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Abstract: This paper presents the simulation and calculation-based aspect of constructing a dynami-
cally stable, self-balancing electric monowheel from first principles. It further goes on to formulate
a reference model-based adaptive control structure in order to maintain balance as well as the de-
sired output. First, a mathematical model of the nonlinear system analyzes the vehicle dynamics,
followed by an appropriate linearization technique. Suitable parameters for real-time vehicle design
are calculated based on specific constraints followed by a proper motor selection. Various control
methods are tested and implemented on the state-space model of this system. Initially, classical pole
placement control is carried out in MATLAB to observe the responses. The LQR control method is
also implemented in MATLAB and Simulink, demonstrating the dynamic stability and self-balancing
system property. Subsequently, the system considers an extensive range of rider masses and external
disturbances by introducing white noise. The parameter estimation of rider position has been imple-
mented using Kalman Filter estimation, followed by developing an LQG controller for the system, in
order to mitigate the disturbances caused by factors such as wind. A comparison between LQR and
LQG controllers has been conducted. Finally, a reference model-assisted adaptive control structure
has been established for the system to account for sudden parameter changes such as rider mass.
A reference model stabilizer has been established for the same purpose, and all results have been
obtained by running simulations on MATLAB Simulink.

Keywords: monowheel system; inverted pendulum cart system; LQR control; LQG control; Kalman
filter estimation; reference model-assisted control; linearization; self-balancing vehicle

1. Introduction

The invention of the wheel was a path-breaking event in the history of humankind.
Since then, man has used the concept of the wheel to construct various vehicles that have
revolutionized transportation. Over the years, transport vehicles have evolved from having
multiple wheels to four wheels, to the most widely used domestic transport mode of the
two-wheeled vehicle. In this paper, we have decided to take this evolution a step further by
physically constructing, from first principles, a self-balancing single-wheeled vehicle, also
known as the monowheel, as shown in Figure 1. The electric vehicle concept is emerging
because of increased awareness about ongoing pollution and the energy shortage crisis.
Today, automobiles and motorcycles are no longer the best forms of transportation. With
the ever-increasing prices of petroleum products, there is a need for a form of transport
that is cheaper and more efficient. Saving energy to mitigate the problem of fuel depletion
is of prime importance. Such demands are causing a surge in research on eco-friendly
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transportation. Electrical vehicle technology is a step towards fulfilling these goals, and so
the idea of an electric unicycle or monowheel is attractive [1].

Figure 1. Basic design sketch of the monowheel.

Many cities are now allowing personal mobility vehicles to mix with pedestrian
traffic to de-congest modern roads. The electric monowheel is ideal for such a situation
owing to its compactness in structure. It is a transitional vehicle that goes to most places
where a person can walk or ride a bike, and it is easy to carry around due to its light
weight. Typically, in conventional two-wheeled transportation, one wheel provides the
force for speed control, while the other wheel deals with changes in direction and steering.
However, in a monowheel, both the speed as well as direction are controlled through the
single physical machinery.

The electric monowheel has attracted a great deal of attention from both academia
as well as the industry [2–4]. These vehicles are available as fun vehicles for children,
people who are style-conscious, and creative workers in many domains. The monowheel
is derived initially from the unicycle concept, upon which various research works have
been conducted. Kim et al. presented an optimal minimum energy control solution for the
same through Jacobi Elliptic Functions [5]. Chen et al. [6] proposed a schematic design
of a unicycle. Similar to a Segway device, it comes with a handling rod for maneuvering
and a supportive seat for the rider. They then conducted a dynamic analysis and proposed
a robust control law for their schematic design. Muthukumar et al. [7] developed and
conceptualized the ergonomic study of a typical unicycle. Based on a dynamic model,
Jin et al. [8] proposed a steering control method for the torque applied on an underactuated
unicycle robot.

Many researchers believe that the monowheel can be a serious vehicle for transporta-
tion in the future. It is a pollution-free vehicle that needs only one DC motor to drive it. A
few researchers developed an electric unicycle made from inexpensive components, such
as an DC brush motor, with an inexpensive gearbox, an accelerator, an eight-bit micro-
controller, a rubber wheel, a rate gyro, a PWM motor driver, and nickel–metal hydride
(NiMH) batteries. Also, it is important to ensure an economical, eco-friendly means of
short-distance transportation due to rising fuel prices. The electric unicycle has not been a
commercial success. However, we trust that it can become a popular single-wheeled vehicle
that satisfies the parameters of being low cost, economical, and ecologically friendly. The
design and implementation of a practical and logistically safe self-balancing monowheel
have garnered attention in modern times. Since the late 1800s, many different kinds of
single-wheeled vehicles have been proposed with a similar design, drive mechanism, and
power source. In some cases, propellers were the prime movers, while in others gas engines
or electric motors were used. In 1869, the first monowheel was constructed, which used
a mechanism analogous to a bike to pedal the inner wheel, which became the standard
structure for the many designs of unicycles that were to follow. A pedal force was used to
drive an outer wheel directly using a gear in an unicycle patented in 1893. After that, a
gear-driven chain coupe was used to give traction to the unicycle. The system is nonlinear
and highly unstable, thus requiring a complicated and robust control design. Hofer et al.
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designed an observer-based cascade stabilizer, and a fuzzy controller for a similar sys-
tem [9]. Various techniques were proposed by Caldecott et al. for the PD control of an
electric unicycle [10]. A modeling approach was undertaken by Huang et al., along with
a controller for self-balance [11]. Many developed system designs and nonlinear electric
unicycle control methods have been proposed, such as those in [12,13].

However, none of these have been implemented in the real world, and they do not
account for friction. The LQR method, or the Linear Quadratic Method, has been a control
branch for various such model-based systems, which over time minimizes an integral
function as well as giving a quadratic measure of the states along with the control actions’
quadratic measures. The LQR solution finally produces a set of constants, which at each
point in time gives a control action that is optimal when multiplied by each of the states.
LQR provides robustness in performance. Based on the sub-optimal approach for an AC
servo motor, Ou et al. develope a controller design scheme based on the discrete sliding
mode [14]. Lin et al. implemented this method to design a robust PI controller for a
one-link robot by integrating it with a reduced parameter sensitivity technique [15]. This
control method has been used in single-wheeled mobile robots [16], as well as to develop a
state feedback controller, as in [17]. For establishing self-balancing, an adaptive friction
compensation method was integrated by Li et al. along with this LQR method. It also
included the speed tracking of the system while considering variable rider weights along
with varying friction coefficients [18].

Blackwell presented a working self-balancing unicycle, while using an existing control
mechanism [19]. Bombardier worked on the monowheel as a sports vehicle powered
by a hydrogen cell [20]. Ryno motors [21] demonstrated a prototype of the Ryno bike
monowheel. Janick et al. introduced a motorized transport vehicle for pedestrians, and
they filed a US patent for the vehicle. A “self-propelled unicycle engaged with vehicle”
was patented by Ford Motor Company [22], which was used only for independent use.
This included a hub and a coupled wheel [23]. Shelke et al. thought of a compact folding
bicycle which would lead to easy parking and transportation. The mechanism of folding
could vary, with each offering various combinations of folding speed and folding ease,
durability, compactness of frame, weight, ride, and variations of prices with changes
in the internal material [24]. Park et al. designed a self-balancing mobile robot on two
wheels, which primarily used a control moment gyroscope module. The robot is capable
of achieving improved rotation in more confined spaces and has more speed than regular
legged robots, Because of this, it is mostly used as a mobile robot platform [25]. Kadis et al.
proposed the Micycle system, involving an analysis of the components of the system. The
automatic steering mechanism helps the rider to balance in the rolling direction.This was
followed by developing the dynamics of the unicycle in the pitch direction through the
Lagrangian formulation. The plant was stabilized in the pitch direction using a linear PD
controller, and the system was simulated on MATLAB Simulink. The controller helped in
the implementation of the simulated and physical system, and data helped to quantitatively
assess the control system [10].

The study of the monowheel is relatively recent, with noticeable research work in this
field. Although some concepts of self-stabilizing monowheel robots already exist, most of
them are structurally quite different from our approach, and their stabilization methods
lead to some restrictions which we wish to overcome. Ozaka’s robot possesses a single
wheel with an extended arm, which is stretched out to the left and right to maintain the roll
balance. Although not many positive experimental results were obtained, this robot was
speculated to be the the first self-balancing unicycle robot [20]. In [26], the authors describe
one of the most similar versions to our system. Another such version with a constructed
model is known as Gyrover [3], which implements a mechanical gyroscope inside the wheel
in order to stabilize the vehicle while stationary or when moving at very low velocities. The
gyroscope’s axis is altered using a tilt mechanism to enable the turning of the robot through
the precision effect. This is similar to the design proposed by Bauer [27]. A robotic self-
balancing unicycle was proposed by Schoonwinkel, which implements a horizontal flywheel
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that mimics the twisting of an arm and torso movement to establish balance as well as the
motion control of the robot [19]. An LQG controller action was proposed by Vos et al. in 1990
in order to obtain control stability over Schoonwinkel’s robot [21]. In 2007, the University
of California, San Diego developed the UniBot, which combined the ideas of the “inertia
wheel pendulum” along with the “wheeled inverted pendulum” and achieved lateral balance
with the help of vertical flywheel control [23]. In 2005, Dao et al. developed a self-balancing
unicycle robot that achieved lateral stability with the help of two gyroscopes that acted as
actuators [22]. In 2009, Guo et al. developed a dynamic nonlinear model with a vertical
flywheel for a unicycle robot and simulated the model [25]. With the sliding mode control of
a single-wheeled robotic vehicle, Ruan et al. developed a similar robot that utilized a flywheel
that was vertical, which was then verified through simulations [24].

There are numerous ongoing research works about this system in the fields of robotics
and automation. However, what is noticeable is the limited work aimed towards a physical
application that considers a rider. Furthermore, while various control systems for this
system are available in the literature, a sufficient focus has not been placed on the LQR
control of such systems with varying load masses. Constructing laboratory-grade dynamic
self-stabilizing robots has been a research topic for a while in the field of automation. We
aim to take this a level further so that the monowheel becomes a viable mode of future
transport. We wish to build a more realistic system, considering the rider’s necessities,
that adapts to an extensive range of rider masses and external disturbances such as wind,
friction, bumpy roads, etc. Further, it is very much possible that the monowheel may
be subjected to sudden parameter changes, such as a change in the rider mass. This is
possible if the rider uses the monowheel as a means to deliver goods. There will be an
increase in load mass as he picks up or drops the delivery goods at certain points in time.
In order to make the monowheel robust to these sudden parameter changes, we also aim
to develop an adaptive control strategy that accounts for this. There are many adaptive
control techniques available in the literature [28–30].

In this paper, we have aimed to achieve the following:

i. Establish the dynamic stability of the system and make it self-balanced in the linear
direction (forward and backward movement), with variations in rider input velocity,
using the method of LQR control, and for a wide range of rider masses;

ii. Establish an LQG control mechanism to account for wind disturbances and perform a
comparison with regular LQR controlled output by considering external disturbances
such as wind and friction as noise to maintain dynamic stability in such conditions;

iii. Estimate position state output through Kalman Filter estimation;
iv. Develop a nonlinear reference model for the monowheel system to deal with higher-

order uncertain dynamics in terms of the model parameters (rider mass, rider upper
body height);

v. Obtain adaptive control laws and adaptive parameter update laws [31,32], develop a
novel reference stabilizer for the nonlinear and unstable reference model using the
LQR control method, and establish the real-time adaptation of the system with a 25%
increase in load mass.

2. Problem Statements

Our objective is to design a functional, scaled model of a dynamically stable, self-
balancing monowheel, the electrical/mechanical architecture of which is balanced and
propelled electrically with the help of batteries and a motor-driven system. The control
system for self-balancing should be designed for a large range of masses while factoring in
all external disturbances, and an adaptive control structure should be formulated to ensure
robustness even under sudden parameter change conditions.

2.1. Control Objectives and Design Objectives

The primary objective in a monowheel is to maintain the rider at his mean, stable position,
despite parameter variations such as increasing vehicle velocity, acceleration, etc., as well as
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braking and external disturbances. The main control objective is to regulate the monowheel’s
speed within safe limits by directing the controller to follow a reference velocity, as well as to
design an adaptive control structure which can ensure that the controller continues to follow
the given reference velocity despite sudden changes in parameters. A monowheel system
design that is suitable for handling and control by a single person, even in a resting position,
is associated with some significant constraints, such as the height of the person riding the
vehicle, the maximum weights that the vehicle can withstand, power, and transmission. The
following are the fundamental aspects of designing the system:

i. Vehicle dynamics: This is the analysis of the reaction of the vehicle to driver inputs
on a given solid surface. This part of engineering is predominantly based on classical
mechanics. Aerodynamics, drive train and braking, mass distribution, suspension
and steering, and tires are some of the factors that govern vehicle dynamics.

ii. Chassis designing: The outer frame supporting the driver should be robust and carry
heavy loads without failure.

iii. Wheel mechanics: The calculation of forces acting on the wheel during the response
using sensors such as the gyro sensor and accelerometer is required.

iv. Wheel hub design: This is where the real hardware comes together, requiring free
movement between the wheel and driving systems.

2.2. Selection of Parameters and Calculations

After a significant amount of market research and study of motor vehicle laws, the
basic parameters of the system were set as shown in Table 1.

Table 1. Nominal values of simulation parameters.

Parameter Symbol Value Unit

Gross weight of vehicle Wg 110 kg
Maximum speed of vehicle v 18 km/h
Wheel diameter with tyre D 0.56 m

Maximum acceleration a 1.5 m/s2

We calculate the various forces, torque, and power associated with the system based
on these parameters. Different environmental coefficients at nominal conditions are shown
in Table 2.

Table 2. Nominal values of physical parameters.

Parameter Formula/Symbol Value Unit

Coefficient of rolling resistance Cr 0.02 –
Density of air ρ 1.22556 kg/m3

Coefficient of air resistance Ca 0.9 –
Exposed area to air friction A f 0.7 m2

Gravity constant g 9.81 m/s2

Gradient of surface – 1 in 4000 feet

Rolling force Fr = CrWg 21.58 N
Aerodynamic force Fa = 1

2 Ca A f ρv2 6.89 N
Gradient force Fg = Wg sin(θ) 0.27 N

Total force F = Fr + Fa + Fg 28.75 N
Tractive force Ftrac = Wamax 45.83 N

Nominal power P = Fv 143.73 Watts
Peak power P = Ftracvmax 229.167 Watts

RPM speed (m/min)
Circum. o f wheel

170 –

Nominal torque τ = P × 95488
RPM 8.05 Nm

Peak torque τpeak 12.83 Nm
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2.3. Selection of Motor

A pair of 350 W, 24 V brush-DC motors was considered most suitable for this system
due to its low overall construction cost and high ratio of torque to inertia. These motors
require a straightforward and inexpensive controller that is operational in extreme environ-
ments, possesses a suitable maximum RPM, and that is feasible to rebuild for extended
life compared to brushless DC motors. On the downside, brushes have lower life, provide
poor heat dissipation due to the rotor’s limitations, have high rotor inertia, and exhibit
electromagnetic interference (EMI) generated by brush arcing.

3. Kinematics and Dynamics

An an inverted pendulum is a highly unstable, open-loop system [33], the present
system is analogous to that of an inverted pendulum. It is implemented as an inverted
pendulum pivoted on a cart that can move horizontally under the control of an electronic
system, as shown in Figure 2.

Figure 2. Pendulum cart system—analogous to the monowheel system.

The cart is analogous to the monowheel itself, while the mounted pendulum is
analogous to the rider. All model parameters are mentioned in Table 3.

Table 3. Nominal values of model parameters.

Parameter Symbol Unit

m Mass of the pendulum rod 75 kg
M Mass of the cart 35 kg
l Pendulum length up to COG 0.6 m

Jm Motor rotor moment of inertia 3.26× 10−2 kg·m2

Rm Motor armature resistance 6.5 Ω
kb Motor back EMF constant 0.013 V/rad/s
kt Motor torque constant 0.58 N·m/A
R Motor pinion radius 0.04 m
C Friction coefficient for cart 0.04 N/m/s
Ip Inertia of pendulum rod 6.75 kg·m2

G Gravitational constant 9.81 m/s2
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The kinematics of the system are defined as[
xp
yp

]
=

[
x + l sin θ
−l cos θ

]
. (1)

The Lagrangian for a system of particles is defined by

L = T −U, (2)

where U = −mglcos θ is the total potential energy of the system, and T is the total kinetic
energy, which is the sum of the translational (Tt) and rotational kinetic energy (Tr). The total
translational (Tt) kinetic energy includes the kinetic energy of both the cart and pendulum;
i.e., Tt = Ttc + Ttp. The translational kinetic energy Ttc cart is given by

Ttc =
1
2

Mc ẋ2. (3)

The rotational kinetic energy (Ttp) cart is given by

Ttp =
1
2

m

[(
dxp

dt

)2

+

(
dyp

dt

)2
]

. (4)

From (1)–(4), we get

L =
1
2

Mc ẋ2 +
1
2

mẋ2 +
1
2

ml2θ̇2 + mlẋθ̇cos θ +
1
2

Iθ̇2 + mglcos θ. (5)

Since the system has 2 DOF, it possesses two Lagrangian equations of motion, as given below:

d
dt

∂L
∂ẋ
− ∂L

∂x
= F− cẋ, (6)

d
dt

∂L
∂θ̇
− ∂L

∂θ
= −bθ̇. (7)

From (5)–(7), we get

(M + m)ẍ + mlθ̈cos θ + mlθ̇2sin θ = F− cẋ, (8)

(Ip + ml2)θ̈ + mlẍcos θ + mglsin θ = −bθ̇. (9)

3.1. Linearization

Linearization is a method used to calculate the linear approximations of a nonlin-
ear system function that are valid within a small range of values around an operating
point. The linear approximation is assessed using the first-order Taylor series expansion,
thereby ensuring the system’s local stability and steady-state condition at an equilibrium
point. This helps in analyzing a system’s stability and disturbance rejection property.
For a system or a function defined as dx

dt = F(x, t), the linearized system is expressed as
dx
dt ≈ F(a, t) + DF(a, t)(x− a), where a is the operating point and DF(a, t) is the first-order
differentiation at point a.

By the substitution of variables such as x1 = x, x2 = θ, x3 = ẋ, x4 = θ̇, from (8) and
(9), we get

ẍ =
bmlθ̇cos θ + m2l2gsin θcos θ + (I + ml2)(F− cẋ + mlθ̇2sin θ)

m2l2sin2θ + Mml2 + (M + m)I
. (10)

θ̈ =
−(Fmlcos θ − cmlẋcos θ) + m2l2θ̇2sin θcos θ + (M + m)(bθ̇ + mglsin θ))

m2l2sin2 θ + Mml2 + (M + m)I
, (11)
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Writing Equations (10) and (11) in matrix form,

f (X, U) =


x3
x4

bmlx4cosx2+m2l2gsinx2cosx2+(I+ml2)(F−cx3+mlx2
4sinx2)

m2l2sin2x2+Mml2+(M+m)I
−(Fmlcosx2−cmlx3cosx2)+m2l2x2

4sinx2cosx2+(M+m)(bx4+mglsinx2))

m2l2sin2x2+Mml2+(M+m)I

.

Now, considering the operating point as (X0, U0) = ([ 0 π 0 0 ], 0) for linearization, we
obtain our state space matrix as

Ẋ =


0 0 1 0
0 0 0 1

0 m2l2g
α

−(I+ml2)c
α

−bml
α

0 mgl(M+m)
α

−mlc
α

−b(M+m)
α

X +


0
0

I+ml2

α
ml
α

F,

where α = I(M + m) + Mml2. The force applied F is generated by the PM DC motor, and
the relation between F and the applied voltage Vm is F = ktVmr−ktkb ẋ

Rmr2 = ktVmr−ktkbx3
Rmr2 .

By substituting the values of constants, we get

Ẋ =


0 0 1 0
0 0 0 1
0 11.772 −0.0153 −1.067× 10−4

0 28.776 −0.0204 −2.6074× 10−4




x
θ
ẋ
θ̇

+


0
0

0.0446
0.0595

Vm,

Y =
[
1 0 0 0

][
x θ ẋ θ̇

]T .

Upon analysis, it has been found that rank of state matrix A is 3, and the ranks of both the
controllability as well as observability matrices are also 3. Hence, it can concluded be that
the system is both controllable as well as observable, as the ranks are the same as that of
matrix A.

4. Control Analysis

Various full-state feedback control methods—mainly pole placement and LQR control
methods—were implemented and analyzed for this system, as shown in Figure 3.

Figure 3. Full state feedback control—pole placement and LQR.

Both the methods have exactly the same physical structure, and we can implement
our results using either of these controllers. What sets them apart from each other is that,
while the implementation of K in both is the same, the method of choosing the value of
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K is different. For pole placement, we solve for K by choosing closed-loop pole locations.
However, the issue here is the determination of the most optimal location for those poles,
especially for higher-order systems. On the other hand, with LQR, instead of picking pole
locations, we find the optimal K matrix by choosing closed-loop characteristics based on
the desired performance and efficiency of the system.

4.1. Pole Placement Control

The open-loop poles are in the unstable region, as discussed in the root locus section.
The poles are required to be in the stable region. For the same region, the pole placement
method is implemented, where the open-loop poles are chosen as [−20 − 10 − 25 − 15]T .
The response is shown in Figure 4.

Figure 4. Pole placement control.

However, these results are not realistic, as with such a trajectory, the vehicle will
have high chances of toppling over. Moreover, instead of choosing arbitrary poles for pole
placement control, a more systematic approach would be the LQR method.

4.2. LQR Control

For this system, we utilize an LQR method with an optimal control regulator that
tracks a reference trajectory better than traditional controllers such as PID. This method is
beneficial when we linearize nonlinear systems about defined equilibrium points. While
the LQR method may be limited to linear systems, they can be highly effective tools
for realizing exponentially stable controllers used in linearized nonlinear systems. LQR,
by definition, gives the optimal state-feedback law that minimizes particular quadratic
objective functions.

A basic LQR control system model for the monowheel has been implemented by
writing code in the MATLAB environment, along with implementing that code on the
model developed on MATLAB Simulink with Q = 400× diag([1000, 1, 10, 1]) and R = 0.05;
the step response is shown in Figure 5 with tr = 1.35 s, ts = 2.94 s.
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Figure 5. Step response for LQR control.

It is important to note that the monowheel would be subjected to a wide range of
masses when used for real-world applications, as well as when different people try to ride
it. The system needs to maintain dynamic stability and self-balancing properties for a wide
variation in masses. The previously established LQR control model is accordingly altered,
which was also performed in the MATLAB program. The current model can sustain riders
with weights ranging from 12 kg to 180 kg while in motion. However, the very smooth
responses are available in the range of 30 kg to 180 kg, assuming the frame can sustain
such weights. The step responses for different weights are shown in Figure 6a–d.

(a) (b)

(c) (d)

Figure 6. Step responses at various masses. (a) Weight = 10 kg. (b) Weight = 40 kg. (c) Weight = 120 kg. (d) Weight = 180 kg.

The plant model in MATLAB Simulink represents the state-space equations as blocks.
Likewise, the controller and sensor designs were developed from first principles without



Appl. Sci. 2021, 11, 9766 11 of 25

the use of any predefined blocks. This system accepts position x as its reference input.
Figure 7 shows the responses of all four states of the system. Only one of the states (x)
contributes to making the system controllable.

Figure 7. State responses, where x is position, θ is angle of pendulum from cart, x′ is velocity, and θ′ is angular velocity.

5. Kalman Filter Estimation and LQG Control

The Kalman Filter is an algorithm that helps in the determination of the estimated
values of unknown variables using known measurements observed over some time. It
is an optimal predictor–corrector type estimator. Observed over time, using a series of
realistic measurements involving disturbances such as statistical noise, the Kalman Filter
essentially minimizes the estimated error covariance while the initially assumed conditions
are satisfied. Over each time interval, estimating a joint probability distribution gives
the approximations of unknown variables [34,35]. These estimates are a great deal more
accurate than those derived with only a single measurement. Since the mean-squared
errors of estimated values are minimized for linear stochastic systems, the approach is also
called the linear least mean squares estimator (LSME). The Kalman filter determines the
monowheel position state vector because both the velocity and angle can be measured
using predefined sensors. At the same time, it is challenging to find out the exact value of
position using this approach. However, it is possible to estimate position values accurately
since this state is both controllable and observable, as already established earlier. Kalman
filters estimate states based on linear dynamical systems. The mathematical equation
that represents the evolution of the state from time k1 to k is given by the following
process model:

xk = Axk−1 + Buk + wk.

Here, the state transition matrix is given by A. This matrix is then applied to xk−1, which
is the vector of the state in the previous time interval. The control-input matrix is given
by B, where uk is the input. wk−1 represents the process noise, which has covariance Q
and is assumed to be zero-mean Gaussian. The relationship between the state and the
measurement is shown by the coupling of the process and measurement models together.
At a time step k, it is given as

zk = H xk + vk.

Here, the measurement vector is given as zk, while the measurement matrix is given as H.
The measurement noise vector is given by vk, and it is assumed to be zero-mean Gaussian
with covariance R. At time k, the Kalman filter provides an estimate of states xk, when
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x0—i.e., the initial condition is known—as well as values such as the series of measurement
z1, z2, . . . , zk, and system information, represented by A, B, H, Q, and R, are known. In our
case, assuming a rider mass m = 80 kg, R = 1, N = zeros(length(F), length(F)),

Are f =


0 0 1 0
0 0 0 1
0 12.6676 −0.0152 −0.0001
0 30.3496 −0.0206 −0.0003

, Bre f =


0
0

0.0444
0.0601

,

G =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

The two stages of Kalman filter algorithm are prediction and update. Appropriate
code was formulated in MATLAB and tested on the Simulink model to implement the
stages. Figures 8 and 9 show a comparison between the estimated value and the measured
value of vehicle position and velocity, respectively.

Figure 8. Position estimation.

Figure 9. Position error.

Subsequently, Figures 10 and 11 give the estimation errors corresponding to position
and velocity, respectively. The red dotted line is the estimated value in the estimation
graphs, and the blue line represents the actual value.



Appl. Sci. 2021, 11, 9766 13 of 25

Figure 10. Velocity estimation.

Figure 11. Velocity error.

With a steady increment in velocity, the estimated value of position is close to the true
value; i.e., the error is minimum. In the velocity estimate, upon a sudden change in velocity,
there is a significant difference between the actual value and the estimated value for that
particular instance. This estimation analysis considers the rider’s mass to be 80 kg. With a
change in weight, the estimation would also change. For this, a mass-adaptive system is
under formulation.

Since the system has some noise in it, a second approach is explored using LQG control.
The aim is to provide control with minimum noise. LQG control, a combination of LQR
control and the Kalman Filter, is an optimal control solution where white Gaussian noise
drives the linear systems. A standard LQG controller is robust to significant variations
in system parameters due to its dependence on the standard Kalman filter. LQR control
and Kalman filter estimation responses are shown, followed by the responses with the
LQG control. Figure 12a shows the velocity response of the noisy system with LQR
control. Figure 12b compares the LQR-controlled velocity response with the Kalman filter
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estimation of the velocity state. Figure 12c shows the velocity response of the noisy system
with LQG control. Figure 12 compares the LQG controlled velocity response with the
Kalman filter estimation of the velocity state under LQG controlled action.

(a) (b)

(c) (d)

Figure 12. Velocity responses with LQR and LQG control. (a) Velocity response with LQR control. (b) Velocity estimation
during LQR control. (c) Velocity response with LQG control. (d) Velocity estimation during LQG control.

5.1. Factoring in Velocity

The previous model showed the precise representation of the pendulum cart system.
Although the monowheel system is analogous to the pendulum cart system, it is not
precisely the same. The pendulum cart system gives the state x (position) as the primary
output. In contrast, for the monowheel system, we require the velocity to be the system
output, and the reference input is a velocity that the rider provides manually. The reference
point x (position state) of all other states is controllable and observable in the pendulum cart
system, which is in the continuous-time domain. However, the monowheel system works
in discrete time. In reality, the input is not bounded, and hence manual constraints are
needed. Converting the original LQR model into a more realistic system by replacing the
initial position reference input with a joystick’s velocity input overcomes such challenges. A
saturation block is introduced to bound the intake within practical limits, followed by a rate
limiter to bound the acceleration. The velocity input is then passed through an integrator
to generate a corresponding position signal, which is fed into the plant. The entire model is
converted into a discrete time-domain system to enable the smooth functioning of sensors
and micro-controllers while working on the hardware. Figures 13 and 14 provide real-time
velocity responses. The light-blue plot shows the controlled input after the action of LQR
control. The green plot represents the vehicle’s final velocity output after factoring in
self-balancing control action and dynamic stability. The orange plot shows the rider’s
velocity as an input in real time, within 30 s.
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Figure 13. Input-regulated output speed.

Figure 14. Reference point.

Figure 15 demonstrates the velocity response of the system (with noise) when a step
reference input is given. The system takes about 1.6 s to stabilize.

Figure 15. Step response of system with a weight of 80 kg.
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5.2. Disturbance Adaptation

Next, we must understand that, for any vehicle, the real-life application is significantly
different from simulations that are made considering ideal conditions, merely because of
the external disturbances, such as wind, friction, gradient, etc., that are associated with the
real world. To adapt to such uncertainties, a certain degree of white noise is introduced in
the Simulink model, mimicking these disturbances. The white noise power is assumed to
be 0.0000008× Ts, which is a fair representation. The responses for different weights are
shown in Figure 16. The response output becomes smoother as the rider’s mass increases
due to the greater inertia associated with increased mass.

(a)

(b)

Figure 16. Velocity response of the system at different masses. (a) Weight = 30 kg. (b) Weight =
180 kg.

6. Reference Model Assisted Adaptive Control

Adaptive control law and adaptive laws [36,37] are formulated using a reference
model-assisted adaptive control structure to make the system adaptive to various changes
in parameters. The dynamic equations [38] of our system are

ẋ1(t) = x3(t), (12)

ẋ2(t) = x4(t), (13)

ẋ3(t) = −
B
M

x3(t)−
g
M

p1x2(t) +
1
M

u(t), (14)

ẋ4(t) =
B
M

p2x3(t) + gp2x2(t) +
g
M

p3x2(t)−
1
M

p2u(t), (15)

where B is the constant coefficient of friction, M is the mass of the monowheel, and g is
the acceleration due to gravity. p1, p2 and p3 are the variable parameters, where p1 = m,
p2 = 1

l and p3 = m
l . Here, m represents the rider mass and l represents the rider height,
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which will vary from person to person. Equations (14) and (15) have been derived in [38]
through analyses similar to those mentioned in Sections 3 and 3.1.

For ease of analysis, certain mathematical adjustments have been made. Let us define

x5(t) = x4(t) + p2x3(t), (16)

and so through differentiation on both sides, we get

ẋ5(t) = ẋ4(t) + ṗ2x3(t) = p2 g x2(t). (17)

Our nominal model is thus chosen as

ẋ1(t) = x3(t),

ẋ2(t) = x5(t)− p2x3(t),

ẋ3(t) = − B
M

x3(t)−
g
M

p1x2(t) +
1
M

u(t),

ẋ5(t) = p2 g x2(t).

Expressing in state-space format,


ẋ1
ẋ2
ẋ3
ẋ5

 =


0 0 1 0
0 0 −p2 1
0 − g

M p1 − B
M 0

0 gp2 0 0




x1
x2
x3
x5

+


0
0
1
M
0

u(t). We are

only interested in the velocity and angle response; i.e., the states x3 and x2. Since the state
x1 does not directly govern any of the other states, as well as being irrelevant to our further
analysis, it has been eliminated in order to reduce redundancy. Hence, the new state space
equations after re-writing states [x2, x3, x5] as [z1, z2, z3] are given as

ż1 = −p2z2 + z3, (18)

ż2 = − g
M

p1z1 −
B
M

z2 +
1
M

u(t), (19)

ż3 = gp2z1. (20)

The corresponding reference model has been chosen as follows:

˙̂z1 = − p̂2ẑ2 + ẑ3, (21)

˙̂z2 = − g
M

p̂1ẑ1 −
B
M

ẑ2 +
1
M

û(t), (22)

˙̂z3 = gp̂2ẑ1. (23)

The state error is defined as ei = x̂i − xi, where i = 1, 2, 3 for this system. The tracking error
dynamics corresponding to each state are formulated as follows

ė1 = − p̂2e2 − p̃2z2 + e3, (24)

ė2 = − g
M

p̂1e1 −
g
M

p̃1z1 −
B
M

e2 +
1
M

(û− u), (25)

ė3 = gp̂2e1 + gp̃2z1, (26)

where p̃i = p̂i − pi(i = 1, 2). From these tracking errors, the adaptive update laws are

˙̂p1 =
α2g
β1M

z1(t)e2(t), (27)

˙̂p2 = − α1

β2
z2(t)e1(t)−

α3

β2
gz1(t)e3(t), (28)

where βi > 0, i = 1, 2 are adaptation gains to provide desired control authority over the
transient behavior. Coefficients αi > 0, i = 1, 2, 3 are chosen to provide a constrained
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solution such that the suffix pertains to the error dynamics in which the parameter error
term appears. The adaptive control law is chosen as

u(t) = û(t)− M
α2

(
g
M

p̂1e1 − α1e1 p̂2). (29)

6.1. Lyapunov Stability Analysis

Let our Lyapunov candidate function be

V =
1
2 ∑

i=1,2,3
αie2

i +
1
2 ∑

i=1,2
βi p̃2

i . (30)

By differentiating V with respect to time, we get

V̇ = ∑
i=1,2,3

αiei ėi + ∑
i=1,2

βi p̃i ˙̂pi. (31)

Substituting the error dynamics, adaptive update laws, and adaptive control laws (ėi, ˙̂pi, u)
in order to cancel out all p̃i, we finally arrive at

V̇ = − B
M

α2e2
2 + e1e3(α3gp̂2 − α1). (32)

For the function to be Lyapunov stable, V̇ must be negative definite. The term −α2
B
M e2

2 is a
negative definite term. If e1e3 = 0, then, V̇ is negative definite. When e1e3 6= 0, we must
find a range of values of α1 and α3 for which e1e3(α3gp̂2 − α1) is negative at all times.

If e1e3 > 0, then
(α3gp̂2 − α1) < 0,

α1

α3
> p̂2g. (33)

If e1e3 < 0, then
(α3gp̂2 − α1) > 0,

α1

α3
< p̂2g. (34)

Thus, the proposed adaptive control structure with the constraints derived in Equations (33)
and (34) guarantees V̇ < 0, which implies that V ∈ L∞ which from Equation (30) implies
that ei = x̂i −xi,p̃i = p̂i −pi ∈ L∞ and so xi, p̂i ∈ L∞. The control signal u(t) as given by
Equation (29) is also bounded; that is, u ∈ L∞. Next, from Equations (26) and (28), we
find that ėi, ˙̂pi ∈ L∞ because all the signals which are part of those equations are bounded.
Additionally, since V̇(t) is lower-bounded by the negative of the squared error signals, the
error signals also satisfy the following property: ei ∈ L2. Note that such a property is not
applicable to the parameter error signals p̃i in general. In conclusion, since ei ∈ L∞ ∩ L2
and ėi ∈ L∞, the corollary of the Barbalet lemma implies that ei(∞) = 0, i = 1, 2, 3.

The reference model stabilizer is built using LQR control techniques with a structure

û(t) = K2(K1r(t)− ẑ), (35)

where K1 and K2 are 3 x 1 and 1 x 3 state control and reference control gain matrices,
respectively, as mentioned in Table 4, meaning that the reference signal stabilizes at the
desired velocity value inputted by the rider.

Table 4. Nominal values of parameters and feedback gains.

Parameter Nominal Value Bounds

p1 80 kg 50–120 kg
p2 1.67 m−1 1.25–2.5 m−1

K1 [0.0221 63.223 0.0159] -
K2 [0; 1; 0] -
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6.2. Building the Adaptive Controlled System

The system was built according to the following block diagram as shown in Figure 17.

Figure 17. Model assisted adaptive control structure for Monowheel System.

6.3. Simulation Results and Discussion

Next, we carry out a simulation for the proposed adaptive control environment in the
monowheel system. Parameter p1 is varied from 80 kg to 110 kg at 50 s of the simulation;
i.e., the load mass is increased by 30 kg. Figure 18 shows a comparison between the graph
of the reference model and the corresponding nominal model outputs.

Figure 18. The reference and the nominal states.

It is to be noted that the reference and nominal models were set at different initial con-
ditions. The initial conditions of reference model are considered to be [z10, z20, z30] = [0, 0, 0]
and [ẑ10, ẑ20, ẑ30] = [−1.5, 4, 2]. The values of the nominal parameters are as mentioned
in Table 4. Due to the unequal initial conditions, the nominal system state responses take
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around 30 s to completely stabilize into the values of the reference system state response.
Due to the introduction of disturbance in parameter p1 at 50 s, we observe a spike in the
nominal state responses, which takes around 20 s to stabilize completely at t = 70 s. The
corresponding state errors are shown in Figure 19.

Figure 19. State errors.

Once the reference system is stabilized, the next task is to develop the adaptation laws.
This mechanism consists of the tracking-error dynamics ėi, parameter estimation dynamics
˙̂pi, and adaptive control law u(t) for i = 1, 2, 3, as established in Equations (24)–(30),
respectively. This mechanism is designed such that all the tracking errors converge to zero
asymptotically. In addition, the parameter estimates p̂i, i = 1, 2 converge to the steady-state
values within the bounds mentioned in Table 4 and satisfy the constraints obtained in
Equations (33) and (34). The Lyapunov stability analysis is utilized to obtain the parameter
constraints and to choose the tuning parameters (i.e., αi, βi > 0, i = 1, 2, 3). The chosen
values of such tuning parameters are presented in Table 5.

Table 5. Adaptation gains.

Parameter Value

α1 0.23
α2 2.8
α3 10−8

β1 0.1
β2 2

Based on these adaptation gain values, Equations (32)–(34) were implemented on MAT-
LAB Simulink, and the corresponding responses were obtained. Figure 20 demonstrates that
for the chosen values of adaptation gain values, the derivative of the Lyapunov candidate
function is always negative definite, as it satisfies the condition in Equation (33). Using these
values, the tracking-error dynamics are stabilized around zero as shown in Figure 19. The
proposed controller can adapt to the change, which is introduced at 50 s and ensures the
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convergence of the error between the two responses to zero within a short time of 20 s. The
error, which was already zero before the change in parameters, re-converges to zero after
short transience, thereby demonstrating the controller’s robustness, as shown in Figure 19;
that is, the tracking error is dynamically stable around 0, and it is at zero except for a brief
period of transience immediately following the change in a parameter.

Figure 20. Validation of negative-definite derivative of Lyapunov candidate function.

It is equally important to obtain the bounded steady-state response of the estimated
parameters (p̂i(t), i = 1, 2, 3) of the reference model. Hence, using the heuristic approach and
the knowledge of the monowheel system, the parametric update laws in Equation (28) and
the control law in Equation (29) have been tuned. The response of estimated parameters is
shown in Figure 21, and the corresponding parameter errors are as shown in Figure 22. The
oscillations and damping are observed in the response of p̂i(t), i = 1, 2 due to the presence of
tracking errors in the dynamics of the parameter update laws in Equation (28).

Figure 21. Parameter estimates.
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Figure 22. Parameter errors.

It is necessary to obtain the regulatory response of the monowheel system in the pres-
ence of parametric violation. During this process, the gains (i.e. αi) of the adaptive control
law u(t) are required to be tuned around their optimal values to satisfy the constraint in
Equation (33). The responses of state variables and the control action around the signal r(t)
under parametric uncertainties introduced from t = 50 are shown in Figure 23. Note that
all the variables are asymptotically stabilized within their respective safe limits prescribed
as per the control objectives. The monowheel has shown an over-damped velocity response
after introducing the uncertainties at 50 s, which may be the prime source of the oscillatory
behavior of estimated parameters and tracking-error dynamics.

Figure 23. Comparing stabilized input and Adaptive Control Law.
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It is to be noted that for the given system, the final velocity output indeed comes close
to the actual reference input that is inputted by the rider in real time as he rides. Figure 24
shows this. The entire adaptive control structure is implemented in MATLAB Simulink to
obtain simulation-based results.

Figure 24. Comparing reference input velocity and actual velocity output.

All tracking errors converge to 0 by 30 s, and upon further parameter disturbance, the
responses take 20 s to settle back to zero. The controller gives a robust controlled output for
over 30 kg (+25% loading) of load disturbance. It also provides a similar kind of controlled
output when there is a change in the second parameter; i.e., the upper body height of the
rider. However, this paper has not discussed the fact that it is impractical for the rider’s
height to change while riding a moving vehicle. All parameter estimates also stabilize at
a finite point, both before the disturbance as well as after disturbance. The control input
u(t) is such that it ensures that the nominal system model mimics the reference model.
At certain times, the input torque goes as high as 100 Nm—a permissible value, as motor
selection can be performed accordingly.

7. Concluding Remarks

In this paper, a complete analysis of the monowheel system is carried out, along
with different control methods for dynamic stability and self-balancing, followed by the
formulation of a reference model-assisted adaptive control structure that helps the system
to adapt to sudden disturbances in parameters. A realistic estimate of the monowheel’s
physical parameters was made by referring to Ryno Motor’s patent US20120217072A1.
Based on that, all other system parameters were calculated, followed by an analysis of the
kinematics and the system’s dynamics using the Lagrangian dynamic formulation and
representing the system in its state-space form. Both pole placement and LQR control
methods were explored using a MATLAB Simulink model to mimic the system. Various
modifications were made to allow the system to withstand a wide range of rider masses
with weights ranging from 12–180 kg while in motion. However, very smooth responses
are available in a range of 30–180 kg, under the assumption that the frame would withstand
such masses. More modifications were made to consider the self-balancing property under
a wide variation of velocity changes and account for external disturbances introduced as
white noise. Next, an LQG controller was designed to account for any additional wind
disturbances. The results were compared with that of the regular LQR controller, followed
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by implementing a Kalman filter to estimate the position state of the monowheel based on
all other available measured parameters. The maximum rider speed is reached at 20 km/h,
and all analysis is performed within the range of 0–20 km/h. However, higher speeds are
achievable by changing the calculations accordingly.

Next, we moved on to designing a reference model-assisted adaptive control structure
for the system so that the system output responses can adapt to a sudden change in
parameters and maintain a favorable outcome. For this structure, nominal and reference
models were designed, followed by the formulation of error dynamics and adaptive
update and control laws. The Lyapunov stability analysis of this system was carried out.
A reference model stabilizer was formulated using the standard LQR control method.
Although the self-balancing property was achieved for a wide range of masses using LQR
control and the system has been made adaptive to load disturbances, the system still has a
few shortcomings:

i. Self-balancing and stability have not been analyzed for cases with sudden braking;
ii. All analysis was conducted under the assumption that the frame’s mass is 35 kg and

the maximum velocity to be attained is 20 km/h;
iii. A standard incline gradient ratio of 1:4000 feet is assumed. For inclinations greater

than that, there will be a change in the calculations and analysis;
iv. After introducing a load disturbance, the system takes around 20 s to stabilize at the

desired value.;
v. The system is adaptively controllable only within the parameter ranges given in

Table 4.

Upgraded designs to account for such shortcomings and attempt to implement these
control methods in a physical model will be our primary focus of research in the future.
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