Preliminary Research on the Influence of a Pulsed Magnetic Field on the Cationic Profile of Sunflower, Cress, and Radish Sprouts and on Their Germination Rate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Magnetic Stimulation Site
- A 2-channel function generator, DDS-JDS6600, which generates 2 sinusoidal voltage waveforms for channel X(CH1) and Y(CH2) with fixed amplitudes, and the same frequency for both channels.
- The MONACOR SA-200 voltage amplifier, to which the signals from the generator are transferred.
- A signal splitter/current intensity sensor (BOX)—the amplified signal from the amplifier passes to the signal splitter BOX, from where it is transferred to the individual windings of 2 pairs of Helmholtz coils. For channels X and Y, the current intensity is measured by measuring the voltage drop across precision resistors installed in the distributor. Subsequently, the voltage signal from the resistors is transferred from the splitter to the myDAQ digital oscilloscope.
- A group of Helmholtz coils—the current flowing through the coils creates a variable pulsed magnetic field Bxy in the XY plane within them. The X and Y coils consist of two sections, X1 and X2, and Y1 and Y2, attached to the base. These sections, in turn, are connected in series in the BOX distributor so that the current flowing through each pair of coils has the same value. In the working area, there is a table on which the sample is placed.
- A NI myDAQ device used as a digital oscilloscope, recording voltage waveforms from measuring resistors
- Control software that determines the parameters for the current flowing through the coils and the magnetic field generated, and also controls the work of the JDS6600 generator by determining the frequency and phase shift of the signals and directs the amplitude of the waveforms in real time.
2.2. The Dynamics of Seed Germination
2.3. Assessment of the Mineral Composition
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PMF | pulsed magnetic field |
Al | aluminum |
Ca | calcium |
Cd | cadmium |
Fe | iron |
K | potassium |
Mg | magnesium |
Mn | manganese |
Mo | molybdenum |
Na | sodium |
Ni | nickel |
P | phosphorus |
Pb | lead |
S | sulfur |
Se | selenium |
Zn | zinc |
References
- Rajjou, L.; Duval, M.; Gallardo, K.; Catusse, J.; Bally, J.; Job, C.; Job, D. Seed Germination and Vigor. Annu. Rev. Plant Biol. 2012, 63, 507–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemmens, E.; Deleu, L.J.; De Brier, N.; De Man, W.L.; De Proft, M.; Prinsen, E.; Delcour, J.A. The Impact of Hydro-Priming and Osmo-Priming on Seedling Characteristics, Plant Hormone Concentrations, Activity of Selected Hydrolytic Enzymes, and Cell Wall and Phytate Hydrolysis in Sprouted Wheat (Triticum aestivum L.). ACS Omega 2019, 4, 22089–22100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavili, A.; Zare, S.; Moosavi, S.A.; Enayati, A. Effects of Priming Techniques on Seed Germination and Early Growth Characteristics of Bromus tomentellus L. and Bromus inermis L. Not. Sci. Biol. 2010, 2, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Márton, M.; Mándoki, Z.; Csapó, J. Evaluation of biological value of sprouts. Fat content, fatty acid composition. Acta Univ. Sapientiae Aliment. 2010, 3, 53–65. [Google Scholar]
- Liu, H.; Kang, Y.; Zhao, X.; Liu, Y.; Zhang, X.; Zhang, S. Effects of elicitation on bioactive compounds and biological activities of sprouts. J. Funct. Foods 2018, 53, 136–145. [Google Scholar] [CrossRef]
- Cakmak, T.; Dumlupinar, R.; Erdal, S. Acceleration of germination and early growth of wheat and bean seedlings grown under various magnetic field and osmotic conditions. Bioelectromagnetics 2009, 31, 120–129. [Google Scholar] [CrossRef]
- Dembélé, S.; Zougmoré, R.B.; Coulibaly, A.; Lamers, J.P.A.; Tetteh, J.P. Accelerating Seed Germination and Juvenile Growth of Sorghum (Sorghum bicolor L. Moench) to Manage Climate Variability through Hydro-Priming. Atmosphere 2021, 12, 419. [Google Scholar] [CrossRef]
- Soliman, A.; Harith, M. EFFECTS OF LASER BIOSTIMULATION ON GERMINATION OF ACACIA FARNESIANA (L.) WILLD. Acta Hortic. 2010, 854, 41–50. [Google Scholar] [CrossRef]
- Klimek-Kopyra, A.; Dłużniewska, J.; Ślizowska, A.; Dobrowolski, J. Impact of Coherent Laser Irradiation on Germination and Mycoflora of Soybean Seeds—Innovative and Prospective Seed Quality Management. Agriculture 2020, 10, 314. [Google Scholar] [CrossRef]
- Hasan, M.; Hanafiah, M.M.; Taha, Z.A.; Alhilfy, I.H.H.; Said, M.N.M. Laser Irradiation Effects at Different Wavelengths on Phenology and Yield Components of Pretreated Maize Seed. Appl. Sci. 2020, 10, 1189. [Google Scholar] [CrossRef] [Green Version]
- Pietruszewski, S.; Martínez, E. Magnetic field as a method of improving the quality of sowing material: A review. Int. Agrophy. 2015, 29, 377–389. [Google Scholar] [CrossRef]
- Athari Nia, M.; Noori, M.; Ghanati, F.E. Effect of static magnetic field on certain physiological and biochemical features of Cicer arietinum in vegetative growth phase. Pajouhesh Sazandegi 2008, 21, 62–68. [Google Scholar]
- Vashisth, A.; Nagarajan, S. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J. Plant Physiol. 2010, 167, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Efthimiadou, A.; Katsenios, N.; Karkanis, A.; Papastylianou, P.; Triantafyllidis, V.; Travlos, I.; Bilalis, D.J. Effects of Presowing Pulsed Electromagnetic Treatment of Tomato Seed on Growth, Yield, and Lycopene Content. Sci. World J. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Rakoczy, R.; Przybył, A.; Kordas, M.; Konopacki, M.; Drozd, R.; Fijałkowski, K. The study of influence of a rotating magnetic field on mixing efficiency. Chem. Eng. Process. Process. Intensif. 2017, 112, 1–8. [Google Scholar] [CrossRef]
- Aladjadjiyan, A. Study of the influence of magnetic field on some biological characteristics of Zea mais. J. Cent. Eur. Agric. 2002, 3, 89–94. [Google Scholar]
- Van As, H.; Windt, C.W. Magnetic Resonance Imaging of Plants: Water Balance and Water Transport in Relation to Photosynthetic Activity. Biophys. Tech. Photosynth. 2008, 26, 55–75. [Google Scholar] [CrossRef]
- Sarraf, M.; Kataria, S.; Taimourya, H.; Santos, L.; Menegatti, R.; Jain, M.; Ihtisham, M.; Liu, S. Magnetic Field (MF) Applications in Plants: An Overview. Plants 2020, 9, 1139. [Google Scholar] [CrossRef] [PubMed]
- Varani, K.; Vincenzi, F.; Pasquini, S.; Blo, I.; Salati, S.; Cadossi, M.; De Mattei, M. Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 809. [Google Scholar] [CrossRef]
- Shi, H.-F.; Xiong, J.; Chen, Y.-X.; Wang, J.-F.; Qiu, X.-S.; Wang, Y.-H.; Qiu, Y. Early application of pulsed electromagnetic field in the treatment of postoperative delayed union of long-bone fractures: A prospective randomized controlled study. BMC Musculoskelet. Disord. 2013, 14, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varani, K.; De Mattei, M.; Vincenzi, F.; Gessi, S.; Merighi, S.; Pellati, A.; Ongaro, A.; Caruso, A.; Cadossi, R.; Borea, P. Characterization of adenosine receptors in bovine chondrocytes and fibroblast-like synoviocytes exposed to low frequency low energy pulsed electromagnetic fields. Osteoarthr. Cartil. 2008, 16, 292–304. [Google Scholar] [CrossRef] [Green Version]
- Vincenzi, F.; Targa, M.; Corciulo, C.; Gessi, S.; Merighi, S.; Setti, S.; Cadossi, R.; Goldring, M.B.; Borea, P.A.; Varani, K. Pulsed Electromagnetic Fields Increased the Anti-Inflammatory Effect of A2A and A3 Adenosine Receptors in Human T/C-28a2 Chondrocytes and hFOB 1.19 Osteoblasts. PLoS ONE 2013, 8, e65561. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Qin, Z.; Zhao, J.; Yan, X.; Ye, J.; Ren, E.; Wang, J.; Yang, X.; Heng, S.; Zheng, L.; et al. Pulsed Magnetic Field Stimuli Can Promote Chondrogenic Differentiation of Superparamagnetic Iron Oxide Nanoparticles-Labeled Mesenchymal Stem Cells in Rats. J. Biomed. Nanotechnol. 2018, 14, 2135–2145. [Google Scholar] [CrossRef]
- Wang, J.; Tang, N.; Xiao, Q.; Zhang, L.; Li, Y.; Li, J.; Wang, J.; Zhao, Z.; Tan, L. Pulsed Electromagnetic Field May Accelerate in Vitro Endochondral Ossification: PEMF Stimulation of Endochondral Ossification. Bioelectromagnetics 2015, 36, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Parate, D.; Franco-Obregón, A.; Fröhlich, J.; Beyer, C.; Abbas, A.A.; Kamarul, T.; Hui, J.H.P.; Yang, Z. Enhancement of Mes-enchymal Stem Cell Chondrogenesis with Short-Term Low Intensity Pulsed Electromagnetic Fields. Sci. Rep. 2017, 7, 9421. [Google Scholar] [CrossRef] [PubMed]
- Parate, D.; Kadir, N.D.; Celik, C.; Lee, E.H.; Hui, J.H.P.; Franco-Obregón, A.; Yang, Z. Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration. Stem Cell Res. Ther. 2020, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Menegatti, R.D.; De Oliveira, L.O.; Da Costa, V.L.; Braga, E.J.B.; Bianchi, V.J. MAGNETIC FIELD AND GIBBERELIC ACID AS PRE-GERMINATION TREATMENTS OF PASSION FRUIT SEEDS. Ciência Agrícola Rio Largo 2019, 17, 15–22. [Google Scholar] [CrossRef]
- Vashisth, A.; Nagarajan, S. Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics 2008, 29, 571–578. [Google Scholar] [CrossRef]
- Bhardwaj, J.; Anand, A.; Nagarajan, S. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Plant Physiol. Biochem. 2012, 57, 67–73. [Google Scholar] [CrossRef]
- Reina, F.G.; Pascual, L.A. Influence of a stationary magnetic field on water relations in lettuce seeds. Part I: Theoretical con-siderations. Bioelectromagnetics 2001, 22, 589–595. [Google Scholar] [CrossRef]
- Vashisth, A.; Joshi, D.K. Growth characteristics of maize seeds exposed to magnetic field. Bioelectromagnetics 2016, 38, 151–157. [Google Scholar] [CrossRef]
- Poinapen, D.; Brown, D.C.; Beeharry, G.K. Seed orientation and magnetic field strength have more influence on tomato seed performance than relative humidity and duration of exposure to non-uniform static magnetic fields. J. Plant Physiol. 2013, 170, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Konefał-Janocha, M.; Banaś-Ząbczyk, A.; Bester, M.; Bocak, D.; Budzik, S.; Górny, S.; Larsen, S.; Majchrowski, K.; Cholewa, M. The Effect of Stationary and Variable Electromagnetic Fields on the Germination and Early Growth of Radish (Raphanus sa-tivus. Pol. J. Environ. Stud. 2019, 28, 709–715. [Google Scholar]
- Muszynski, S.; Gadyszewska, B. Representation of He-Ne laser irradiation effect on radish seeds with selected germination indices. Int. Agroph. 2008, 22, 151–157. [Google Scholar]
- Sarinont, T.; Amano, S.; Kitazaki, K.; Koga, G.; Uchida, M.; Shiratani, N. Growth enhancement effects of radish sprouts: Atmospheric pressure plasma irradiation vs. heat shock, J. Phys. Conf. Ser. 2014, 518, 012017. [Google Scholar] [CrossRef] [Green Version]
- Lekić, S.; Draganić, I.; Milivojević, M.; Todorović, G. Germination and Seedling Growth Response on Sunflower Seeds to Priming and Temperature Stress. Helia 2015, 38, 241–252. [Google Scholar] [CrossRef]
- Aladjadjiyan, A. The use of physical methods for plant growing stimulation in Bulgaria. J. Cent. Eur. Agric. 2007, 8, 369–380. [Google Scholar]
- Hernandez, A.C.; Dominguez, P.A.; Cruz, O.A.; Ivanov, R.; Carballo, C.A.; Zepeda, B.R. Laser in agriculture. Int. Agrophys. 2010, 24, 407–422. [Google Scholar]
- Koper, R. Pre-sowing laser biostimulation of seeds of cultivated plants and its results in agrotechnics. Int. Agrophys. 1994, 8, 593–596. [Google Scholar]
- Dziwulska-Hunek, A.; Kornarzynski, K.; Matwijczuk, A.; Pietruszewski, S.; Szot, B. Effect of laser and variable magnetic field stimulation on amaranth seed germination. Int. Agroph. 2009, 23, 229–235. [Google Scholar]
- Galieni, A.; Falcinelli, B.; Stagnari, F.; Datti, A.; Benincasa, P. Sprouts and Microgreens: Trends, Opportunities, and Horizons for Novel Research. Agronomy 2020, 10, 1424. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted Grains: A Comprehensive Review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, G.; Falcinelli, B.; Tosti, G.; Bocci, L.; Benincasa, P. Taste quality traits and volatile profiles of sprouts and wheatgrass from hulled and non-hulled Triticum species. J. Food Biochem. 2019, 43, e12869. [Google Scholar] [CrossRef]
- Frassinetti, S.; Moccia, E.; Caltavuturo, L.; Gabriele, M.; Longo, V.; Bellani, L.; Giorgi, G.; Giorgetti, L. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem. 2018, 262, 56–66. [Google Scholar] [CrossRef]
- Chiriac, E.R.; Chiţescu, C.L.; Sandru, C.; Geană, E.-I.; Lupoae, M.; Dobre, M.; Borda, D.; Gird, C.E.; Boscencu, R. Comparative Study of the Bioactive Properties and Elemental Composition of Red Clover (Trifolium pratense) and Alfalfa (Medicago sativa) Sprouts during Germination. Appl. Sci. 2020, 10, 7249. [Google Scholar] [CrossRef]
- Pongrac, P.; Potisek, M.; Fraś, A.; Likar, M.; Budič, B.; Myszka, K.; Boros, D.; Necemer, M.; Kelemen, M.; Vavpetič, P. Com-position of mineral elements and bioactive compounds in tartary buckwheat and wheat sprouts as affected by natural miner-al-rich water. J. Cereal Sci. 2016, 69, 9–16. [Google Scholar] [CrossRef]
- Baenas, N.; Gómez-Jodar, I.; Moreno-Fernández, D.; Garcia-Viguera, C.; Periago, P.M. Broccoli and radish sprouts are safe and rich in bioactive phytochemicals. Postharvest Biol. Technol. 2017, 127, 60–67. [Google Scholar] [CrossRef]
- Li, R.; Zhu, Y. The primary active components, antioxidant properties, and differential metabolite profiles of radish sprouts (Raphanus sativus L.) upon domestic storage: Analysis of nutritional quality. J. Sci. Food Agric. 2018, 98, 5853–5860. [Google Scholar] [CrossRef]
- Baenas, N.; Villaño, D.; García-Viguera, C.; Moreno, D.A. Optimizing elicitation and seed priming to enrich broccoli and radish sprouts in glucosinolates. Food Chem. 2016, 204, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Wang, X.; Guo, R.; Wang, Q. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem. 2010, 121, 1014–1019. [Google Scholar] [CrossRef]
- Maday, K.R. Understanding electrolytes: Important diagnostic clues to patient status. J. Am. Acad. Physician Assist. 2013, 26, 26–31. [Google Scholar] [CrossRef] [PubMed]
Element | Slotted Line | Recovery According to CRM | Recovery According to Method of Standard Addition |
---|---|---|---|
nm | % | % | |
Al | 167.079 | 98 | 99 |
Ca | 317.933 | 103 | 98 |
Cd | 228.802 | 99 | 97 |
Fe | 259.940 | 99 | 97 |
K | 766.490 | 101 | 97 |
Mg | 279.533 | 99 | 98 |
Mn | 257.610 | 98 | 97 |
Mo | 203.844 | 101 | 99 |
Na | 588.995 | 98 | 100 |
Ni | 231.604 | 99 | 100 |
P | 177.495 | 100 | 101 |
Pb | 220.353 | 101 | 98 |
S | 180.731 | 103 | 99 |
Se | 196.090 | 101 | 98 |
Zn | 213.856 | 102 | 101 |
Ions | Control | PMF 1 | PMF 2 |
---|---|---|---|
mg/100 g | mg/100 g | mg/100 g | |
Al | 2.07 ± 0.86 a | 2.20 ± 1.27 a | 2.23 ± 1.28 a |
Ca | 492.51 ± 13.91 c | 540.92 ± 5.12 b | 699.75 ± 5.65 a |
Cd | <LOQ | <LOQ | <LOQ |
Fe | 2.50 ± 0.25 a | 2.99 ± 0.84 a | 2.60 ± 1.21 a |
K | 877.92 ± 52.04 b | 981.83 ± 7.91 a | 858.08 ± 5.43 b |
Mg | 324.25 ± 25.00 c | 352.08 ± 2.69 b | 379.91 ± 2.98 a |
Mn | 0.72 ± 0.08 b | 1.01 ± 0.04 a | 1.05 ± 0.12 a |
Mo | 0.05 ± 0.01 a | 0.07 ± 0.01 a | 0.10 ± 0.02 a |
Na | 588.75 ± 6.14 a | 577.51 ± 4.86 a | 560.75 ± 3.07 a |
Ni | <LOQ | <LOQ | <LOQ |
P | 333.31 ± 14.43 b | 373.66 ± 2.25 a | 371.00 ± 0.66 a |
Pb | <LOQ | 0.02 ± 0.01 a | 0.02 ± 0.01 a |
S | 631.56 ± 14.43 c | 704.73 ± 0.66 b | 830.90 ± 0.14 a |
Se | <LOQ | 0.06 ± 0.03 a | 0.07 ± 0.05 a |
Zn | 5.67 ± 1.15 b | 4.91 ± 0.12 b | 8.36 ± 0.01 a |
Ions | Control | PMF 1 | PMF 2 |
---|---|---|---|
mg/100 g | mg/100 g | mg/100 g | |
Al | 1.47 ± 0.66 a | 2.53 ± 1.12 a | 1.59 ± 0.54 a |
Ca | 626.33 ± 6.97 b | 802.58 ± 3.26 a | 658.50 ± 5.07 b |
Cd | 0.02 ± 0.01 a | 0.03 ± 0.01 a | 0.01 ± 0.01 a |
Fe | 4.77 ± 1.05 b | 7.25 ± 1.24 a | 4.41 ± 0.88 b |
K | 659.08 ± 4.93 c | 1001.25 ± 2.17 a | 846.83 ± 6.08 b |
Mg | 344.58 ± 3.46 c | 489.41 ± 1.60 a | 390.83 ± 2.74 b |
Mn | 1.61 ± 0.15 c | 2.37 ± 0.18 a | 2.00 ± 0.08 b |
Mo | 0.05 ± 0.01 a | 0.06 ± 0.01 a | 0.05 ± 0.01 a |
Na | 315.08 ± 3.59 c | 543.91 ± 2.02 a | 485.16 ± 2.67 b |
Ni | <LOQ | <LOQ | <LOQ |
P | 353.35 ± 15.48 c | 762.75 ± 1.28 a | 661.58 ± 3.02 b |
Pb | <LOQ | <LOQ | <LOQ |
S | 738.40 ± 5.62 c | 1137.48 ± 6.50 a | 914.48 ± 5.87 b |
Se | <LOQ | 0.15 ± 0.02 a | 0.11 ± 0.01 b |
Zn | 7.03 ± 0.06 c | 11.39 ± 0.03 a | 8.69 ± 0.04 b |
Ions | Control | PMF 1 | PMF 2 |
---|---|---|---|
mg/100 g | mg/100 g | mg/100 g | |
Al | 0.32 ± 0.06 a | 0.28 ± 0.12 a | 0.32 ± 0.04 a |
Ca | 429.00 ± 1.88 c | 543.85 ± 3.74 b | 613.25 ± 2.00 a |
Cd | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.03 ± 0.01 a |
Fe | 4.98 ± 0.25 a | 5.66 ± 0.38 a | 5.45 ± 0.58 a |
K | 751.12 ± 1.32 c | 1380.25 ± 4.76 a | 1074.08 ± 6.12 b |
Mg | 560.50 ± 1.80 b | 649.33 ± 4.50 a | 544.67 ± 2.18 b |
Mn | 1.61 ± 0.07 b | 1.86 ± 0.11 a | 1.85 ± 0.02 a |
Mo | 0.07 ± 0.01 a | 0.06 ± 0.01 a | 0.06 ± 0.01 a |
Na | 80.38 ± 0.48 c | 197.03 ± 7.01 a | 151.35 ± 1.34 b |
Ni | <LOQ | <LOQ | <LOQ |
P | 746.83 ± 0.87 c | 1064.08 ± 6.44 a | 816.97 ± 8.81 b |
Pb | <LOQ | <LOQ | <LOQ |
S | 291.23 ± 2.17 c | 349.90 ± 2.02 a | 307.90 ± 1.02 b |
Se | 0.02 ± 0.01 a | 0.02 ± 0.01 a | 0.01 ± 0.01 a |
Zn | 8.17 ± 0.02 c | 9.79 ± 0.03 a | 9.03 ± 0.05 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaguła, G.; Saletnik, B.; Bajcar, M.; Saletnik, A.; Puchalski, C. Preliminary Research on the Influence of a Pulsed Magnetic Field on the Cationic Profile of Sunflower, Cress, and Radish Sprouts and on Their Germination Rate. Appl. Sci. 2021, 11, 9678. https://doi.org/10.3390/app11209678
Zaguła G, Saletnik B, Bajcar M, Saletnik A, Puchalski C. Preliminary Research on the Influence of a Pulsed Magnetic Field on the Cationic Profile of Sunflower, Cress, and Radish Sprouts and on Their Germination Rate. Applied Sciences. 2021; 11(20):9678. https://doi.org/10.3390/app11209678
Chicago/Turabian StyleZaguła, Grzegorz, Bogdan Saletnik, Marcin Bajcar, Aneta Saletnik, and Czesław Puchalski. 2021. "Preliminary Research on the Influence of a Pulsed Magnetic Field on the Cationic Profile of Sunflower, Cress, and Radish Sprouts and on Their Germination Rate" Applied Sciences 11, no. 20: 9678. https://doi.org/10.3390/app11209678
APA StyleZaguła, G., Saletnik, B., Bajcar, M., Saletnik, A., & Puchalski, C. (2021). Preliminary Research on the Influence of a Pulsed Magnetic Field on the Cationic Profile of Sunflower, Cress, and Radish Sprouts and on Their Germination Rate. Applied Sciences, 11(20), 9678. https://doi.org/10.3390/app11209678