Micro-Nano Machining TiO2 Patterns without Residual Layer by Unconventional Imprinting
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; He, N.; Wu, T.; Hu, P.; Tong, G. Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties. Chem. Eng. J. 2019, 355, 103–108. [Google Scholar] [CrossRef]
- Zhan, D.; Han, L.; Zhang, J.; He, Q.; Tian, Z.; Tian, Z. Electrochemical micro/nano-machining: Principles and practices. Chem. Soc. Rev. 2017, 46, 1526–1544. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, H.; Yao, Q.; Fan, B.; Wang, C.; Xiong, Y.; Jin, C.; Sun, Q. Biomimetic taro leaf-like films decorated on wood surfaces using soft lithography for superparamagnetic and superhydrophobic performance. J. Mater. Sci. 2017, 52, 7428–7438. [Google Scholar] [CrossRef]
- Heinz, O.; Aghajani, M.; Greenberg, A.R.; Ding, Y. Surface-patterning of polymeric membranes: Fabrication and performance. Curr. Opin. Chem. Eng. 2018, 20, 1–12. [Google Scholar] [CrossRef]
- Hirota, K.; Hara, S.; Wada, H.; Shimojima, A.; Kuroda, K. Fabrication of uniaxially aligned silica nanogrooves with sub-5 nm periodicity on centimeter-scale Si substrate using poly(dimethylsiloxane) stamps. ACS Nano 2019, 13, 2795–2803. [Google Scholar] [CrossRef]
- Yang, B.; Cai, F.; Huang, S.; Yu, H. Athermal and soft multi-nanopatterning of azopolymers: Phototunable mechanical properties. Angew. Chem. Int. Ed. 2020, 59, 4035–4042. [Google Scholar] [CrossRef] [PubMed]
- Mathies, F.; Brenner, P.; Hernandez-Sosa, G.; Howard, I.A.; Paetzold, U.W.; Lemmer, U. Inkjet-printed perovskite distributed feedback lasers. Opt. Express 2018, 26, A144–A152. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Zhu, Q.; Feng, L.; Li, X.; Zhu, H.; Miao, H.; Zeng, Z.; Wang, Y.; Li, Y.; Wang, L.; et al. Light-trapping SERS substrate with regular bioinspired arrays for detecting trace dyes. ACS Appl. Mater. Interfaces 2021, 13, 11535–11542. [Google Scholar] [CrossRef]
- Kim, E.; Xia, Y.; Whitesides, G.M. Micromolding in capillaries: applications in materials science. J. Am. Chem. Soc. 1996, 118, 5722–5731. [Google Scholar] [CrossRef]
- Shi, G.; Li, L.; Liu, L.; Xu, D.; Lu, N.; Hao, J.; Huang, C.; Chi, L. Conducting polymer nanowires fabricated by edge effect of NIL. J. Mater. Chem. 2012, 22, 12096–12099. [Google Scholar] [CrossRef]
- Shi, G.; Lu, N.; Xu, H.; Wang, Y.; Shi, S.; Li, H.; Li, Y.; Chi, L. Fabrication of hierarchical structures by unconventional two-step imprinting. J. Colloid Interface Sci. 2012, 368, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Suh, K.Y.; Kim, Y.S.; Lee, H.H. Capillary force lithography. Adv. Mater. 2001, 13, 1386–1389. [Google Scholar] [CrossRef]
- Suh, K.Y.; Park, M.C.; Kim, P. Capillary force lithography: A versatile tool for structured biomaterials interface towards cell and tissue engineering. Adv. Funct. Mater. 2009, 19, 2699–2712. [Google Scholar] [CrossRef]
- McLellan, J.M.; Geissler, M.; Xia, Y. Edge spreading lithography and its application to the fabrication of mesoscopic gold and silver rings. J. Am. Chem. Soc. 2004, 126, 10830–10831. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, M.; Albonetti, C.; Biscarini, F. Nanopatterning soluble multifunctional materials by unconventional wet lithography. Adv. Mater. 2009, 21, 1043–1053. [Google Scholar] [CrossRef]
- Xue, L.; Han, Y. Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 2011, 36, 269–293. [Google Scholar] [CrossRef]
- Janczarek, M.; Kowalska, E. On the origin of enhanced photocatalytic activity of copper-modified Titania in the oxidative reaction systems. Catalysts 2017, 7, 317. [Google Scholar] [CrossRef] [Green Version]
- Kubiak, A.; Siwinska-Ciesielczyk, K.; Jesionowski, T. Titania-Based Hybrid Materials with ZnO, ZrO2 and MoS2: A Review. Materials 2018, 11, 2295. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.; Lu, N.; Gao, L.; Xu, H.; Yang, B.; Li, Y.; Wu, Y.; Chi, L. Fabrication of TiO2 arrays using solvent-assisted soft lithography. Langmuir 2009, 25, 9639–9643. [Google Scholar] [CrossRef]
- Liu, B.; Aydil, E.S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990. [Google Scholar] [CrossRef]
- Shi, G.; Li, X.; Sang, X.; Wang, L.; Bai, H.; Yang, J.; Ni, C.; Li, Y. Patterning thermoplastic polymers by fast room temperature imprinting. J. Mater. Sci. 2018, 53, 5429–5435. [Google Scholar] [CrossRef]
- Song, L.; Gutmann, J.S.; Frielinghaus, H.; Müller-Buschbaum, P. Deformation of mesoporous titania nanostructures in contact with D2O vapor. Small 2018, 14, 1801461. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Yu, J.C.; Wang, X. Construction of Size-Controllable Hierarchical Nanoporous TiO2 Ring Arrays and Their Modifications. Chem. Mater. 2006, 18, 3774–3779. [Google Scholar] [CrossRef]
- Horvath, B.; Krivova, B.; Bolat, S.; Schift, H. Fabrication of Large Area Sub-200 nm Conducting Electrode Arrays by Self-Confinement of Spincoated Metal Nanoparticle Inks. Adv. Mater. Technol. 2019, 4, 1800652. [Google Scholar] [CrossRef]
- Lane, A.P.; Yang, X.; Maher, M.J.; Blachut, G.; Asano, Y.; Someya, Y.; Mallavarapu, A.; Sirard, S.M.; Ellison, C.J.; Willson, C.G. Directed self-assembly and pattern transfer of five nanometer block copolymer lamellae. ACS Nano 2017, 11, 7656–7665. [Google Scholar] [CrossRef]
- Dimitrov, A.S.; Nagayama, K. Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces. Langmuir 1996, 12, 1303–1311. [Google Scholar] [CrossRef]
- Shi, G.; Li, J.; Li, Y.; Zhang, L.; Ni, C.; Chi, L. Fabrication of 3D biomimetic composite coating with broadband antireflection, super-hydrophilicity and double p-n hetero-junctions. Nano Res. 2017, 10, 2377–2385. [Google Scholar] [CrossRef]
- Shi, G.; Chen, J.; Wang, L.; Wang, D.; Yang, J.; Li, Y.; Zhang, L.; Ni, C.; Chi, L. Titanium oxide/silicon moth-eye structures with antireflection, p–n heterojunctions, and superhydrophilicity. Langmuir 2016, 32, 10719–10724. [Google Scholar] [CrossRef]
- Shi, G.; Li, J.; Sang, X.; Wang, L.; Ni, C.; Li, Y. Micro-nano fabrication of hierarchical PPy/TiO2/Si by continuous self-assembly technology. Mater. Manuf. Process. 2018, 33, 378–382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Z.; Shi, G.; Petrescu, F.I.T.; Ungureanu, L.M.; Li, Y. Micro-Nano Machining TiO2 Patterns without Residual Layer by Unconventional Imprinting. Appl. Sci. 2021, 11, 10097. https://doi.org/10.3390/app112110097
Zeng Z, Shi G, Petrescu FIT, Ungureanu LM, Li Y. Micro-Nano Machining TiO2 Patterns without Residual Layer by Unconventional Imprinting. Applied Sciences. 2021; 11(21):10097. https://doi.org/10.3390/app112110097
Chicago/Turabian StyleZeng, Zhoufang, Gang Shi, Florian Ion Tiberiu Petrescu, Liviu Marian Ungureanu, and Ying Li. 2021. "Micro-Nano Machining TiO2 Patterns without Residual Layer by Unconventional Imprinting" Applied Sciences 11, no. 21: 10097. https://doi.org/10.3390/app112110097
APA StyleZeng, Z., Shi, G., Petrescu, F. I. T., Ungureanu, L. M., & Li, Y. (2021). Micro-Nano Machining TiO2 Patterns without Residual Layer by Unconventional Imprinting. Applied Sciences, 11(21), 10097. https://doi.org/10.3390/app112110097