A New Perspective on Robot Ethics through Investigating Human–Robot Interactions with Older Adults
Abstract
:1. Introduction
2. Emotional Deception and Emotional Attachment
2.1. Emotional Deception
2.2. Emotional Attachment
3. Materials and Methods
3.1. Experimental Procedure
3.2. Robot
3.3. Measures
3.3.1. Questionnaires
3.3.2. Video Recordings
3.3.3. Audio Recordings
3.3.4. Physiology
3.4. Participants
4. Results
4.1. Questionnaires
4.1.1. Emotional Deception
4.1.2. Emotional Attachment
4.1.3. Mood
4.2. Video Recordings
4.3. Audio-Recordings
4.4. Physiology
4.4.1. Heart Rate Variability
4.4.2. Electrodermal Activity
4.5. Incidental Findings
5. Discussion
5.1. Questionnaires
5.2. Other Measurements
5.3. Insights from Incidental Findings
5.4. Limitations of the Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roveda, L.; Haghshenas, S.; Caimmi, M.; Pedrocchi, N.; Molinari Tosatti, L. Assisting operators in heavy industrial tasks: On the design of an optimized cooperative impedance fuzzy-controller with embedded safety rules. Front. Robot. AI 2019, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Lv, H.; Zhang, Z.; Yang, L.; Deng, J.; You, S.; Du, J.; Yang, H. Keep healthcare workers safe: Application of teleoperated robot in isolation ward for COVID-19 prevention and control. Chin. J. Mech. Eng. 2020, 33, 47. [Google Scholar] [CrossRef]
- Roveda, L.; Savani, L.; Arlati, S.; Dinon, T.; Legnani, G.; Tosatti, L.M. Design methodology of an active back-support exoskeleton with adaptable backbone-based kinematics. Int. J. Ind. Ergon. 2020, 79, 102991. [Google Scholar] [CrossRef]
- Murphy, J.; Gretzel, U.; Pesonen, J. Marketing robot services in hospitality and tourism: The role of anthropomorphism. J. Travel Tour. Mark. 2019, 36, 784–795. [Google Scholar] [CrossRef]
- van Maris, A. Ethical Implications of Artificial Expression of Emotion by Social Robots in Assistive Contexts. Ph.D. Thesis, University of the West of England, Bristol, UK, 2021. [Google Scholar]
- Barrett, E.; Burke, M.; Whelan, S.; Santorelli, A.; Oliveira, B.L.; Cavallo, F.; Dröes, R.M.; Hopper, L.; Fawcett-Henesy, A.; Meiland, F.J.; et al. Evaluation of a companion robot for individuals with dementia: Quantitative findings of the MARIO project in an Irish residential care setting. J. Gerontol. Nurs. 2019, 45, 36–45. [Google Scholar] [CrossRef]
- Kang, H.S.; Makimoto, K.; Konno, R.; Koh, I.S. Review of outcome measures in PARO robot intervention studies for dementia care. Geriatr. Nurs. 2019, 41, 207–214. [Google Scholar] [CrossRef]
- Clabaugh, C.; Matarić, M. Robots for the people, by the people: Personalizing human–machine interaction. Sci. Robot. 2018, 3, eaat7451. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C. Is it love or loneliness? Exploring the impact of everyday digital technology use on the wellbeing of older adults. Ageing Soc. 2018, 38, 1307–1331. [Google Scholar] [CrossRef] [Green Version]
- Hung, L.; Liu, C.; Woldum, E.; Au-Yeung, A.; Berndt, A.; Wallsworth, C.; Horne, N.; Gregorio, M.; Mann, J.; Chaudhury, H. The benefits of and barriers to using a social robot PARO in care settings: A scoping review. BMC Geriatr. 2019, 19, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Graaf, M.M.A. Living with Robots: Investigating the User Acceptance of Social Robots in Domestic Environments. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2015. [Google Scholar]
- Ladu, F.; Mwaffo, V.; Li, J.; Macrì, S.; Porfiri, M. Acute caffeine administration affects zebrafish response to a robotic stimulus. Behav. Brain Res. 2015, 289, 48–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Clément, R.J.; Ghirlanda, S.; Porfiri, M. A comparison of individual learning and social learning in zebrafish through an ethorobotics approach. Front. Robot. AI 2019, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romano, D.; Benelli, G.; Hwang, J.S.; Stefanini, C. Fighting fish love robots: Mate discrimination in males of a highly territorial fish by using female-mimicking robotic cues. Hydrobiologia 2019, 833, 185–196. [Google Scholar] [CrossRef]
- Romano, D.; Stefanini, C. Unveiling social distancing mechanisms via a fish-robot hybrid interaction. Biol. Cybern. 2021, 1–9. [Google Scholar] [CrossRef]
- Pu, L.; Moyle, W.; Jones, C.; Todorovic, M. The effectiveness of social robots for older adults: A systematic review and meta-analysis of randomized controlled studies. Gerontologist 2019, 59, e37–e51. [Google Scholar] [CrossRef] [PubMed]
- Khaksar, S.M.S.; Khosla, R.; Chu, M.T.; Shahmehr, F.S. Service innovation using social robot to reduce social vulnerability among older people in residential care facilities. Technol. Forecast. Soc. Chang. 2016, 113, 438–453. [Google Scholar] [CrossRef]
- World Health Organization. World Report on Ageing and Health; World Health Organization: Geneva, Switzerland, 2015. [Google Scholar]
- Sharkey, A.; Sharkey, N. Granny and the robots: Ethical issues in robot care for the elderly. Ethics Inf. Technol. 2012, 14, 27–40. [Google Scholar] [CrossRef]
- Bracken-Roche, D.; Bell, E.; Macdonald, M.E.; Racine, E. The concept of ‘vulnerability’in research ethics: An in-depth analysis of policies and guidelines. Health Res. Policy Syst. 2017, 15, 8. [Google Scholar] [CrossRef] [Green Version]
- Sullins, J.P. Robots, love, and sex: The ethics of building a love machine. IEEE Trans. Affect. Comput. 2012, 3, 398–409. [Google Scholar] [CrossRef]
- Sparrow, R.; Sparrow, L. In the hands of machines? The future of aged care. Minds Mach. 2006, 16, 141–161. [Google Scholar] [CrossRef]
- Turkle, S. A nascent robotics culture: New complicities for companionship. In Machine Ethics and Robot Ethics; American Association for Artificial Intelligence Technical Report Series AAAI; Routledge: Oxfordshire, UK, 2006. [Google Scholar]
- Sharkey, A.; Sharkey, N. We need to talk about deception in social robotics! Ethics Inf. Technol. 2020, 1–8. [Google Scholar] [CrossRef]
- Coeckelbergh, M. Health care, capabilities, and AI assistive technologies. Ethical Theory Moral Pract. 2010, 13, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Prescott, T.J.; Robillard, J.M. Are Friends Electric? The Benefits and Risks of Human-Robot Relationships. iScience 2020, 24, 101993. [Google Scholar] [CrossRef] [PubMed]
- Vallor, S. Carebots and caregivers: Sustaining the ethical ideal of care in the twenty-first century. Philos. Technol. 2011, 24, 251–268. [Google Scholar] [CrossRef]
- van Wynsberghe, A. Responsible Robotics and Responsibility Attribution. In Robotics, AI, and Humanity; Springer: Cham, Switzerland, 2021; pp. 239–249. [Google Scholar]
- Jobin, A.; Ienca, M.; Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 2019, 1, 389–399. [Google Scholar] [CrossRef]
- Vandemeulebroucke, T.; de Casterlé, B.D.; Gastmans, C. The use of care robots in aged care: A systematic review of argument-based ethics literature. Arch. Gerontol. Geriatr. 2018, 74, 15–25. [Google Scholar] [CrossRef]
- Van Maris, A.; Zook, N.; Caleb-Solly, P.; Studley, M.; Winfield, A.; Dogramadzi, S. Designing ethical social robots—A longitudinal field study with older adults. Front. Robot. AI 2020, 7, 1. [Google Scholar] [CrossRef] [Green Version]
- Arkin, R.C.; Ulam, P.; Wagner, A.R. Moral decision making in autonomous systems: Enforcement, moral emotions, dignity, trust, and deception. Proc. IEEE 2012, 100, 571–589. [Google Scholar] [CrossRef] [Green Version]
- Danaher, J. Robot Betrayal: A guide to the ethics of robotic deception. Ethics Inf. Technol. 2020, 22, 117–128. [Google Scholar] [CrossRef]
- Kirby, R.; Forlizzi, J.; Simmons, R. Affective social robots. Robot. Auton. Syst. 2010, 58, 322–332. [Google Scholar] [CrossRef] [Green Version]
- Coeckelbergh, M. Humans, animals, and robots: A phenomenological approach to human–robot relations. Int. J. Soc. Robot. 2011, 3, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Turkle, S. Alone Together: Why We Expect More from Technology and Less from Each Other; Basic Books: New York, NY, USA, 2011. [Google Scholar]
- Reeves, B.; Nass, C. Media equation theory. Retrieved March 1996, 5, 2009. [Google Scholar]
- Borenstein, J.; Arkin, R. Robots, ethics, and intimacy: The need for scientific research. In On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence; Springer: Cham, Switzerland, 2019; pp. 299–309. [Google Scholar]
- Feil-Seifer, D.; Mataric, M.J. Socially Assistive Robotics-Ethical Issues Related to Technology. IEEE Robot. Autom. Mag. 2011, 18, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, A. Robots and human dignity: A consideration of the effects of robot care on the dignity of older people. Ethics Inf. Technol. 2014, 16, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.K.; Gelin, R. A mass-produced sociable humanoid robot: Pepper: The first machine of its kind. IEEE Robot. Autom. Mag. 2018, 25, 40–48. [Google Scholar] [CrossRef]
- Carros, F.; Meurer, J.; Löffler, D.; Unbehaun, D.; Matthies, S.; Koch, I.; Wieching, R.; Randall, D.; Hassenzahl, M.; Wulf, V. Exploring Human-Robot Interaction with the Elderly: Results from a Ten-Week Case Study in a Care Home. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020; pp. 1–12. [Google Scholar]
- Unbehaun, D.; Aal, K.; Carros, F.; Wieching, R.; Wulf, V. Creative and Cognitive Activities in Social Assistive Robots and Older Adults: Results from an Exploratory Field Study with Pepper. In Proceedings of the 17th European Conference on Computer-Supported Cooperative Work: The International Venue on Practice-Centred Computing and the Design of Cooperation Technologies—Demos and Posters, Reports of the European Society for Socially Embedded Technologies, Salzburg, Austria, 8–12 June 2019; European Society for Socially Embedded Technologies (EUSSET): France, 2019; pp. 1–4. Available online: https://dl.eusset.eu/handle/20.500.12015/3291 (accessed on 30 July 2021).
- Bechade, L.; Dubuisson-Duplessis, G.; Pittaro, G.; Garcia, M.; Devillers, L. Towards metrics of evaluation of pepper robot as a social companion for the elderly. In Advanced Social Interaction with Agents; Springer: Cham, Switzerland, 2019; pp. 89–101. [Google Scholar]
- Allegra, D.; Alessandro, F.; Santoro, C.; Stanco, F. Experiences in Using the Pepper Robotic Platform for Museum Assistance Applications. In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1033–1037. [Google Scholar]
- Niemelä, M.; Heikkilä, P.; Lammi, H.; Oksman, V. A social robot in a shopping mall: Studies on acceptance and stakeholder expectations. In Social Robots: Technological, Societal and Ethical Aspects of Human-Robot Interaction; Springer: Cham, Switzerland, 2019; pp. 119–144. [Google Scholar]
- Pot, E.; Monceaux, J.; Gelin, R.; Maisonnier, B. Choregraphe: A graphical tool for humanoid robot programming. In Proceedings of the RO-MAN 2009—The 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, 27 September–2 October 2009; pp. 46–51. [Google Scholar]
- Van Maris, A.; Zook, N.; Caleb-Solly, P.; Studley, M.; Winfield, A.; Dogramadzi, S. Ethical considerations of (contextually) affective robot behaviour. In Hybrid Worlds: Societal and Ethical Challenges, Proceedings of the International Conference on Robot Ethics and Standards (ICRES 2018), New York, NY, USA, 20–21 August 2018; Clawar Associate Ltd.: Buckinghamshire, UK, 2018; pp. 13–19. [Google Scholar]
- Rosenthal-von der Pütten, A.M.; Krämer, N.C.; Hoffmann, L.; Sobieraj, S.; Eimler, S.C. An experimental study on emotional reactions towards a robot. Int. J. Soc. Robot. 2013, 5, 17–34. [Google Scholar] [CrossRef]
- Heerink, M.; Kröse, B.; Evers, V.; Wielinga, B. Assessing acceptance of assistive social agent technology by older adults: The almere model. Int. J. Soc. Robot. 2010, 2, 361–375. [Google Scholar] [CrossRef] [Green Version]
- Bartneck, C.; Kulić, D.; Croft, E.; Zoghbi, S. Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int. J. Soc. Robot. 2009, 1, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Schifferstein, H.N.; Zwartkruis-Pelgrim, E.P. Consumer-product attachment: Measurement and design implications. Int. J. Des. 2008, 2, 1–13. [Google Scholar]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Quirin, M.; Kazén, M.; Kuhl, J. When nonsense sounds happy or helpless: The implicit positive and negative affect test (IPANAT). J. Personal. Soc. Psychol. 2009, 97, 500–516. [Google Scholar] [CrossRef]
- Bente, G.; Senokozlieva, M.; Pennig, S.; Al-Issa, A.; Fischer, O. Deciphering the secret code: A new methodology for the cross-cultural analysis of nonverbal behavior. Behav. Res. Methods 2008, 40, 269–277. [Google Scholar] [CrossRef]
- De Graaf, M.M.; Allouch, S.B.; van Dijk, J.A. Long-term evaluation of a social robot in real homes. Interact. Stud. 2016, 17, 462–491. [Google Scholar] [CrossRef] [Green Version]
- Frey, S.; Pool, J. A New Approach to the Analysis of Visible Behavior; Departement of Psychology, University of Bern: Bern, Switzerland, 1976. [Google Scholar]
- Cohen, A.S.; Minor, K.S.; Najolia, G.M.; Hong, S.L. A laboratory-based procedure for measuring emotional expression from natural speech. Behav. Res. Methods 2009, 41, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Galaz, Z.; Mekyska, J.; Mzourek, Z.; Smekal, Z.; Rektorova, I.; Eliasova, I.; Kostalova, M.; Mrackova, M.; Berankova, D. Prosodic analysis of neutral, stress-modified and rhymed speech in patients with Parkinson’s disease. Comput. Methods Programs Biomed. 2016, 127, 301–317. [Google Scholar] [CrossRef]
- Vinciarelli, A.; Pantic, M.; Bourlard, H.; Pentland, A. Social signal processing: State-of-the-art and future perspectives of an emerging domain. In Proceedings of the 16th ACM International Conference on Multimedia, Vancouver, BC, Canada, 26–31 October 2008; pp. 1061–1070. [Google Scholar]
- Nikolić, M.; de Vente, W.; Colonnesi, C.; Bögels, S.M. Autonomic arousal in children of parents with and without social anxiety disorder: A high-risk study. J. Child Psychol. Psychiatry 2016, 57, 1047–1055. [Google Scholar] [CrossRef] [PubMed]
- Kühnlenz, B.; Erhart, M.; Kainert, M.; Wang, Z.Q.; Wilm, J.; Kühnlenz, K. Impact of trajectory profiles on user stress in close human–robot interaction. at-Automatisierungstechnik 2018, 66, 483–491. [Google Scholar] [CrossRef]
- Dehais, F.; Sisbot, E.A.; Alami, R.; Causse, M. Physiological and subjective evaluation of a human–robot object hand-over task. Appl. Ergon. 2011, 42, 785–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boersma, P. Praat, a system for doing phonetics by computer. Glot. Int. 2001, 5, 341–345. [Google Scholar]
- Baek, H.J.; Cho, C.H.; Cho, J.; Woo, J.M. Reliability of ultra-short-term analysis as a surrogate of standard 5-min analysis of heart rate variability. Telemed. e-Health 2015, 21, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Esco, M.R.; Flatt, A.A. Ultra-short-term heart rate variability indexes at rest and post-exercise in athletes: Evaluating the agreement with accepted recommendations. J. Sport. Sci. Med. 2014, 13, 535–541. [Google Scholar]
- Tarvainen, M.P.; Niskanen, J.P.; Lipponen, J.A.; Ranta-Aho, P.O.; Karjalainen, P.A. Kubios HRV–heart rate variability analysis software. Comput. Methods Programs Biomed. 2014, 113, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Van Maris, A.; Dogramadzi, S.; Zook, N.; Studley, M.; Winfield, A.; Caleb-Solly, P. Speech Related Accessibility Issues in Social Robots. In Proceedings of the Companion of the 2020 ACM/IEEE International Conference on Human-Robot Interaction, Cambridge, UK, 23–26 March 2020; pp. 505–507. [Google Scholar]
- Kahn, P.H., Jr.; Shen, S. NOC NOC, Who’s There? A New Ontological Category (NOC) for Social Robots. In New Perspectives on Human Development; Cambridge University Press: Cambridge, UK, 2017; pp. 13–142. [Google Scholar]
- Lim, V.; Rooksby, M.; Cross, E.S. Social robots on a global stage: Establishing a role for culture during human–robot interaction. Int. J. Soc. Robot. 2021, 13, 1307–1333. [Google Scholar] [CrossRef]
- Gervasi, R.; Mastrogiacomo, L.; Franceschini, F. A conceptual framework to evaluate human–robot collaboration. Int. J. Adv. Manuf. Technol. 2020, 108, 841–865. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Maris, A.; Zook, N.; Dogramadzi, S.; Studley, M.; Winfield, A.; Caleb-Solly, P. A New Perspective on Robot Ethics through Investigating Human–Robot Interactions with Older Adults. Appl. Sci. 2021, 11, 10136. https://doi.org/10.3390/app112110136
van Maris A, Zook N, Dogramadzi S, Studley M, Winfield A, Caleb-Solly P. A New Perspective on Robot Ethics through Investigating Human–Robot Interactions with Older Adults. Applied Sciences. 2021; 11(21):10136. https://doi.org/10.3390/app112110136
Chicago/Turabian Stylevan Maris, Anouk, Nancy Zook, Sanja Dogramadzi, Matthew Studley, Alan Winfield, and Praminda Caleb-Solly. 2021. "A New Perspective on Robot Ethics through Investigating Human–Robot Interactions with Older Adults" Applied Sciences 11, no. 21: 10136. https://doi.org/10.3390/app112110136
APA Stylevan Maris, A., Zook, N., Dogramadzi, S., Studley, M., Winfield, A., & Caleb-Solly, P. (2021). A New Perspective on Robot Ethics through Investigating Human–Robot Interactions with Older Adults. Applied Sciences, 11(21), 10136. https://doi.org/10.3390/app112110136