnFC))
(35)

f is a parameter that assigns more or less importance to the local cost versus the
global impact. rentCost and returnCost represent the cost associated with the number of
extra future rental and return failures, respectively. This cost should depend on whether
a potential user who arrives at a station and fails to rent or to return a bike has some
alternative to rent or return a bike at a station nearby. With this idea, we define:

rentCost(si, lk, t f , FRentFC) = min
sjεS ∧wdist(si ,sj)≤MD

localRentCost
(
sj, < l(si), t′, MD, >, FRentFC

)
FRentFC, i f ¬∃sjεS : wdist

(
si, sj

)
≤ MD

(36)

Appl. Sci. 2021, 11, 9654 20 of 25

returnCost(si, lk, t f , FReturnFC) = min
sjεS ∧bdist(si ,sj)≤MD

localReturnCost
(
sj,< l(si), t′′ , MD > , FReturnFC

)
FReturnFC, i f ¬∃sjεS : bdist

(
si, sj

)
≤ MD

(37)

where t′ = t + wtime(lk, l(si)) + t f /2 and t′′ = t + btime(lk, l(si)) + t f /2. This means
that rentCost is the lowest local cost of stations in the vicinity of station si (within a distance
of MD meters), and taking the parameter FRentFC as the penalization cost. In the worst
case—e.g., when no station exists within a distance of MD meters from si—the value
of rentCost will be FRentFC. In the same way, returnCost will be at most FReturnFC.
Note that the local costs for users who would arrive at station si are appproximated by
considering they arrive at mid timeframe after the arrival of user uk.

Based on the global costs, we define the recommendation strategy ExpectedCostFu-
tureImpact:

RentStation(rentk) = (si)
m
i=1 (38)

where:

∀ si : wdist(lk, l(si)) ≤ md ∧
∀ si, sj, i < j :
globalRentCost(si, rentk, t f , RentFailCost, FRentFC, FReturnFC) ≤
globalRentCost

(
sj, rentk, t f , RentFailCost, FRentFC, FReturnFC

)
ReturnStation(returnk) = (si)

m
i=1 , (39)

where:

∀ si, sj, i < j :
globalReturnCost(si, returnk, t f , ReturnFailCost, FRentFC, FReturnFC) ≤
globalReturnCost

(
sj, returnk, t f , ReturnFailCost, FRentFC, FReturnFC

)
In summary, the parameters of this strategy are:

• md—the maximum distance to rental stations;
• RentFailCost and ReturnFailCost—the penalization costs applied if a user is unsuc-

cessful when trying to rent or return a bike;
• t f —the timeframe for predicting the future impact of a rental or return action;
• FRentFC and FReturnFC—the penalization costs applied when estimating the costs

of local alternative stations for users who cannot find a bike or slot at station si in the
future;

• MD—the maximum distance to consider alternative stations for users who cannot
find a bike or slot at station si;

• f —the factor applied to the global impact on the cost estimation.

7. Evaluation of ExpectedCostFutureImpact Recommendation

We used the same settings as in Section 5 to evaluate the ExpectedCostFutureImpact
strategy. In the experiments, we fixed the following parameters: the values of md = 600 m,
as a reasonable distance that a user might be willing to walk to get a bike, and MD = 500 m.

In the first set of experiments, we analysed this approach with different penalization
costs, where the timeframe t f was set to 1 h and the factor f = 1. Some results are presented
in Table 4.

Appl. Sci. 2021, 11, 9654 21 of 25

Table 4. Experimental results for Madrid. Bold numbers indicate the best obtained result for each
metric.

RentFailCost/ReturnFailCost
/FutRentFailCost

/FutReturnFailCost
#a #fh #fr tt (min) AET (min)

1000/2000/1000/2000 193 71 87 21.04 223.3

3000/2500/3000/1000 15 2 20 21.63 128.0

3000/2000/3000/2000 29 3 83 21.70 132.5

70,000/2000/70,000/2000 27 0 734 29.25 24.22

1,000,000/1,000,000/1,000,000/1,000,000 22 0 209 40.61 18.13

100,000/100,000/100,000/100,000 10 0 162 28.99 11.67

50,000/50,000/50,000/50,000 14 0 124 27.08 13.11

10,000/10,000/10,000/10,000 20 1 15 23.27 40.79

5000/5000/5000/5000 22 1 1 22.37 83.30

3000/3000/3000/3000 35 1 6 21.80 127.9

Analysing the results presented in the table, we can observe that, in general, higher
penalization costs lead to lower dropout rates but longer travel times, whereas lower costs
have the opposite effect: more abandonments and shorter travel times. A good combination
of both metrics can be obtained with values close to the following: RentFailCost= 3000,
ReturnFailCost = 2500, FutRentFailCost = 3000, and FutReturnFailCost = 1000. In particu-
lar, the abandonment rate can be reduced considerably if a recommendation considers not
only the local cost for a user (to rent or return a bike), but also the impact on potential users
in the future. For example, the strategy with the penalization schema 3000/2500/3000/1000,
as compared to EC (70,000/2000), reduces the number of abandonments from 240 to 15 by
maintaining the same travel time (21.6 min). In Section 5, the EC (70,000/2000) strategy
showed a good behaviour in terms of abandonment rate and low travel time.

Using the penalization cost pattern 3000/2500/3000/1000, and fixing the factor f = 1,
in Figure 5 we analyse the influence of the prediction timeframe in the results.

Appl. Sci. 2021, 11, 9654 21 of 25

Table 4. Experimental results for Madrid. Bold numbers indicate the best obtained result for each
metric.

RentFailCost/Return-
FailCost/FutRentFailCost/FutReturn-

FailCost
#a #fh #fr tt (min) AET (min)

1000/2000/1000/2000 193 71 87 21.04 223.3
3000/2500/3000/1000 15 2 20 21.63 128.0
3000/2000/3000/2000 29 3 83 21.70 132.5

70,000/2000/70,000/2000 27 0 734 29.25 24.22
1,000,000/1,000,000/1,000,000/1,000,000 22 0 209 40.61 18.13

100,000/100,000/100,000/100,000 10 0 162 28.99 11.67
50,000/50,000/50,000/50,000 14 0 124 27.08 13.11
10,000/10,000/10,000/10,000 20 1 15 23.27 40.79

5000/5000/5000/5000 22 1 1 22.37 83.30
3000/3000/3000/3000 35 1 6 21.80 127.9

Analysing the results presented in the table, we can observe that, in general, higher
penalization costs lead to lower dropout rates but longer travel times, whereas lower costs
have the opposite effect: more abandonments and shorter travel times. A good combina-
tion of both metrics can be obtained with values close to the following: 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡=
3000, 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 2500, 𝐹𝑢𝑡𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 3000, and 𝐹𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 1000. In
particular, the abandonment rate can be reduced considerably if a recommendation con-
siders not only the local cost for a user (to rent or return a bike), but also the impact on
potential users in the future. For example, the strategy with the penalization schema
3000/2500/3000/1000, as compared to EC (70,000/2000), reduces the number of abandon-
ments from 240 to 15 by maintaining the same travel time (21.6 min). In Section 5, the EC
(70,000/2000) strategy showed a good behaviour in terms of abandonment rate and low
travel time.

Using the penalization cost pattern 3000/2500/3000/1000, and fixing the factor 𝑓 = 1,
in Figure 5 we analyse the influence of the prediction timeframe in the results.

Figure 5. Impact of different prediction timeframes on the behaviour of ExpectedCostFutureIm-
pact (with 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 3000, 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 2500, 𝐹𝑢𝑡𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 3000, 𝐹𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 1000, and 𝑓 = 1).

Figure 5 indicates that, as expected, short prediction timeframes present higher aban-
donment rates but faster travel times. It is more likely that future users will not find an
available bike or slot, but users are sent to “closer” stations since the considered future
impact will be lower. At some point, the values for dropout rate and travel time tend to

21.35

21.4

21.45

21.5

21.55

21.6

21.65

21.7

0
20
40
60
80

100
120
140
160
180
200

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

min# users

minutes

ECFI Impact by timeframe

#a tt(min)

Figure 5. Impact of different prediction timeframes on the behaviour of ExpectedCost-
FutureImpact (with RentFailCost = 3000, ReturnFailCost = 2500, FutRentFailCost = 3000,
FutReturnFailCost = 1000, and f = 1).

Figure 5 indicates that, as expected, short prediction timeframes present higher aban-
donment rates but faster travel times. It is more likely that future users will not find an
available bike or slot, but users are sent to “closer” stations since the considered future
impact will be lower. At some point, the values for dropout rate and travel time tend to

Appl. Sci. 2021, 11, 9654 22 of 25

stabilize, and even increase slightly. Good results are obtained with a prediction timeframe
of ~20 min.

The best way to prioritise between average travel time and abandonment rate is via
the factor f . In Figure 6, we show different results obtained when varying f . Low values
for f decrease travel time, but lead to more abandonments. A good compromise is obtained
with f around 1.

Appl. Sci. 2021, 11, 9654 22 of 25

stabilize, and even increase slightly. Good results are obtained with a prediction
timeframe of ~20 min.

The best way to prioritise between average travel time and abandonment rate is via
the factor 𝑓. In Figure 6, we show different results obtained when varying 𝑓. Low values
for 𝑓 decrease travel time, but lead to more abandonments. A good compromise is ob-
tained with 𝑓 around 1.

Figure 6. Impact of different factors 𝑓 with ExpectedCostFutureImpact (with 𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 3000, 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 2500, 𝐹𝑢𝑡𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 3000, 𝐹𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 1000, and 𝑡𝑓 = 60 min).

As we mentioned in Section 5, the experiments in this paper are based on real data,
but we reduced the station capacities and the overall number of bikes in the system to
approximately half of their original values. The reason for this was that such a situation is
more challenging and, thus, the differences in the recommendation strategies are more
appreciable. In Table 5, however, we present and compare the standard strategies with
the best variations of the ExpectedCost and the ExpectedCostFutureImpact strategies, in a
scenario with the original (real) station capacities and bike numbers. As expected, all strat-
egies significantly improved their performance with real station capacities. As shown, the
novel strategy ExpectedCostFutureImpact proposed in this paper also performs better than
the other strategies in this situation, in terms of both abandonment rate and travel time.

Table 5. Comparison of strategies with real station capacities and number of bikes.

Strategy #a #fh #fr tt (min) AET (min)
OPTIMUM 0 0 0 19.21

SD 262 697 1613 20.22 143.75
ISD 115 90 437 19.85 145.75
AR 24 0 17 27.99 3.98
DR 38 7 18 20.01 37.55

DER 18 0 0 20.01 32.87
EC (3000/2000) 41 0 1 19.52 87.89

ECFI (𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 3000, 𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 2500, 𝐹𝑢𝑡𝑅𝑒𝑛𝑡𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 3000, 𝐹𝑢𝑡𝑅𝑒𝑡𝑢𝑟𝑛𝐹𝑎𝑖𝑙𝐶𝑜𝑠𝑡 = 1000, 𝑡𝑓 = 60 min
and 𝑓 = 1)

6 0 0 19.55 31.46

8. Conclusions
Bike-sharing systems are becoming an integral part of intelligent transportation in-

frastructure in smart cities. Station-based BSSs have the advantage of being more resilient
with regards to misuse and vandalism, and also account for seamless charging if the BSS
fleet contains electric bicycles. A typical problem in station-based BSSs is the possibility

20

20.5

21

21.5

22

22.5

23

0

50

100

150

200

250

300

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

min# users

f

ECFI Impact by f

#a tt(min)

Figure 6. Impact of different factors f with ExpectedCostFutureImpact (with RentFailCost = 3000,
ReturnFailCost = 2500, FutRentFailCost = 3000, FutReturnFailCost = 1000, and t f = 60 min).

As we mentioned in Section 5, the experiments in this paper are based on real data,
but we reduced the station capacities and the overall number of bikes in the system to
approximately half of their original values. The reason for this was that such a situation
is more challenging and, thus, the differences in the recommendation strategies are more
appreciable. In Table 5, however, we present and compare the standard strategies with the
best variations of the ExpectedCost and the ExpectedCostFutureImpact strategies, in a scenario
with the original (real) station capacities and bike numbers. As expected, all strategies
significantly improved their performance with real station capacities. As shown, the novel
strategy ExpectedCostFutureImpact proposed in this paper also performs better than the
other strategies in this situation, in terms of both abandonment rate and travel time.

Table 5. Comparison of strategies with real station capacities and number of bikes.

Strategy #a #fh #fr tt (min) AET
(min)

OPTIMUM 0 0 0 19.21

SD 262 697 1613 20.22 143.75

ISD 115 90 437 19.85 145.75

AR 24 0 17 27.99 3.98

DR 38 7 18 20.01 37.55

DER 18 0 0 20.01 32.87

EC (3000/2000) 41 0 1 19.52 87.89

ECFI (RentFailCost = 3000, ReturnFailCost = 2500,
FutRentFailCost = 3000, FutReturnFailCost =

1000, t f = 60 min and f = 1
6 0 0 19.55 31.46

8. Conclusions

Bike-sharing systems are becoming an integral part of intelligent transportation infras-
tructure in smart cities. Station-based BSSs have the advantage of being more resilient with
regards to misuse and vandalism, and also account for seamless charging if the BSS fleet
contains electric bicycles. A typical problem in station-based BSSs is the possibility that

Appl. Sci. 2021, 11, 9654 23 of 25

some stations may run out of available resources due to high and unbalanced demands at
peak times. However, if no bikes are available near their location, or if finding an available
parking slot at the destination is difficult, users may drop out of the BSS and use other, less
eco-friendly means of transportation.

In this paper, we addressed the balancing problem in BSSs by developing recommen-
dation strategies that help users to select a station to rent or return a bike, considering the
distance/time to that station as well as the likelihood that they will find a bike/slot when
they actually arrive at the station.

Our contribution is twofold: In the first part of the paper, we presented and analysed
station selection (or recommendation) strategies that are user-centred—that is, they try
to find the best station considering only the utility or expected cost of a specific user. We
presented the DistanceExpectedResources strategy, which assumes that recent recommen-
dations are being followed by users and, thus, can better estimate the resources that are
expected to be available at the moment when a user actually arrives at a certain station.
We also presented the ExpectedCost strategy, which minimizes a user’s cost, combining the
distance from their origin (or destination) to the location of candidate stations, and the
probability of finding an available bike (or empty slot) when they arrive. This strategy
models stations as queues and uses demand data to estimate the probability of finding
available bikes or slots. We compared the performance of the presented strategies through
simulation experiments with real data from the BiciMAD BSS in Madrid. Both methods
outperform baseline station selection strategies such as “going to the closest” or “going to
the closest station with available bikes/slots”, in terms of both (1) the number of users who
abandon the system without renting a bike, and (2) the total time in the system.

In the second part of the paper, we proposed a station recommendation strategy that
seeks an equilibrium between local (user-centred) and global utility. With regard to the latter,
recommendations prioritise stations that are good for a particular user, but also imply some
positive impact on the distribution of bikes and slots in the overall system, and for potential
future users. In particular, we defined the ExpectedCostFutureImpact strategy, which extends
the ExpectedCost approach by also analysing the impact that choosing a particular station
will have on future rentals and returns. In the simulation experiments, this solution
outperformed all other strategies, with respect to both the number of abandonments and
total travel time.

In future works, we aim to look into explicit (e.g., monetary) incentive mechanisms
so as to persuade individually rational users to follow our recommendations while main-
taining their trust in the system. These incentives are likely to be proportional in some
way to the globalRentCost. Another interesting line for future research in this context con-
sists of learning, from experience, the likelihood that specific (types of) users will follow
the recommendations given. This would allow a more fine-grained adjustment of our
recommendation model based on user profiles, and could also be used to implement spe-
cific user-centred incentives. Finally, as we mentioned in the introduction, BSSs could be
conceived as part of a sophisticated multimodal intelligent transportation solution. The
synergic effects within such a system of systems open up a whole range of new opportu-
nities, especially with regards to better availability of green transportation services and a
reduced number of dropouts.

Author Contributions: Conceptualization, H.B., A.F. and S.O.; methodology, H.B., A.F. and S.O.;
software, H.B.; validation, H.B., A.F. and S.O.; formal analysis, H.B., A.F. and S.O.; investigation, H.B.,
A.F. and S.O.; writing—original draft preparation, H.B., A.F. and S.O.; writing—review and editing,
H.B., A.F. and S.O.; visualization, H.B., A.F. and S.O.; funding acquisition, H.B., A.F. and S.O. All
authors have read and agreed to the published version of the manuscript.

Funding: This work has been partially supported by the Spanish Ministry of Science, Innovation,
and Universities, co-funded by EU FEDER Funds, through grant RTI2018-095390-B-C33 (MCIU/AEI/
FEDER, UE).

Institutional Review Board Statement: Not applicable.

Appl. Sci. 2021, 11, 9654 24 of 25

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Soriguera, F.; Meroño, E.J. A continuous approximation model for the optimal design of public bike-sharing systems. Sustain.

Cities Soc. 2020, 52, 101826. [CrossRef]
2. Ţuţu, I.; Chiriţă, C.E.; Lopes, A.; Fiadeiro, J.L. Logical Support for Bike-Sharing System Design. In Lecture Notes in Computer

Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland,
2019; Volume 11865; pp. 152–171. [CrossRef]

3. Diez, C.; Palanca, J.; Sanchez-Anguix, V.; Heras, S.; Giret, A.; Julián, V. Towards a Persuasive Recommender for Bike Sharing
Systems: A Defeasible Argumentation Approach. Energies 2019, 12, 662. [CrossRef]

4. Binetti, M.; Caggiani, L.; Camporeale, R.; Ottomanelli, M. A Sustainable Crowdsourced Delivery System to Foster Free-Floating
Bike-Sharing. Sustainability 2019, 11, 2772. [CrossRef]

5. Aguiari, D.; Delnevo, G.; Monti, L.; Ghini, V.; Mirri, S.; Salomoni, P.; Pau, G.; Im, M.; Tse, R.; Ekpanyapong, M.; et al. Canarin
II: Designing a smart e-bike eco-system. In Proceedings of the 15th IEEE Annual Consumer Communications & Networking
Conference (CCNC), Las Vegas, NV, USA, 12–15 January 2018; pp. 1–6. [CrossRef]

6. Voinea, S.C.; Bujari, A.; Palazzi, C.E. Air Quality Control through Bike Sharing Fleets. In Proceedings of the IEEE Symposium on
Computers and Communications (ISCC), Rennes, France, 7–10 July 2020; pp. 1–4. [CrossRef]

7. Al-Rahamneh, A.; Astrain, J.J.; Villadangos, J.; Klaina, H.; Guembe, I.P.; Lopez-Iturri, P.; Falcone, F. Enabling Customizable
Services for Multimodal Smart Mobility with City-Platforms. IEEE Access 2021, 9, 41628–41646. [CrossRef]

8. Bin Hariz, M.; Said, D.; Mouftah, H.T. Game Theoretic Approach for a Multi-Mode Transportation in Smart Cities. In Proceedings
of the 2020 International Symposium on Networks, Computers and Communications (ISNCC), Montreal, QC, Canada, 20–22
October 2020; pp. 1–6. [CrossRef]

9. Sanchez-Iborra, R.; Bernal-Escobedo, L.; Santa, J. Eco-Efficient Mobility in Smart City Scenarios. Sustainability 2020, 12, 8443.
[CrossRef]

10. Cepeliauskaite, G.; Keppner, B.; Simkute, Z.; Stasiskiene, Z.; Leuser, L.; Kalnina, I.; Kotovica, N.; Andin, š, J.; Muiste, M. Smart-
Mobility Services for Climate Mitigation in Urban Areas: Case Studies of Baltic Countries and Germany. Sustainability 2021,
13, 4127. [CrossRef]

11. Aziz, H.A.; Park, B.H.; Morton, A.; Stewart, R.N.; Hilliard, M.; Maness, M. A high resolution agent-based model to support
walk-bicycle infrastructure investment decisions: A case study with New York City. Transp. Res. Part C Emerg. Technol. 2018, 86,
280–299. [CrossRef]

12. Lin, Y.-K.; Liang, F. Simulation for Balancing Bike-Sharing Systems. Int. J. Model. Optim. 2017, 7, 24–27.
13. Saltzman, R.M.; Bradford, R.M. Simulating a More Efficient Bike Sharing System. J. Supply Chain Oper. Manag. 2016, 14, 36–47.
14. Cintrano, C.; Chicano, F.; Alba, E. Using metaheuristics for the location of bicycle stations. Expert Syst. Appl. 2020, 161, 113684.

[CrossRef]
15. Reck, D.J.; Haitao, H.; Guidon, S.; Axhausen, K.W. Explaining shared micromobility usage, competition and mode choice by

modelling empirical data from Zurich, Switzerland. Transp. Res. Part C Emerg. Technol. 2021, 124, 102947. [CrossRef]
16. Forma, I.A.; Raviv, T.; Tzur, M. A 3-step math heuristic for the static repositioning problem in bike-sharing systems. Transp. Res.

Part B Methodol. 2015, 71, 230–247. [CrossRef]
17. Jian, N.; Freund, D.; Wiberg, H.M.; Henderson, S.G. Simulation optimization for a large-scale bike-sharing system. In Proceedings

of the Winter Simulation Conference (WSC), Washington, DC, USA, 11–14 December 2016; pp. 602–613. [CrossRef]
18. Bulhões, T.; Subramanian, A.; Erdoğan, G.; Laporte, G. The static bike relocation problem with multiple vehicles and visits. Eur. J.

Oper. Res. 2018, 264, 508–523. [CrossRef]
19. Chemla, D.; Meunier, F.; Pradeau, T.; Calvo, R.W.; Yahiaoui, H. Self-Service Bike Sharing Systems: Simulation, Repositioning,

Pricing. Available online: https://hal.archives-ouvertes.fr/hal-00824078 (accessed on 15 October 2021).
20. O’Mahony, E.; Shmoys, D.B. Data analysis and optimization for (citi)bike sharing. In Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence (AAAI’15), Austin, TX, USA, 25–30 January 2015; pp. 687–694.
21. Schuijbroek, J.; Hampshire, R.; van Hoeve, W.-J. Inventory rebalancing and vehicle routing in bike sharing systems. Eur. J. Oper.

Res. 2017, 257, 992–1004. [CrossRef]
22. Affonso, R.C.; Couffin, F.; LeClaire, P. Modelling of User Behaviour for Static Rebalancing of Bike Sharing System: Transfer of

Demand from Bike-Shortage Stations to Neighbouring Stations. J. Adv. Transp. 2021, 2021, 8825521. [CrossRef]
23. Pfrommer, J.; Warrington, J.; Schildbach, G.; Morari, M. Dynamic Vehicle Redistribution and Online Price Incentives in Shared

Mobility Systems. IEEE Trans. Intell. Transp. Syst. 2014, 15, 1567–1578. [CrossRef]
24. Haider, Z.; Nikolaev, A.; Kang, J.E.; Kwon, C. Inventory rebalancing through pricing in public bike sharing systems. Eur. J. Oper.

Res. 2018, 270, 103–117. [CrossRef]

http://doi.org/10.1016/j.scs.2019.101826
http://doi.org/10.1007/978-3-030-30985-5_10
http://doi.org/10.3390/en12040662
http://doi.org/10.3390/su11102772
http://doi.org/10.1109/CCNC.2018.8319221
http://doi.org/10.1109/iscc50000.2020.9219618
http://doi.org/10.1109/ACCESS.2021.3065412
http://doi.org/10.1109/ISNCC49221.2020.9297295
http://doi.org/10.3390/su12208443
http://doi.org/10.3390/su13084127
http://doi.org/10.1016/j.trc.2017.11.008
http://doi.org/10.1016/j.eswa.2020.113684
http://doi.org/10.1016/j.trc.2020.102947
http://doi.org/10.1016/j.trb.2014.10.003
http://doi.org/10.1109/wsc.2016.7822125
http://doi.org/10.1016/j.ejor.2017.06.028
https://hal.archives-ouvertes.fr/hal-00824078
http://doi.org/10.1016/j.ejor.2016.08.029
http://doi.org/10.1155/2021/8825521
http://doi.org/10.1109/TITS.2014.2303986
http://doi.org/10.1016/j.ejor.2018.02.053

Appl. Sci. 2021, 11, 9654 25 of 25

25. Singla, A.; Santoni, M.; Bartók, G.; Mukerji, P.; Meenen, M.; Krause, A. Incentivizing users for balancing bike sharing systems. In
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI’15), Austin, TX, USA, 25–30 January 2015;
pp. 723–729.

26. Reiss, S.; Bogenberger, K. Optimal bike fleet management by smart relocation methods: Combining an operator-based with an
user-based relocation strategy. In Proceedings of the IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 2613–2618. [CrossRef]

27. Wang, I.-L.; Hou, C.-T. A Crowdsourced Dynamic Repositioning Strategy for Public Bike Sharing Systems. Numerical Algebra,
Control and Optimization. Available online: https://www.researchgate.net/publication/347915948_A_crowdsourced_dynamic_
repositioning_strategy_for_public_bike_sharing_systems (accessed on 15 October 2021).

28. Chung, H.; Freund, D.; Shmoys, D.B. Bike angels: An analysis of citi bike’s incentive program. In Proceedings of the 1st ACM
SIGCAS Conference on Computing and Sustainable Societies, New York, NY, USA, 20–22 June 2018; Article 5.

29. O’Mahony, E.D. Smarter Tools for (Citi)Bike Sharing. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, August 2015.
30. Merugu, D.; Prabhakar, B.S.; Rama, N.S. An incentive mechanism for decongesting the roads: A pilot program in bangalore. In

Proceedings of the ACM Workshop on the Economics of Networked Systems, Standford, CA, USA, 7 July 2009.
31. Fricker, C.; Gast, N. Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. EURO J.

Transp. Logist. 2016, 5, 261–291. [CrossRef]
32. Chiariotti, F.; Pielli, C.; Zanella, A.; Zorzi, M. A Bike-sharing Optimization Framework Combining Dynamic Rebalancing and

User Incentives. ACM Trans. Auton. Adapt. Syst. 2020, 14, 1–30. [CrossRef]
33. Li, L.; Shan, M. Bidirectional Incentive Model for Bicycle Redistribution of a Bicycle Sharing System during Rush Hour.

Sustainability 2016, 8, 1299. [CrossRef]
34. Yoon, J.W.; Pinelli, F.; Calabrese, F. Cityride: A predictive bike sharing journey advisor. In Proceedings of the IEEE 13th

International Conference on Mobile Data Management (MDM), Bengaluru, India, 23–26 July 2012; pp. 306–311.
35. Waserhole, A.; Jost, V. Pricing in vehicle sharing systems: Optimization in queuing networks with product forms. EURO J. Transp.

Logist. 2016, 5, 293–320. [CrossRef]
36. López Santiago, A.; Iglesias, C.A.; Carrera, A. Improving Sustainable Mobility with a Variable Incentive Model for Bike-Sharing

Systems Based on Agent-Based Social Simulation. In Advances in Practical Applications of Agents, Multi-Agent Systems, and
Trustworthiness; The PAAMS Collection; Springer: Cham, Switzerland, 2020; pp. 158–170. [CrossRef]

37. Fernández, A.; Billhardt, H.; Ossowski, S.; Sánchez, O. Bike3S: A tool for bike sharing systems simulation. J. Simul. 2020, 14,
278–294. [CrossRef]

38. Levine, R.V.; Norenzayan, A. The Pace of Life in 31 Countries. J. Cross Cult. Psychol. 1999, 30, 178–205. [CrossRef]
39. Mohler, B.J.; Thompson, W.B.; Creem-Regehr, S.H.; Pick, H.L.; Warren, W.H. Visual flow influences gait transition speed and

preferred walking speed. Exp. Brain Res. 2007, 181, 221–228. [CrossRef] [PubMed]

http://doi.org/10.1109/itsc.2016.7795976
https://www.researchgate.net/publication/347915948_A_crowdsourced_dynamic_repositioning_strategy_for_public_bike_sharing_systems
https://www.researchgate.net/publication/347915948_A_crowdsourced_dynamic_repositioning_strategy_for_public_bike_sharing_systems
http://doi.org/10.1007/s13676-014-0053-5
http://doi.org/10.1145/3376923
http://doi.org/10.3390/su8121299
http://doi.org/10.1007/s13676-014-0054-4
http://doi.org/10.1007/978-3-030-49778-1_13
http://doi.org/10.1080/17477778.2020.1718022
http://doi.org/10.1177/0022022199030002003
http://doi.org/10.1007/s00221-007-0917-0
http://www.ncbi.nlm.nih.gov/pubmed/17372727

	Introduction
	Related Work
	Station-Based BSSs
	User-Centred Station Recommendation
	Standard Strategies
	Shortest Distance
	Informed Shortest Distance
	Distance Resources

	Distance Expected Resources
	Expected Cost
	Demand Estimation
	Probability Calculation
	Expected Cost Recommendation

	Evaluation of User-Centred Recommendation
	Simulation Experiment Setup
	Simulation Results

	Recommendation Based on Local and Global Utility
	Calculating the Future Impact of Rentals and Returns
	Recommendation Based on Expected Cost and Future Impact

	Evaluation of ExpectedCostFutureImpact Recommendation
	Conclusions
	References

