Tensile Capacity of Adhesive Anchors in Damaged Masonry
Abstract
:1. Introduction
2. Experimental Research
2.1. Specimen Geometry and Materials
2.2. Test Set-Up and Execution
3. Results
4. Discussion
4.1. Effect of the Position
4.2. Effect of the Crack Width
4.3. Comparison of Experimental Results with Prediction Equations
5. Conclusions
- The existing European assessment and design of post-installed adhesive anchors in masonry [13,14] do not cover seismic loading conditions nor the influence of masonry cracking and damage on the anchor performance. Anchor products, in fact, are required to be tested only in uncracked, undamaged conditions. Depending on the level of damage of the base material, however, adhesive anchors undergoing cyclic actions (e.g., seismic events) can exhibit poor performances.
- There seems to be a clear correlation between the crack width, measured on the surface at or nearby the anchor location, and its maximum recorded load capacity. Furthermore, when damage is limited (e.g., crack width below 1.0 mm) the characteristic pull-out strength evaluated on the basis of the test results is still considerably high and reaches around 75% of the expected characteristic resistance valid for uncracked conditions.
- Only a rather weak correlation was found between anchor stiffness and crack width. This may be related to the fact that cracks were measured on the surface without considering damage (incl. crack propagation) inside the masonry, which is expected to affect the anchor stiffness rather than its peak load, especially for smaller crack widths.
- The location of the anchor within the wall is crucial. Anchors along the diagonal (most stressed area) exhibited lower strength compared to all others. Overall, anchors exhibited good performance when highly stressed areas (associated to crack widths well beyond 0.5 mm) were avoided. For anchors installed in these areas, the peak loads were still significant (minimum load 3 kN at a crack width of 2.5 mm), but their displacements were not compatible with practical applications.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Roca, P.; Lourenço, P.B.; Gaetani, A. Historic Construction and Conservation: Materials, Systems and Damage; Routledge: London, UK, 2019; p. 366. [Google Scholar]
- Gautam, D. Masonry Construction in Active Seismic Regions; Rupakhety, R., Gautam, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; p. 480. [Google Scholar]
- De Angelis, A.; Maddaloni, G.; Pecce, M.R. Seismic Vulnerability Assessment of a Monumental Masonry Building. Infrastructures 2020, 5, 93. [Google Scholar] [CrossRef]
- Brandonisio, G.; Lucibello, G.; Mele, E.; De Luca, A. Damage and performance evaluation of masonry churches in the 2009 L’Aquila earthquake. Eng. Fail. Anal. 2013, 34, 693–714. [Google Scholar] [CrossRef]
- Barbieri, G.; Valente, M.; Biolzi, L.; Togliani, C.; Fregonese, L.; Stanga, C. An insight in the late baroque architecture: An integrated approach for a unique Bibiena church. J. Cult. Herit. 2017, 23, 58–67. [Google Scholar] [CrossRef]
- Scamardo, M.; Franchi, A.; Crespi, P. An innovative approach for the finite element modelling of masonry cracking. In Proceedings of the International Masonry Society Conferences 2018, Milan, Italy, 9–11 July 2018. [Google Scholar]
- Scamardo, M.; Franchi, A.; Crespi, P. A non-standard numerical method for finite element modelling of tensile cracks in quasi-brittle material. Comput. Struct. 2022, 258, 106664. [Google Scholar] [CrossRef]
- Biolzi, L. Evaluation of compressive strength of masonry walls by limit analysis. J. Struct. Eng. 1988, 114, 2179–2189. [Google Scholar] [CrossRef]
- Bento, R.; Lopes, M.; Cardoso, R. Seismic evaluation of old masonry buildings. Part II: Analysis of strengthening solutions for a case study. Eng. Struct. 2005, 27, 2014–2023. [Google Scholar] [CrossRef]
- Paganoni, S.; D’Ayala, D. Testing and design procedure for corner connections of masonry heritage buildings strengthened by metallic grouted anchors. Eng. Struct. 2014, 70, 278–293. [Google Scholar] [CrossRef]
- Ceroni, F.; Cuzzilla, R.; Pecce, M. Assessment of performance of steel and GFRP bars as injected anchors in masonry walls. Const. Build. Mat. 2016, 123, 78–98. [Google Scholar] [CrossRef]
- Cascardi, A.; Leone, M.; Aiello, M.A. Transversal joining of multi-leaf masonry through different types of connector: Experimental and theoretical investigation. Const. Build. Mat. 2020, 265, 120273. [Google Scholar] [CrossRef]
- EOTA. EAD 330076-00-0604. In Metal Injection Anchors for Use in Masonry; EOTA: Bruxelles, Belgium, 2014. [Google Scholar]
- EOTA. TR 054. In Design Methods for Anchorages with Metal Injection Anchors for Use in Masonry; EOTA: Bruxelles, Belgium, 2016. [Google Scholar]
- Vintzileou, E.; Tselios, I.; Karagiannaki, D. Quantification of damage to masonry structures under seismic conditions. In Brick and Block Masonry—From Historical to Sustainable Masonry; CRC Press: Boca Raton, FL, USA, 2020; ISBN 9781003098508. [Google Scholar]
- EOTA. EAD 330499-01-0601. In Bonded Fasteners for Use in Concrete; EOTA: Bruxelles, Belgium, 2018. [Google Scholar]
- CEN. EN. EN 1992-4:2018. In Eurocode 2—Design of Concrete Structures—Part 4: Design of Fastenings for Use in Concrete; CEN: Tokyo, Japan, 2018. [Google Scholar]
- Meyer, A. Zum Tragverhalten von Injektionsdübeln in Mauerwerk. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2006. [Google Scholar]
- Welz, G. Tragverhalten und Bemessung von Injektionsdübeln unter Quer- und Schrägzugbelastung im Mauerwerk. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2011. [Google Scholar]
- Stipetić, M. Zum Tragverhalten von Injektionsdübeln in Ungerissenem und Gerissenem Mauerwerk. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2018. [Google Scholar]
- Eligehausen, R.; Mallée, R.; Silva, J. Anchorage in Concrete Construction; Ernst&Sohn: Berlin, Germany, 2006. [Google Scholar]
- Eligehausen, R.; Cook, R.A.; Appl, J. Behavior and design of adhesive bonded anchors. ACI Struct. J. 2006, 103, 822–831. [Google Scholar]
- Cook, R.A.; Konz, R.C. Factors Influencing Bond Strength of Adhesive Anchors. ACI Struct. J. 2001, 98, 76–86. [Google Scholar]
- Grosser, P.; Fuchs, W.; Eligehausen, R. A field study of adhesive anchor installations. Concr. Int. 2011, 33, 57–63. [Google Scholar]
- Gurbuz, T.; Ilki, A. Pullout performance of fully and partially bonded retrofit anchors in low strength concrete. ACI Struct. J. 2011, 108, 61–70. [Google Scholar]
- Gesoglu, M.; Ozturan, T.; Ozel, M.; Guneyisi, E. Tensile behavior of post-installed anchors in plain and steel fiber reinforced normal and high-strength concretes. ACI Struct. J. 2005, 102, 224–231. [Google Scholar]
- Cattaneo, S. Wedge-Type expansion anchors in high performance concrete. ACI Struct. J. 2007, 104, 191–198. [Google Scholar]
- Delhomme, F.; Brun, M. Pullout Tests on Post-installed Bonded Anchors in Ultra-high Performance Fiber Reinforced Concrete. Struct. Eng. Int. 2019, 29, 1–8. [Google Scholar] [CrossRef]
- González, F.; Fernández, J.; Agranati, G.; Villanueva, P. Influence of construction conditions on strength of post installed bonded anchors. Constr. Build. Mater. 2018, 165, 272–283. [Google Scholar] [CrossRef]
- Cattaneo, S.; Locatelli, A.; Rago, D. Reliability of bonded anchors with different installation techniques: Experimental assessment. Asian J. Civ. Eng. 2019, 20, 681–692. [Google Scholar] [CrossRef]
- Contrafatto, L.; Cosenza, R. Behaviour of post-installed adhesive anchors in natural stone. Constr. Build. Mater. 2014, 68, 355–369. [Google Scholar] [CrossRef]
- Zheng, X.; Tao, Y.; Shi, Q.; Chen, J. Pullout behaviour of FRP anchors in clay bricks. Constr. Build. Mat. 2021, 283, 122544. [Google Scholar] [CrossRef]
- Burton, C.; Visintin, P.; Griffith, M.; Vaculik, J. Field testing of vintage masonry: Mechanical properties and anchorage strengths. Structures 2020, 28, 1900–1914. [Google Scholar] [CrossRef]
- Jonak, J.; Karpinski, R.; Siegmund, M.; Wójcik, A.; Jonak, K. Analysis of the Rock Failure Cone Size Relative to the Group Effect from a Triangular Anchorage System. Materials 2020, 13, 4657. [Google Scholar] [CrossRef] [PubMed]
- Lamplmair, S.; Zeman, O.; Voit, K. Factors Influencing the Load-Bearing Capacity of Rock as Base Material for Post-Installed Anchors. Materials 2021, 14, 5130. [Google Scholar] [CrossRef] [PubMed]
- Arifovic, F.; Nielsen, M.P. Strength of Anchors in Masonry; Report BYG DTU, R-134; Kongens Lyngby: Copenhagen, Denmark, 2006; p. 151. [Google Scholar]
- Moreira, S.; Ramos, L.F.; Oliveira, D.V.; Lourenço, P.B. Design Parameters for Seismically Retrofitted Masonry-To Timber Connections: Injection Anchors. Int. J. Archit. Herit. 2015, 10, 217–234. [Google Scholar] [CrossRef] [Green Version]
- ASTM E519/E519M-21. Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages; ASTM International: 2021; Volume 5. Available online: https://www.techstreet.com/standards/astm-e519-e519m-21?product_id=2226777 (accessed on 29 September 2021).
- Porter, M.L. Sequential Phased Displacement (SPD) Procedure for TCCMAR Testing. Presented at the Third Meeting of the Joint Technical Coordinating Committee on Masonry Research; U.S.—Japan Coordinated Earthquake Research Program: Tomamu, Japan, 1987. [Google Scholar]
- Giuriani, E. Consolidamento Degli Edifici Storici; UTET: Milan, Italy, 2012; p. 400. [Google Scholar]
Code | Max Load | Mean | cov | Mean | cov | Failure * | Crack Width | Displacement @ (mm) | ||
---|---|---|---|---|---|---|---|---|---|---|
(kN) | (kN) | (%) | (kN) | (%) | (mm) | Peak | 0.5 Peak | 5 kN | ||
W1-A2 | 19.51 | 17.95 | 25.9 | 19.06 | 37.4 | S | 0.3 | 5.86 | 1.57 | 1.03 |
W1-A3 | 12.97 | PO + B | 1.3 | 15.96 | 6.67 | 2.93 | ||||
W1-A4 | 14.74 | PO + C | 0.6 | 5.71 | 3.85 | 3.50 | ||||
W1-A5 | 14.14 | PO + B | 0.6 | 6.09 | 1.81 | 1.56 | ||||
W1-A7 | 22.47 | PO + C | 0.28 | 7.59 | 4.11 | 3.07 | ||||
W1-A8 | 23.89 | PO + C | 0.2 | 7.85 | 2.46 | 1.27 | ||||
W2-A1 | 23.46 | 20.54 | 23.2 | S | 0.2 | 5.26 | 3.04 | 1.79 | ||
W2-A2 | 12.10 | PO + C | 1.4 | 5.04 | 1.93 | 1.66 | ||||
W2-A3 | 17.92 | PO + B | 0.5 | 4.15 | 2.09 | 1.45 | ||||
W2-A5 | 21.77 | PO | 0.4 | 5.91 | 3.83 | 2.79 | ||||
W2-A7 | 24.69 | S | 0.2 | 6.39 | 3.41 | 2.05 | ||||
W2-A8 | 23.33 | PO | 0.25 | 6.99 | 4.21 | 2.81 | ||||
W3-A1 | 6.80 | 15.94 | 72.6 | PO | 1.8 | 1.59 | 0.61 | 0.84 | ||
W3-A2 | 4.31 | PO | 2 | 3.53 | 0.67 | - | ||||
W3-A3 | 3.00 | B | 2.5 | 27.03 | 11.99 | - | ||||
W3-A5 | 27.06 | S | 0.1 | 4.27 | 0.89 | 0.49 | ||||
W3-A6 | 14.41 | PO + C | 0.7 | 2.38 | 0.62 | 0.46 | ||||
W3-A7 | 27.39 | S | 0.1 | 2.74 | 1.14 | 0.58 | ||||
W3-A8 | 28.65 | PO + C | 0.1 | 8.51 | 2.81 | 1.35 | ||||
W4-A1 | 21.47 | 20.96 | 38.6 | S | 0.3 | 4.06 | 0.97 | 0.61 | ||
W4-A3 | 7.02 | B | 2.5 | 0.54 | 0.23 | 0.34 | ||||
W4-A5 | 23.22 | PO + C | 0.2 | 2.66 | 0.86 | 0.54 | ||||
W4-A7 | 26.30 | S | 0.1 | 3.45 | 0.85 | 0.40 | ||||
W4-A8 | 26.76 | PO + C | 0.1 | 1.50 | 0.60 | 0.21 | ||||
W5-A1 | 22.62 | 20.89 | 7.3 | S | 0.25 | 3.63 | 0.65 | 0.34 | ||
W5-A2 | 22.36 | PO | 0.27 | 2.62 | 0.89 | 0.63 | ||||
W5-A4 | 19.36 | PO + C | 0.38 | 1.84 | 0.98 | 0.76 | ||||
W5-A7 | 19.55 | PO + B | 0.33 | 1.84 | 0.79 | 0.59 | ||||
W5-A8 | 20.57 | PO | 0.3 | 1.29 | 0.67 | 0.49 |
Code | Max Load | Mean | cov | Failure * | Crack Width | Displacement @ (mm) | cov of displ. @ (%) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(kN) | (kN) | (%) | (mm) | Peak | 0.5 Peak | 5 kN | Peak | 0.5 Peak | 5 kN | |||
A1 | W2-A1 | 23.46 | 18.59 | 42.5 | S | 0.2 | 5.26 | 3.04 | 1.79 | 42.0 | 88.2 | 70.5 |
W3-A1 | 6.80 | PO | 1.8 | 1.59 | 0.61 | 0.84 | ||||||
W4-A1 | 21.47 | S | 0.3 | 4.06 | 0.97 | 0.61 | ||||||
W5-A1 | 22.62 | S | 0.25 | 3.63 | 0.65 | 0.34 | ||||||
A2 | W1-A2 | 19.51 | 14.57 | 55.5 | S | 0.3 | 5.86 | 1.57 | 1.03 | 34.3 | 46.2 | 46.9 |
W2-A2 | 12.10 | PO + C | 1.4 | 5.04 | 1.93 | 1.66 | ||||||
W3-A2 | 4.31 | PO | 2 | 3.53 | 0.67 | |||||||
W5-A2 | 22.36 | PO | 0.27 | 2.62 | 0.89 | 0.63 | ||||||
A3 | W1-A3 | 12.97 | 10.23 | 64.2 | PO + B | 1.3 | 15.96 | 6.67 | 2.93 | 101.0 | 100.0 | 82.6 |
W2-A3 | 17.92 | PO + B | 0.5 | 4.15 | 2.09 | 1.45 | ||||||
W3-A3 | 3.00 | B | 2.5 | 27.03 | 11.99 | - | ||||||
W4-A3 | 7.02 | B | 2.5 | 0.54 | 0.23 | 0.34 | ||||||
A4 | W1-A4 | 14.74 | 16.75 | 22.0 | PO + C | 0.6 | 5.71 | 3.85 | 3.50 | 72.4 | 84.0 | 90.9 |
W5-A4 | 19.36 | PO + C | 0.38 | 1.84 | 0.98 | 0.76 | ||||||
A5 | W1-A5 | 14.14 | 21.55 | 25.2 | PO + B | 0.6 | 6.09 | 1.81 | 1.56 | 34.0 | 75.4 | 80.7 |
W2-A5 | 21.77 | PO | 0.4 | 5.91 | 3.83 | 2.79 | ||||||
W3-A5 | 27.06 | S | 0.1 | 4.27 | 0.89 | 0.49 | ||||||
W4-A5 | 23.22 | PO + C | 0.2 | 2.66 | 0.86 | 0.54 | ||||||
A6 | W3-A6 | 14.41 | - | - | PO + C | 0.7 | 2.38 | 0.62 | 0.46 | |||
A7 | W1-A7 | 22.47 | 24.08 | 13.0 | PO + C | 0.28 | 7.59 | 4.11 | 3.07 | 56.1 | 76.5 | 87.7 |
W2-A7 | 24.69 | S | 0.2 | 6.39 | 3.41 | 2.05 | ||||||
W3-A7 | 27.39 | S | 0.1 | 2.74 | 1.14 | 0.58 | ||||||
W4-A7 | 26.30 | S | 0.1 | 3.45 | 0.85 | 0.40 | ||||||
W5-A7 | 19.55 | PO + B | 0.33 | 1.84 | 0.79 | 0.47 | ||||||
A8 | W1-A8 | 23.89 | 24.64 | 12.7 | PO + C | 0.2 | 7.85 | 2.46 | 1.27 | 67.7 | 71.3 | 82.8 |
W2-A8 | 23.33 | PO | 0.25 | 6.99 | 4.21 | 2.81 | ||||||
W3-A8 | 28.65 | PO + C | 0.1 | 8.51 | 2.81 | 1.35 | ||||||
W4-A8 | 26.76 | POC | 0.1 | 1.50 | 0.60 | 0.21 | ||||||
W5-A8 | 20.57 | PO | 0.3 | 1.29 | 0.67 | 0.49 |
Crack Width Cluster | Max Load | Mean Displacement (mm) | Cov Displacement (%) | |||||
---|---|---|---|---|---|---|---|---|
(mm) | Mean (kN) | Cov (%) | Peak | 0.5 Peak | 5 kN | Peak | 0.5 Peak | 5 kN |
0.1 | 27.23 | 3.3 | 4.09 | 1.26 | 0.60 | 65 | 71 | 72 |
0.2 | 23.93 | 2.7 | 5.54 | 2.44 | 1.41 | 40 | 46 | 47 |
0.25–0.28 | 22.69 | 1.9 | 5.21 | 2.47 | 1.71 | 47 | 79 | 83 |
0.30–0.38 | 20.09 | 4.5 | 2.98 | 1.00 | 0.70 | 65 | 35 | 30 |
0.4–0.7 | 16.59 | 19.7 | 4.85 | 2.44 | 1.95 | 33 | 57 | 61 |
1.3–1.8 | 10.62 | 31.4 | 7.53 | 3.07 | 1.81 | 100 | 104 | 58 |
2.0–2.5 | 4.78 | 43.0 | 10.37 | 4.30 | 0.34 | 140 | 155 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cattaneo, S.; Vafa, N. Tensile Capacity of Adhesive Anchors in Damaged Masonry. Appl. Sci. 2021, 11, 10135. https://doi.org/10.3390/app112110135
Cattaneo S, Vafa N. Tensile Capacity of Adhesive Anchors in Damaged Masonry. Applied Sciences. 2021; 11(21):10135. https://doi.org/10.3390/app112110135
Chicago/Turabian StyleCattaneo, Sara, and Navid Vafa. 2021. "Tensile Capacity of Adhesive Anchors in Damaged Masonry" Applied Sciences 11, no. 21: 10135. https://doi.org/10.3390/app112110135
APA StyleCattaneo, S., & Vafa, N. (2021). Tensile Capacity of Adhesive Anchors in Damaged Masonry. Applied Sciences, 11(21), 10135. https://doi.org/10.3390/app112110135