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Abstract: Missing data caused by sensor faults is a common problem in structural health monitoring
systems. Due to negative effects, many methods that adopt measured data to infer missing data have
been proposed to tackle this problem in previous studies. However, capturing complex correlations
from measured data remains a significant challenge. In this study, empirical mode decomposition
(EMD) combined with a bidirectional gated recurrent unit (BiGRU) is proposed for the recovery
of the measured data. The proposed EMD-BiGRU converts the missing data task as predicted
task of time sequence. The core of the method is to predict missing data using the raw data and
decomposed subsequence as the decomposed subsequence can improve the predicted accuracy.
In addition, the BiGRU in the hybrid model can extract the pre-post correlations of subsequence
compared with traditional artificial neural networks. Raw acceleration data collected from a three-
story structure are used to evaluate the performance of the EMD-BiGRU for missing data imputation.
The recovery results of measure data show that the EMD-BiGRU exhibits excellent performance
from two perspectives. First, the decomposed subsequence can improve the accuracy of the BiGRU
predicted model. Second, the BiGRU outperforms other machine learning algorithms because it
captures more microscopic changes of measured data. The experimental analysis suggests that the
change patterns of raw measured signal data are complex, and therefore it is significant to extract the
features before modeling.

Keywords: structural health monitoring; deep learning; data loss recovery; empirical mode decom-
position; bidirectional gated recurrent unit

1. Introduction

Structural health monitoring (SHM) systems have been installed on critical infras-
tructures, such as large-span bridges [1]. During the procedure of long-term monitoring,
SHM provides a critical research technique for civil structures by analyzing the internal
response, external excitation, and environmental impacts. The long-term operation of
SHM systems can accumulate large amounts of sensory data, which is helpful in assessing
structural safety and stability. However, there are typical types of sensor faults: (a) sensor
drift, (b) complete failure, (c) precision degradation, and (d) missing data due to equipment
failure, the ground rotates, low-frequency noise from environmental vibration, and so on.
In the above problem, the missing data are a common error in SHM systems and affect data
mining to lead to misleading results. In addition, various factors, such as network commu-
nication interference and equipment failure, can lead to missing data [2]. Completed data is
an important factor in ensuring the safety of infrastructure conditions. Without the correct
imputation, missing data can significantly affect the measured signals inducing inaccurate
estimations for the modal parameters [3]. Unfortunately, the existing methods can effec-
tively assure the integrity of the measured signal. Therefore, many experts and scholars
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have studied constructed technology to recover missing data to support the application of
SHM systems.

Large amounts of missing and corrupted monitoring data can reduce the accuracy of
algorithms or model analysis, which can introduce large deviations in certain statistical
inferences or decision-making. To reduce the risk of making incorrect inferences and
improve structural health assessment, it is essential to find suitable methods for handling
missing data in SHM. In recent years, many researchers have presented many methods to
address the problem. One type of method attempts to reconstruct the complete signal from
the raw sensory data. Such as, Bao [4] proposed a method of missing data repair using fast-
moving wireless sensing technology and investigated its mechanism through experimental
analysis. It indicated that the doppler effect was the main factor leading to missing data.
Based on this, Bao adopted compressed sampling technology to restore the missing data
and verified its effectiveness with acceleration monitoring data from the Songpu Bridge in
Harbin, China. Huang [5] proposed a Bayesian compressive sampling algorithm that can
be used to reconstruct near-sparse signals and applied to repair lost acceleration signals
in health monitoring. He noted that this algorithm was equally effective for the signals
with low sparsity levels. Hong [6] used two finite impulse response filters to reconstruct
the displacement and velocity from the acceleration. Then this method was evaluated by
using wind tunnel data, and the experimental result showed that the proposed method
had high accuracy.

Meanwhile, considering that randomly missing data is equivalent to compressed data
in compressive sensing, Bao [7] studied the application of compressive sensing theory to
recover missing data from wireless sensors of structural health monitoring. He adopted
random demodulation techniques to embed the compression-aware algorithm into wireless
sensors. The field test results on the Songpu Bridge in Harbin showed that missing data
reconstruction based on the compression-aware theoretical algorithm was feasible. Zou [8]
embedded a missing data repair algorithm based on compressed samples into the Imote2
wireless accelerometer to handle missing data problems during signal transmission. It
indicated that the reconstruction quality of the signal was affected by the noise level of
the signal and the missing data rate. Liu [9] proposed a combination of a state-space
strategy and singular value decomposition to reconstruct multivariate time series collected
from structural health systems. This model can effectively determine the correlation
between multivariate variables and fill in missing data. Wan [10] reconstructed SHM
data by analyzing the different covariance functions between the collected response data
and proposed multi-task learning based on Bayesian theory. The experimental results
showed that the method has high accuracy compared with traditional methods. Yang [11]
studied the reconstruction problem of randomly lost vibration signals and pointed out
that single-channel acceleration signals had the features of general frequency domain
sparsity while the matrices composed of multi-channel acceleration signals were low-rank
in singular value decomposition. Based on this, he proposed a method based on the `1
parametric constraint-based optimal sparse signal reconstruction and the method of the
nuclear parametric constraint-based optimal low-rank matrix complementation.

Another type of method attempted to use estimated values as missing data replace-
ments, which is called interpolation in statistics. Considering that data interpolation has
long been used as a common means of resolving missing data, many research scholars
have conducted extensive studies on this area and proposed interpolation methods, such
as using spatial and temporal correlation to fill in missing values, autoregressive moving
average models, machine learning and other methods. Choi [12] studied the problem of
lost strain data in the construction monitoring of mega-columns. In the paper, an analytical
relationship equation for strain monitoring data between different measurement points in
the same cross-section of a mega-column was derived, and the lost axial strain data were
repaired accordingly. He [13] defined the missing data problem for critical locations of
structures without installed sensors and then proposed a hybrid model based on finite
element modeling and empirical model decomposition to solve this problem. It indicated
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that the proposed method could reconstruct the data directly in the time domain with high
accuracy. Considering that sensors have non-linear phase components, Chen [13] proposed
a non-parametric joint distribution method to handle the missing data, considering the
correlation between different sensor strains. Luo [14] studied the loss mechanism of steel
construction monitoring data and classified the causes of its monitoring missing data
into three categories: data transmission failure, monitoring system power failure, and
monitoring equipment failure. Based on this, he proposed a missing data compensation
method based on linear regression. Zhang [15] adopted relative information of stress
data to recover the lost stress data from the steel construction monitoring of Hangzhou
Olympic Center by using the linear regression model. Because the data collected by SHM is
non-linear and non-stationary, the traditional method is weak in handling non-linear data.

With the rapid development of artificial intelligence, deep learning methods have
been used to recover the missing data, which has received extensive attention from the
academic community. Since sensor data collected from SHM belong to time-sequence data,
existing deep learning methods such as long short-term memory (LSTM) [16], bidirectional
gated recurrent unit (Bi-GRU) [17], gated recurrent unit (GRU) [18], and convolutional
network [19] have an excellent ability in handling time-sequence data and can effectively
recover missing data. Such as, Liu [20] proposed a data recovery method based on an
LSTM deep learning algorithm to recover missing data of structural temperature. Then,
he discussed in detail the application of LSTM in structural temperature missing data
recovery on the Yangtze River Bridge. It indicated that the proposed method has higher
accuracy in predicting missing data than support vector and wavelet neural networks for
temperature data. Guo [21] proposed a method that used CNN to recover missing vibration
data in the SHM system. Firstly, he used CNN deep algorithm to extract the non-linear
relationship between the missing and real data. Then, CNN was used to extract features of
the incomplete data through the compression layer and gradually extended these features
in the reconstruction layer to recover the missing data. Abd Elaziz [22,23] proposed an
advanced metaheuristic optimization, called aquila optimizer, which is powerful in tackling
missing data. In the above algorithms, the BiGRU model is a data-driven method that does
not need many assumptions and can automatically adjust its parameters according to the
data. More importantly, the BiGRU can extract the pre-post correlations of subsequence,
which can be employed for capturing complex state changes.

Moreover, to gain a better understanding of the variation of measured data, empirical
mode decomposition (EMD) can be used to decompose signal data before BiGRU is applied.
EMD is a self-adaptive analysis method that can capture a set of intrinsic mode functions
(IMFs) [24]. Rezaei [25] used the EMD to recognize damaged locations in beams and made an
FE simulation of a steel beam to verify the effectiveness of the proposed method. The results
showed that IMFs represent the different patterns of the raw measured signal. Gao [26]
decomposed the original power signals into different load components via EMD measured
and fed them into a neural network model. It indicated that the proposed method could
effectively improve the accuracy of predicted ability. He [13] used the EMD method to
decompose the dynamic response data collected by SHM and solved the dynamic response
at critical locations using the model superposition method. The experimental results on the
finite element beam model showed that the proposed method has high accuracy.

In recognition of the strong abilities of EMD to decompose measured signal data
and BiGRU to capture the pre-post correlations of subsequence, an EMD-BiGRU model
is proposed in this study for the imputation of missing measured signal data. Moreover,
shallow neural networks are also used as prediction models, which are used to verify
the proposed EMD-BiGRU. Finally, a three-story building structure from LOS ALAMOS
national laboratory is used to evaluate the performance of EMD-BiGRU [27]. The three-
story building structure is commonly used to evaluate machine learning-based SHM.

The main contributions of this paper are summarized as follows. (1) A novel sensor
data-driven data loss recovery technique is proposed by combining EMD with BiGRU,
which can directly tackle data recovery problems and accurately recover the missing data.
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(2) The comprehensive experiments based on a three-story building structure are used to
explore the effectiveness of the proposed method. The results indicate that the proposed
method achieves a high accuracy under different missing lengths. Meanwhile, several
existing loss recovery techniques built on machine learning algorithms are selected for
analysis, and the results demonstrate the effectiveness and superiority of the EMD-BiGRU.
(3) The data loss recovery of the entire framework is a data-driven method, and it is not
dependent on some assumptions of the data and the FE model.

The remaining sections of this paper are organized as follows: Section 2 introduces
the theoretical background of the EMD-BiGRU. Section 3 describes the experimental set-
ting, including data sets and parameters of different algorithms. Section 4 analyzes the
experimental results of four data sets using the proposed method and traditional method.
Section 5 summarizes some conclusions based on EMD-BiGRU and potential topics for
future research.

2. Proposed EMD-BiGRU Architecture
2.1. Empirical Mode Decomposition

Empirical mode decomposition, as a data processing with adaptive capabilities, can
decompose the signal based on the time-scale characteristics of the data itself [28]. Because
the EMD does not need any pre-defined basis functions, it is the fundamental difference
between EMD decomposition and wavelet decomposition building on a priori harmonic
basis functions and wavelet basis functions [29]. In addition, EMD is well suited to deal
with non-linear, non-smooth time series due to handling data series or signals. Thus, it can
decompose a complex signal into a linear combination that includes the limited number of
intrinsic mode functions (IMF) with frequencies ranging from high to low, where every IMF
represents local features of the original signal at different time scales. Therefore, monitoring
methods based on EMD acquire many mode information from monitoring data, which can
improve the accuracy of predicting missing data. The flow of EMD algorithm is shown
as follows:

Step 1: All maximum and minimum points are found from the given monitoring
data X(t). Then, by using cubic spline interpolation, the maximum values emax(t) are
formed into the upper envelope curve, and the minimum emin(t) is formed into the lower
envelope curve. Thus, the mean value is calculated from the upper and lower envelopes
m(t) = (emax(t) + emin(t))/2.

Step 2: The intermediate signal is calculated via obtained original signal and the polar
envelope h(t) = X(t)−m(t).

Step 3: To determine whether h(t) satisfies the two conditions of the IMF. If satisfied,
h(t) is to be the first IMF, namely im f1(t), else h(t) is as the original signal and return to
Step 1.

Step 4: Separating im f1(t) from the original signal r(t) = X(t)− im f1(t). When r(t)
is a monotonic function and res(t) is a residual function, the iteration finish training.

Finally, the original signal X(t) can be represented as several IMFs and a residual.

X(t) =
n

∑
i=1

im fi(t) + res(t) (1)

where res(t) denotes the residual, n is the number of IMFs, X(t) is the original signal, and
im fi(t) denotes the i-th IMF.

Since each component of the EMD decomposition contains only a portion of the
features of the original sequence, IMF looks simpler than the original sequence. Figure 1
shows the original time series and different components with different sequence features.
In addition, the original time series is selected from structure state #14 of a three-story
building structure. The collected system provides a band-limited random excitation in
the range of 20–150 Hz acting on the three-story structure. A detailed description of a
three-story frame can be seen in Section 3.
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2.2. Bidirectional Gated Recurrent Unit

Recurrent neural network (RNN) is mainly used to extract features from the time
sequence. Because its neurons can accept information not only from other neurons but
also from themselves, RNN has characters of memorability and parameter sharing, which
are powerful in handling non-linear features of monitoring data, such as vibration data,
response data. Due to the problem of RNN gradient disappearing and weak backpropaga-
tion, many researchers have studied long short time memory (LSTM) that can extract the
dependency information between long and short time sequence data [30].

With the development of deep learning algorithms, GRU, as a variant of the LSTM
network model, have few parameters that can improve the trained speed of the model and
predict missing data with suitable high accuracy [31]. In addition, the structure of the GRU
algorithm is similar to LSTM, which is consisted of update and reset gates. The update
gate represents the degree of influence from the output information of the hidden neuron
layer at the previous moment on the hidden layer at the current moment. The larger value
of the update gate represents a larger influence. Thus, GRU can extract the time-sequence
extract features in the order from front to back.

Among them, the update gate represents the degree of influence from the output
information of the hidden neuron layer at the previous moment on the hidden layer at the
current moment. The reset gate represents the neglecting information degree of the hidden
neuron layer at the previous moment. The larger reset gate represents that less information
is neglected. The specific structure of GRU is shown in Figure 2.
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Figure 2. GRU structure diagram.

The following equation can calculate the hidden layer of the GRU:

rt = σ(Wrxt + Urht−1) (2)

zt = σ(Wzxt + Uzht−1) (3)

h̃t = tanh(rt ◦Uht−1 + Wxt) (4)

ht = (1− zt) ◦ h̃t + zt ◦ ht−1 (5)

where r and zt is the reset gate and the update gate, respectively. h̃t is a candidate activation
vector. σ and tanh are sigmoid function and hyperbolic tangent function, respectively.
◦ denotes Hadamard product. Wr, Ur, Wz, Uz, W, U are the weight matrix.

Considering that vibration data at the current moment is associated with the previous
and future moment, Bidirectional GRU (BiGRU) extract two-directions feature of vibration
data. However, unidirectional LSTM and GRU can only access the above but not the
below [32], which is shown in Figure 3.

Figure 3. BiGRU structural diagram.

The formula for BiGRU is shown below:

→
h t = GRU

(
xt,
→
h t−1

)
(6)
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←
h t = GRU

(
xt,
←
h t−1

)
(7)

ht = αt
→
h t + βt

←
h t + bt (8)

where αt is the weight of the forward propagating at time t. βt is the weight of the backward
propagating. bt is the bias vector corresponding to the hidden layer state at time t.

2.3. The Proposed Method

The structural vibration signal has a fluctuating character due to many factors such
as stiffness and damping temperature, etc. As a result, there is a degree of nonlinearity
and non-smoothness in structural acceleration data. The predicted accuracy needs to be
improved for traditional machine learning methods. Considering that the empirical mode
decomposition technique can obtain more mode characteristics and BiGRU is powerful in
modeling the time-series data, an EMD-BiGRU algorithm that predicts the missing data are
proposed. Its specific modeling process is shown in Figure 4, and the flow of the method is
as follows:

Figure 4. Flow chart of EMD-BiGRU prediction.

Step 1: Using EMD method to decompose the raw structural response data X(t) into
several IMFs and residual RES;

Step 2: a feature including all IMFs and residual RES is inputted into the EMD-
BiGRU model;

Step 3: The set of features at the previous step is combined with the original structural
response data X(t) to form a combined data set Con(t). Then, Con(t) is divided into a
training set and a test set, where the training set is input to the BiGRU model for prediction
model training, and then the test set is input to the prediction model to evaluate the
predicted results.

The inputs of the EMD-BiGRU model can be represented as follows:

D = {im f1, im f2, . . . , im fn−1, res} (9)

Con = {Xe, D} (10)

where D denotes the decomposed feature data and im fi is the i-th IMF components. res and
n are residuals and a total number of decomposed IMF components, respectively. Xe de-
notes the historical structural response data and. Con represents the dataset combining
the historical data with the feature data. The detailed process of the proposed method is
briefly explained in Algorithm 1.
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Algorithm 1 EMD-BiGRU Algorithm

1: Definition: M is the length of the missing data;
2: D is decompose by EMD algorithm and the initial feature set is obtained;
D = {im f1, im f2, . . . , im fn−1, res}
3: A features set including original sequence Xe and initial feature D is defined as inputs data.
Con = {Xe, D}
4: Con is split into training and testing dataset and the training is inputted into the EMD-BiGRU
to form predicted model;
5: Testing datasets are inputted into the predicted model to get the final predicted output Ye:
Ye = [e1, e2, . . . , eM]T

6. END

2.4. Evaluation Metric

To assess the accuracy of the EMD-BiGRU in predicting missing data, four evalua-
tion metrics are selected, including mean squared error (MSE), root mean square error
(RMSE) [33], mean absolute error (MAE) [34], and coefficient of determination (R2) [35].

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (11)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (12)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (13)

R2 = 1−
n

∑
i=1

(ŷi − yi)
2/

n

∑
i=1

(yi − yi)
2 (14)

where n is the number of missing data. yi and ŷi are i-th true and predicted values. The
smaller values of MSE, RMSE, MAE represent the method has high predicted accuracy.
The R2 with high value represents that the model has a high fitting ability.

3. Experimental Setting

This section introduces the composition of the data set. In addition, to verify the
validity of the EMD-BiGRU, this paper compares it with six other methods, including
EMD-GRU, BiGRU, GRU, GBR, RFR, and SVR.

3.1. Description of Data Sets

A three-story structure was selected as the damage detection test stand in the experi-
mental procedure, as shown in Figure 5. Each layer is connected by four aluminum columns
(17.7 × 2.5 × 0.6 cm) with aluminum plates at the top and bottom (30.5 × 30.5 × 2.5 cm),
forming a four-degree-of-freedom system. It can be seen from Figure 5 that there was a
central column (15.0 × 2.5 × 2.5 cm) suspended from the top level and a buffer, which can
adjust the narrow space between buffer and central column. It could change the degree of
nonlinearity, and the structure allowed the track to slide in the x-axis direction only.

The shaker that provided excitation to the bottom was mounted on the substrate.
A force sensor with a sensitivity of 2.2 mV/N was mounted at the end of the probe to mea-
sure the input force from the shaker. The sampling interval was set to 3.1 ms, and the sam-
pling frequency was set to 322.58 H. In this study, State#14, namely (change gap = 0.10 mm,
apply 1.2 kg weight to the first layer), is selected as the experimental object where Channel 2,
Channel 3, Channel 4, and Channel 5 denoted the positions of the accelerometers and
Channel 1 denoted the position of the shaker in Figure 6. The four data sets collected from
four acceleration are selected to verify the effectiveness of the proposed method predicting
missing data.
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Figure 5. The three-story building structure.

Figure 6. Position of accelerator sensor installed structure.

To describe the essential characteristics of the four acceleration data, four statistical in-
dicators, including total sample size, mean, maximum and minimum values, and standard
deviation, are selected for the four data sets. The result is shown in Table 1.

Table 1. Statistical indicators for the four acceleration data.

data set A_1 A_2 A_3 A_4

Number of samples 8192 8192 8192 8192
Mean 0.000009 0.000073 0.000304 −0.000018

Standard deviation 0.5366 0.4556 0.4593 0.3856
Min −2.0286 −1.8864 −1.7249 −1.7085
Max 1.9513 2.2541 2.1054 1.4282
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In this table, A_1, A_2, A_3, and A_4 represent collected data from the accelerometer
of Channel 2, Channel 3, Channel 4, Channel 5. Figure 7 shows a curve picture of collected
acceleration data.

Figure 7. Acceleration data set collected from the three-story structure.

First, each data set is divided into two parts, 80% data set is used as a training set,
and the remaining 20% data set is used as a test set. As seen from Figure 8, solid boxes,
as input data, are used to predict the value at the next step. Dashed boxes represent the
missing data during measured signal data. For two points missing data, each input and
output pair consists of 324 samples, including 322 input samples (e.g., 1 to 322) and two
output samples (e.g., 323–324), namely missing data. Then, the input-output pairs are fed
into the EMD-BiGRU model for training, and then a predicted model with two missing
points can be achieved. When a measured signal occurs two missing points, the model can
be used to predict the missing data. Similarly, EMD-BiGRU models predicting different
lengths (5, 10, 20 missing data) can be achieved to tackle the problem of missing data with
different lengths.

Figure 8. Input and output of the proposed model.
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3.2. Acceleration Decomposition Based on EMD

EMD algorithm is used to decompose the raw acceleration data into several IMF
components and one residual res where different components have different trends and
characteristics, representing different features of the fluctuations of the raw acceleration
data. The decomposition results for the four data sets are shown in Figures 9–12. For every
picture, the horizontal axis is the time point, and the vertical axis is the decomposition
value. All components are listed in order of extraction from highest to lowest frequency.

Figure 9. Results of decomposition for A_1 acceleration data sets.

As can be seen from Figures 9–12, the first few IMF components are random com-
ponents with an insignificant pattern of variation. The middle components have the
fluctuating feature to reflect more features of the original data. The last few IMF com-
ponents with low-frequency reflect the slow change process of acceleration. The last
component is the residual, which reflects the overall trend of the acceleration data.

3.3. Parameters Setting of Different Algorithms

In terms of hardware, a server with 128G RAM, 2048 GB hard disk space is selected.
The type of GPU is NVIDIA Tesla K40c, and the type of CPU is Intel Xeon E5. For the
experimental software, the Keras 2.4.3 tool based on Tensorflow version 2.4.0 under python
is selected as the development conditions for the deep learning methods. The parameters
of the seven algorithms are as follows:

The parameters setting of EMD-BiGUR, EMD-GRU, BiGRU, and GRU are as follows:
EMD-BiGUR: The raw acceleration data and decomposed subsequence decomposed

by EMD are inputted into BiGRU algorithms. BiGRU used Tanh activation function, and
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the neurons number is 60. Then, the BiGRU layer linked two fully connected layers, whose
neuron sizes are 512 and 256.

EMD-GRU: The raw acceleration data and decomposed subsequence decomposed
by EMD are inputted into GRU algorithms. The activation function of Tanh is used for
the GRU layer with 60 neurons. The GRU layer linked two fully connected layers whose
neuron sizes are 512 and 256.

BiGRU: The BiGRU used Tanh’s activation function, and the number of neurons in the
hidden layer is 60. Then, the BiGRU layer linked two fully connected layers whose neuron
sizes are 512 and 256.

GRU: The GRU layer used Tanh’s activation function, and the number of neurons in
the hidden layer is 60. The GRU layer linked two fully connected layers whose neuron
sizes are 512 and 256.

The common parameter settings for the mentioned algorithms, such as EMD-BiGUR,
EMD-GRU, BiGRU, GRU, are as follows: The initial learning rate is 0.01, and the optimizer
is selected Adma. The algorithms adopt 300 epochs iteration. The mean square error (MSE)
is used for the loss function, and the Mini-Batch is set to 128.

The parameters setting for machine learning methods such as GBR, RFR, and SVR are
set as follows:

Gradient Boosting Regressor (GBR): the learning rate is 0.1, and the maximum depth
is 6. The range of maximum number of n_estimators is set to [10,100], which is optimized
by using a grid search

Random Forest Regressor (RFR): The range of maximum number of n_estimators is
set to [10,100], which is optimized by using a grid search

Support vector regressor (SVR): a Gaussian RBF function is used as the SVR kernel
function, and a grid search is used to determine the penalty parameters c and kernel
parameters g. The search range c and g are [10−4, 104] and [2−4,24], respectively.

Figure 10. Results of decomposition for A_2 acceleration data sets.
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Figure 11. Results of decomposition for A_3 acceleration data sets.

Figure 12. Results of decomposition for A_4 acceleration data sets.
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4. Analysis of Predicted Results

To evaluate the superiority of the proposed EMD-BiGRU algorithm, six algorithms,
including EMD-GRU, BiGRU, GRU, GBR, RFR, and SVR, were selected for analysis. BiGRU,
GRU, GBR, RFR, and SVR models are single-predicted methods that use raw acceleration
data to predict missing data. EMD-BiGRU, EMD-GRU are hybrid predicted methods based
on EMD decomposition. The decomposed subseries and raw acceleration data are inputted
into hybrid predicted methods together to forecast missing data. To verify the effectiveness
of different algorithms, four acceleration data are located on different locations of a three-
story structure are tested by using different methods, such as EMD-BiGRU, EMD-GRU,
BiGRU, GRU, GBR, RFR, SVR algorithms in Table 2. In addition, point 5 represents that
5 points are missing for raw data sets.

Table 2. Comparison results of different models for the data set.

data set Point Metrics EMD-BiGRU EMD-GRU BiGRU GRU GBR RFR SVR

A_1

5 MSE 0.0160 0.0311 0.1088 0.1005 0.1529 0.1652 0.1292
5 RMSE 0.1264 0.1763 0.3298 0.3170 0.3910 0.4064 0.3595
5 MAE 0.0942 0.1331 0.2525 0.2389 0.3108 0.3232 0.2825
5 R2 94.33% 88.97% 61.40% 64.34% 45.73% 41.39% 54.14%

A_2

5 MSE 0.0065 0.0097 0.0249 0.0249 0.0573 0.0669 0.0429
5 RMSE 0.0808 0.0987 0.1579 0.1579 0.2394 0.2587 0.2070
5 MAE 0.0609 0.0739 0.1175 0.1182 0.1859 0.2010 0.1595
5 R2 96.85% 95.30% 87.97% 87.96% 72.35% 67.72% 79.32%

A_3

5 MSE 0.0040 0.0055 0.0124 0.0114 0.0299 0.0321 0.0244
5 RMSE 0.0634 0.0741 0.1115 0.1066 0.173 0.179 0.1563
5 MAE 0.0458 0.0537 0.0798 0.0763 0.1329 0.1365 0.1200
5 R2 98.15% 97.48% 94.29% 94.78% 86.26% 85.27% 88.78%

A_4

5 MSE 0.0041 0.0164 0.0187 0.0180 0.0440 0.0495 0.0350
5 RMSE 0.0644 0.1281 0.1367 0.1343 0.2097 0.2226 0.1870
5 MAE 0.0470 0.0912 0.0957 0.0938 0.1597 0.1690 0.1414
5 R2 97.26% 89.14% 87.64% 88.07% 70.91% 67.21% 76.87%

Table 2 represents the prediction results for four data sets (A_1, A_2, A_3, and A_4)
using different methods. The bold number indicates that the method has the best perfor-
mance in the corresponding data sets. It can be seen from Table 3 that the EMD-BiGRU
has the minimum values of MSE, RMSE, MAE, and the maximum value of R2, compared
with the other six methods. To be specific, for A_1 data sets, compared with the EMD-GRU
algorithm, the EMD-BiGRU reduces 0.0151, 0.0499, and 0.0389 in MSE, RMSE, and MAE,
respectively, and increases 0.0536 in R2. EMD-BiGRU reduces 0.0151, 0.0499, and 0.0389 in
MSE, RMSE, and MAE, respectively, and an increase of 0.9433 in the R2, compared with
the BiGRU in A_1 data sets. Moreover, the EMD-BiGRU has lower MSE, RMSE, MAE, and
higher R2 than the machine learning models GBR, RFR, SVR in A_1 data sets.

In addition, The MSE values of the EMD-BiGRU for A_1, A_2, A_3, and A_4 are
0.0160, 0.0065, 0.0040, and 0.0041, respectively. Compared to the comparative model’s
minimum MSE, it reduces by 0.0151, 0.0032, 0.0015, and 0.0123 using the EMD-BiGRU
method. Compared to the comparative model’s minimum RMSE, it reduces by 0.0499,
0.0179, 0.0107, and 0.0637, respectively. Compared to comparative model’s minimum
MAE, it increased by 0.0389, 0.0130, 0.0079, 0.0442, respectively. It increased by 0.0536,
0.0155, 0.0067, 0.0812, compared to its comparative model’s maximum R2, respectively.
In summary, GRU, BiGRU, etc., deep learning algorithms outperform GBR, RFR, SVR
machine learning methods on predicted capability, which indicates the superiority of deep
learning in dealing with temporal sequences. EMD-based hybrid models such as EMD-
GRU, EMD-BiGRU have lower errors in MSE, RMSE, MAE compared with single models
such as GRU, BiGRU, which indicates the effectiveness of the EMD method.
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Table 3. Comparison results of different models for data set A_1.

data set Point Metrics EMD-BiGRU EMD-GRU BiGRU GRU GBR RFR SVR

A_1 5 MSE 0.0160 0.0311 0.1088 0.1005 0.1529 0.1652 0.1292
5 RMSE 0.1264 0.1763 0.3298 0.3170 0.3910 0.4064 0.3595
5 MAE 0.0942 0.1331 0.2525 0.2389 0.3108 0.3232 0.2825
5 R2 94.33% 88.97% 61.40% 64.34% 45.73% 41.39% 54.14%

A_1 10 MSE 0.0159 0.0293 0.0730 0.0740 0.1762 0.1864 0.1571
10 RMSE 0.1260 0.1711 0.2702 0.2720 0.4197 0.4317 0.3963
10 MAE 0.0987 0.1327 0.2133 0.2138 0.3328 0.3430 0.3119
10 R2 94.49% 89.84% 74.67% 74.32% 38.87% 35.32% 45.49%

A_1 15 MSE 0.0279 0.0404 0.1008 0.0811 0.1865 0.1968 0.17
15 RMSE 0.1670 0.2009 0.3176 0.2847 0.4319 0.4436 0.4123
15 MAE 0.1293 0.1574 0.2497 0.2234 0.3435 0.353 0.3252
15 R2 90.30% 85.96% 64.91% 71.79% 35.10% 31.54% 40.84%

A_1 20 MSE 0.0327 0.0458 0.1782 0.0849 0.2002 0.2087 0.1866
20 RMSE 0.1809 0.2141 0.4222 0.2914 0.4475 0.4568 0.432
20 MAE 0.1427 0.1693 0.3314 0.2298 0.3557 0.3633 0.3417
20 R2 88.57% 83.99% 37.75% 70.35% 30.08% 27.11% 34.82%

Figure 13 shows the comparison curves between predicted and actual values for the
four data sets using different algorithms. Considering that the number of predicted data is
so long, this study selected part of the predicted result to show (50 points). Experimental
results indicate that EMD-BiGRU can better capture the characteristics of acceleration data
and has a better prediction for missing points.

Figure 13. Cont.
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Figure 13. Comparisons results for different data sets using various algorithms. (a) Comparisons of predicted results for the
A_1 data set using different algorithms. (b) Comparisons of predicted results for the A_2 data set using different algorithms.
(c) Comparisons of predicted results for the A_3 data set using different algorithms. (d) Comparisons of predicted results
for the A_4 data set using different algorithms.

Table 3 shows the predicted results of the A_1 data set using different models, and
the predicted points include 5, 10, 15, and 20. It can be seen from Table 3 that the accuracy
of most algorithms can decrease with the increasing missing points. For example, the
machine learning methods GBR, RFR, and SVR drop a little faster, indicating that these
algorithms are less capable of extracting temporal features of acceleration data. Moreover,
the single model BiGRU GRU has better prediction than the machine learning methods, but
its robustness is poor. The hybrid EMD-based models such as EMD-BiGRU, EMD-GRU are
more robust and have suitable prediction results. In addition, the EMD-BiGRU has lower
MSE, RMSE, MAE compared with EMD-GRU, which indicates that the predicted ability
of EMD-BiGRU is more superior. To be specific, the EMD-BiGRU model only reduces by
5.76% in R2 for predicting points from 5 to 20, which represents that the EMD-BiGRU has a
minor loss. For A_2, A_3, and A_4 data sets, the predicted results using different models
can be seen in Tables 1–3.

Figure 14 shows predicted results on A_1, A_2, A_3, and A_4 by using different
algorithms. It can be seen that EMD-BiGRU can better capture the characteristics of
acceleration data and has a better prediction for missing points. For A_2, A_3, and A_4
data sets, the predicted results using different models can be seen in Figures A1–A3.
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Figure 14. Comparisons results for different data sets using various algorithms. (a) Comparisons of predicted results for the
A_1 data set using different algorithms (points 5). (b) Comparisons of predicted results for the A_1 data set using different
algorithms (points 10). (c) Comparisons of predicted results for the A_1 data set using different algorithms (points 15).
(d) Comparisons of predicted results for the A_1 data set using different algorithms (points 20).
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5. Effectiveness of the EMD-BiGRU for Data Loss Recovery under Different
Structural Conditions
5.1. Data Description

To verify the effectiveness of the proposed method under different structural condi-
tions, a three-story building structure is used for the study. A detailed description of the
three-story building structure refers to Section 3.1.

Table 4 shows the different structural conditions of the three-story building structure.
Four structural conditions are selected in this study. For each structural condition, the col-
lected system provides a band-limited random excitation in the range of 20–150 Hz acting
on the three-story structure. Figures 15 and 16 show the detailed description of different
structural conditions. For State#12, the gap between the bumper and the suspended column
is set to 0.2 mm, which can be simulation impact-induced damage. State#16 is designed for
mass changes and impact-induced damage. State#21 and State#23 accounts for structural
damage due to stiffness reduction.

Table 4. Different structural conditions of the three-story building structure.

Structural Conditions Label Description

Case one State#12 Gap = 0.20 mm
Case two State#16 Gap = 0.20 mm + 1.2 kg mass at the base

Case three State#21 Column: 3BD–50% stiffness reduction
Case four State#23 Column: 2AD + 2BD–50% stiffness reduction

Figure 15. Dimensions information of the three-story building structure.
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Figure 16. Descriptions of the three-story building structure.

5.2. Experimental Analysis

In this case study, all experiments are performed on the same hardware and software
environment. Table 5 shows a comparison of the different structural conditions using the
EMD-BiGRU algorithm. It should be seen that the proposed method achieves high accuracy
and robustness. Specifically, the EMD-BiGRU achieves 0.0118%, 0.1084%, 0.0842%, and
95.81% in MSE, RMSE, MAE, and R2 for 10 points of Case 1. With increasing missing data,
the R2 of Case 1 are 95.81% (10 points), 94.70% (15 points), 91.57% (20 points), respectively,
which shows EMD-BiGRU has high accuracy. In addition, the proposed method has
robustness due to the R2 value dropping slowly. For other structural conditions, Cases
two, three, and four, the EDM-BiGRU has a similar result, and the R2 value is more than
0.9. Therefore, this result shows that the proposed method has high data recovery ability
in civil structures.

Table 5. Predicted results of the three-story building structure using the EMD-BiGRU algorithm.

Structural
Conditions

10 Points 15 Points 20 Points

MSE RMSE MAE R2 MSE RMSE MAE R2 MSE RMSE MAE R2

Case one 0.0118 0.1084 0.0842 95.81% 0.0149 0.1221 0.0954 94.70% 0.0235 0.1532 0.1204 91.57%
Case two 0.0064 0.0799 0.0623 96.71% 0.0092 0.096 0.0746 95.27% 0.0155 0.1243 0.0980 92.12%

Case three 0.0119 0.1092 0.0848 95.54% 0.0143 0.1195 0.0937 94.49% 0.0261 0.1617 0.1282 90.02%
Case four 0.0093 0.0965 0.0753 96.44% 0.0131 0.1146 0.0894 94.99% 0.0255 0.1610 0.1275 90.10%

6. Conclusions and Future Work

This study proposed the EMD-BiGRU method for predicting missing data where the
EMD algorithm decomposes acceleration data into many subseries reflecting structural
model information, and BiGRU effectively extracts the pre-post correlations of subsequence
decomposed by acceleration. Specifically, the proposed EMD-BiGRU method can decom-
pose raw measured signal data into several IMFs and a residual. Every IMF can reflect the
complex changes of the measured data in dimensions. Then, the imputation ability of the
proposed EMD-BiGRU is evaluated using acceleration monitoring data collected from a
three-story building structure. Compared with traditional methods such as EMD-GRU,
BiGRU, GRU, GBR, RFR, and SVR, experimental results on A_1, A_2, A_3, and A_4 show
that EMD-BiGRU has high accuracy in predicting missing points 5, 10, 15, 20. The main
findings of the present study are summarized as follows.

(1) In recognition of the influence of EMD, the EMD-BiGRU and single models such
as BiGRU, GRU, GBR, RFR, and SVR are investigated. The results show that the
proposed EMD-BiGRU method achieves better performance for data imputation and
demonstrates that the proposed method effectively captures the dynamic temporal
characteristics of acceleration data.

(2) With the increasing missing data, the data recovery ability of most algorithms could
decrease. EMD-BiGRU has lower errors in MSE, RMSE, and MAE than single algo-
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rithms such as GRU, GBR, and BiGRU. It indicates that the proposed method has
strong robustness and can be promoted on a large scale in practical applications

(3) For different structural conditions of a three-story building, the EMD-BiGRU exhibits
better data imputation performance. It shows that EMD-BiGRU, as a flexible and
data-driven method, is effective for mining measured acceleration data.

(4) One of the limitations of this study is that EMD-BiGRU is tested using original accel-
eration data without considering the effect of noise. In future work, raw acceleration
data with the noises are considered to solve the imputation of the missing data. An-
other future research direction is that the extension of EMD to tackle missing data
should be studied in the future.
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Appendix A

The predicted results for A_2 data sets using seven algorithms, including EMD-BiGRU,
EMD-GRU, BiGRU, GRU, GBR, RFR, SVR, are shown in Table 1.

Table 1. Comparison results for data set A_2 using different algorithms.

data set Point Metrics EMD-BiGRU EMD-GRU BiGRU GRU GBR RFR SVR

A_2 5 MSE 0.0065 0.0097 0.0249 0.0249 0.0573 0.0669 0.0429
5 RMSE 0.0808 0.0987 0.1579 0.1579 0.2394 0.2587 0.2070
5 MAE 0.0609 0.0739 0.1175 0.1182 0.1859 0.2010 0.1595
5 R2 96.85% 95.30% 87.97% 87.96% 72.35% 67.72% 79.32%

A_2 10 MSE 0.0054 0.0083 0.0156 0.0203 0.0841 0.0935 0.0679
10 RMSE 0.0731 0.0910 0.1250 0.1424 0.2900 0.3058 0.2606
10 MAE 0.0567 0.0711 0.0957 0.1090 0.2259 0.2386 0.2009
10 R2 97.44% 96.03% 92.51% 90.29% 59.68% 55.17% 67.45%

A_2 15 MSE 0.0073 0.0129 0.0200 0.0181 0.0919 0.0992 0.0777
15 RMSE 0.0856 0.1136 0.1415 0.1345 0.3031 0.3149 0.2787
15 MAE 0.0674 0.0887 0.1096 0.1049 0.2375 0.2476 0.2170
15 R2 96.48% 93.78% 90.36% 91.29% 55.77% 52.25% 62.60%

A_2 20 MSE 0.0047 0.0086 0.0829 0.0192 0.1026 0.1091 0.0904
20 RMSE 0.0684 0.0929 0.2880 0.1384 0.3203 0.3302 0.3007
20 MAE 0.0534 0.0727 0.2233 0.1079 0.2524 0.2609 0.2351
20 R2 97.76% 95.87% 60.33% 90.84% 50.92% 47.84% 56.76%

Figure A1 shows the prediction results for the A_2 data set using different comparison
algorithms.
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Figure A1. Comparisons results for different data sets using various algorithms. (a) Comparisons
of predicted results for the A_2 data set using different algorithms (points 5). (b) Comparisons of
predicted results for the A_2 data set using different algorithms (points 10). (c) Comparisons of
predicted results for the A_2 data set using different algorithms (points 15). (d) Comparisons of
predicted results for the A_2 data set using different algorithms (points 20).

The predicted results for A_3 data sets using seven algorithms, including EMD-BiGRU,
EMD-GRU, BiGRU, GRU, GBR, RFR, SVR, which are shown in Table 2.
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Table 2. Comparison results for data set A_3 using different algorithms.

data set Point Metrics EMD-BiGRU EMD-GRU BiGRU GRU GBR RFR SVR

A_3 5 MSE 0.004 0.0055 0.0124 0.0114 0.0299 0.0321 0.0244
5 RMSE 0.0634 0.0741 0.1115 0.1066 0.173 0.179 0.1563
5 MAE 0.0458 0.0537 0.0798 0.0763 0.1329 0.1365 0.12
5 R2 98.15% 97.48% 94.29% 94.78% 86.26% 85.27% 88.78%

A_3 10 MSE 0.0028 0.0056 0.0381 0.0376 0.0575 0.0612 0.0494
10 RMSE 0.0526 0.0751 0.1953 0.1939 0.2399 0.2473 0.2223
10 MAE 0.0396 0.057 0.141 0.1393 0.1821 0.1873 0.1674
10 R2 98.71% 97.36% 82.15% 82.4% 73.06% 71.37% 76.86%

A_3 15 MSE 0.0039 0.0053 0.0195 0.0609 0.0799 0.0825 0.0724
15 RMSE 0.0626 0.0726 0.1396 0.2468 0.2826 0.2872 0.2691
15 MAE 0.0485 0.0563 0.1065 0.1803 0.2151 0.2192 0.2031
15 R2 98.18% 97.55% 90.94% 71.67% 62.84% 61.62% 66.32%

A_3 20 MSE 0.0043 0.0059 0.0707 0.0777 0.0934 0.0954 0.0872
20 RMSE 0.0655 0.0766 0.2658 0.2787 0.3055 0.3089 0.2952
20 MAE 0.0507 0.0596 0.1991 0.2075 0.2341 0.2371 0.2245
20 R2 97.99% 97.26% 66.98% 63.69% 56.37% 55.41% 59.26%

Figure A2 shows the prediction results for data set A_3 using different comparison
algorithms.
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of predicted results for the A_3 data set using different algorithms (points 5). (b) Comparisons of
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The predicted results for A_4 data sets using seven algorithms, including EMD-BiGRU,
EMD-GRU, BiGRU, GRU, GBR, RFR, SVR, which are shown in Table 3.

Table 3. Comparison results for data set A_4 using different algorithms.

data set Point Metrics EMD-BiGRU EMD-GRU BiGRU GRU GBR RFR SVR

A_4 5 MSE 0.0041 0.0164 0.0187 0.0180 0.0440 0.0495 0.035
5 RMSE 0.0644 0.1281 0.1367 0.1343 0.2097 0.2226 0.187
5 MAE 0.0470 0.0912 0.0957 0.0938 0.1597 0.1690 0.1414
5 R2 97.26% 89.14% 87.64% 88.07% 70.91% 67.21% 76.87%

A_4 10 MSE 0.0032 0.0039 0.0518 0.0107 0.0728 0.0770 0.0647
10 RMSE 0.0562 0.0622 0.2277 0.1036 0.2698 0.2774 0.2543
10 MAE 0.0427 0.0471 0.1649 0.0780 0.2063 0.2130 0.192
10 R2 97.92% 97.45% 65.82% 92.92% 52.01% 49.25% 57.35%

A_4 15 MSE 0.0033 0.0048 0.0739 0.0734 0.0844 0.088 0.0784
15 RMSE 0.0578 0.0691 0.2718 0.2709 0.2905 0.2966 0.2801
15 MAE 0.0447 0.0539 0.2029 0.2028 0.2252 0.2305 0.215
15 R2 97.76% 96.8% 50.46% 50.77% 43.38% 41.0% 47.39%

A_4 20 MSE 0.0038 0.0053 0.0841 0.0102 0.0931 0.0960 0.0883
20 RMSE 0.0618 0.0727 0.2901 0.1008 0.3052 0.3099 0.2971
20 MAE 0.0477 0.0566 0.2198 0.0771 0.2370 0.2411 0.2286
20 R2 97.45% 96.47% 43.75% 93.21% 37.74% 35.81% 40.99%
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Figure A3 shows the prediction results for data set A_4 using different comparison
algorithms.

Figure A3. Comparisons results for different data sets using various algorithms. (a) Comparisons
of predicted results for the A_4 data set using different algorithms (points 5). (b) Comparisons of
predicted results for the A_4 data set using different algorithms (points 10). (c) Comparisons of
predicted results for the A_4 data set using different algorithms (points 15). (d) Comparisons of
predicted results for the A_4 data set using different algorithms (points 20).
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