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Abstract: Most of the allometric models used to estimate tree aboveground biomass rely on tree
diameter at breast height (DBH). However, it is difficult to measure DBH from airborne remote
sensors, and is common to draw upon traditional least squares linear regression models to relate
DBH with dendrometric variables measured from airborne sensors, such as tree height (H) and crown
diameter (CD). This study explores the usefulness of ensemble-type supervised machine learning
regression algorithms, such as random forest regression (RFR), categorical boosting (CatBoost),
gradient boosting (GBoost), or AdaBoost regression (AdaBoost), as an alternative to linear regression
(LR) for modelling the allometric relationships DBH = Φ(H) and DBH = Ψ(H, CD). The original dataset
was made up of 2272 teak trees (Tectona grandis Linn. F.) belonging to three different plantations
located in Ecuador. All teak trees were digitally reconstructed from terrestrial laser scanning point
clouds. The results showed that allometric models involving both H and CD to estimate DBH
performed better than those based solely on H. Furthermore, boosting machine learning regression
algorithms (CatBoost and GBoost) outperformed RFR (bagging) and LR (traditional linear regression)
models, both in terms of goodness-of-fit (R2) and stability (variations in training and testing samples).

Keywords: terrestrial laser scanning; allometric models; machine learning regression; teak plantations;
forest inventory

1. Introduction

Forests contain 80% of the Earth’s biomass, accounting for 75% of the gross primary
productivity of the terrestrial biosphere [1]. In this way, they are a major component of
the global carbon cycle, representing up to 50% of the annual carbon flux between the
atmosphere and the Earth’s land surface [2], thus contributing to atmospheric carbon
fixing up to rates of about 30% of the fossil fuel emissions [3]. In other words, they are
extremely important for our planet, and one of the reasons why forest modelling and
monitoring are essential for the development of a sustainable bio-economy based on
renewable resources [4]. Atmospheric carbon fixation by forests has become one of the
main strategies followed by the United Nations Framework Convention on Climate Change
in the context of Reducing Emissions from Deforestation and Forest Degradation (REDD)
to help mitigate greenhouse gas emissions, especially in the case of developing countries
with abundant forest cover [5].

Despite the increasing need for forest monitoring, studies headed up to collect for-
est data at tree level have been limited to traditional methods based on field inventory
and aerial photography interpretation. However, field inventories are labor-intensive,
time-consuming, and limited by spatial accessibility, while traditional large-scale aerial
photography does not directly provide accurate 3D forest information [6].
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Remote Sensing (RS) technology can help to solve the aforementioned drawback as
we have witnessed an exponential increase in RS datasets derived from different sources
(satellites, aircrafts, and UAV [Unmanned Aerial Vehicle]) at different resolutions based on
different sensors (hyperspectral and multispectral cameras, LiDAR and SAR sensors, etc.)
during the last decade. This has been accompanied by the fast development of computer-
based processing techniques such as Structure from Motion stereo-photogrammetry to
reconstruct 3D point clouds from low-cost UAV imagery [7,8]. In fact, RS can be considered
an exceptional source of data and powerful tools for monitoring forest dynamics at different
spatial and temporal resolutions [9,10]. For instance, and focusing on the tools applied in
this study, terrestrial laser scanning (TLS) has proved to be an efficient and non-destructive
measurement method that is becoming a new paradigm for implementing a tree-centric
approach to deal with 3D forest modelling at plot scale [11–14].

At the same time, parallel developments in Information Technology (IT) allow for the
storage of very large datasets and their efficient processing. It has driven the development
of many libraries and packages that implement supervised machine learning algorithms to
investigate phenomena by automatically creating regression (and classification) models
from labeled datasets in a very efficient way. It makes it possible to use machine learning
methods in datasets derived from RS with the aim of increasing the level of automaticity in
the extraction of valuable information [15,16].

Current allometric models to estimate forest dry above-ground biomass (AGB) rely on
stem diameter (diameter at breast height, DBH) and tree height (H) as key inputs [17,18].
However, it is impossible to measure DBH from airborne or spaceborne sensors which, on
the other hand, turn out to be the most suitable RS technologies for carrying out large-scale
forest inventories [10]. In this regard, the classical linear regression techniques, after apply-
ing a logarithmic transformation to linearize the allometric model in a potential form that
is usually the most used, are commonly applied to model allometric relationships between
DBH (dependent variable) and predictor variables (H and crown diameter [CD]/crown
area [CA]) [14,18,19]. It is important to highlight that linear models have the advantage
that they are easy to fit, while generally offering adequate accuracy for tree allometric
modeling [20].

Considering the above-mentioned background, this study uses TLS data collected
at tree level in three teak plantations located in the Coastal Region of Ecuador (tropical
dry forest) to compare the performance of several supervised machine learning regression
methods with respect to traditional linear regression for modeling the local allometric
relationships between DBH and H and CD. The underlying hypothesis is that learning-
based models could outperform the results provided by traditional linear regression in the
case of highly non-linear relationships found in tree allometry. These locally calibrated
machine learning based models could be used to improve forest AGB and carbon estimation,
especially in large-scale inventories where only H and CD can be estimated from airborne
or spaceborne sensors.

2. Materials and Methods
2.1. Study Area

The population under study was constituted of three teak plantations (Tectona grandis
Linn. F.) located in the Province of Guayas, Coastal Region of Ecuador (Figure 1). The
plantations selected as research areas were located on the following properties:

• Morondava. With an area of 78.28 ha and teak trees between 2 and 3 years old at the
time of the inventory. Geographic coordinates: latitude 2◦6′11.72′′ S and longitude
80◦2′59.43′′ W.

• El Tecal. With an area of 21.12 ha and a homogeneous age of 17 years at the time
of the inventory. Geographic coordinates: latitude 1◦31′53.07′′ S and longitude
80◦20′30.51′′ W.
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• Allteak. With an area of 57.22 ha and variable ages of 4, 10, and 12 years at the
time of the inventory. Geographic coordinates: latitude 1◦8′7.23′′ S and longitude
79◦41′58.08′′ W.
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Figure 1. Location map of the three teak plantations (Morondava, El Tecal and Allteak).

The 156.62 ha of teak plantations in this study is representative of the ecological
characteristics of the tropical dry forest and the tropical semi-humid forest [21]. The
precipitation regime in the study areas is characterized by being unimodal, with a rainy
period in the first quarter of the year and a marked drought during the rest of the year.
Average annual precipitation ranges between 600 mm and 1600 mm (from south to north),
with an average annual temperature of about 25 ◦C, and a relative humidity between 80
and 90%.

A total of 58 circular (18 m radius) reference plots were established in the three teak
plantations (30 in Morandava, 8 in El Tecal, and 20 in Allteak) to conduct a field inventory
based on TLS in November 2018. A full description of the main characteristics of the
reference plots can be found in [8].

2.2. Field Data

A TLS field campaign was conducted in November 2018 over the aforementioned
58 reference plots. Note that the phenological stage of teak at this time in the Coastal region
of Ecuador can be qualified as leaf-off conditions.

The TLS used in the field study was the FARO Focus 3D X330 (FARO Technologies
Inc., Lake Mary, FL, USA). This TLS captures nearly a million points per second with
millimeter precision and with a range of about 330 m, along with high-resolution RGB
images. Pre-tests were carried out to define the optimal parameters in terms of quality
and exploration time [14]. Panoramic RGB images were taken to colorize the 3D point
cloud and serve as a high-quality visual reference for post-processing tasks. All sensors
incorporated in the scanner (i.e., GPS, inclinometer, compass, and altimeter) were activated.

Four scans were performed on each reference plot, including a central scan and three
scans located around it in order to draw, approximately, an equilateral triangle (Figure 2a).
The four scans were later co-registered and merged into the same spatial reference system
using nine reference white spheres, with a size of 15 cm in diameter, which Scene™ software
7.1 (FARO Technologies Inc., Lake Mary, FL, USA) was able to automatically detect in the
point cloud. These spheres were placed with the help of iron rods to ensure that at least
three spheres were visible from every two consecutive scans. Note that multi-scan data are
usually more accurate to measure stem diameter and tree height than single scans [22].
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Figure 2. Configuration of scan positions within a reference plot and TLS point cloud. (a) Sketch of
circular reference plots depicting the approximate location of the four TLS scans. (b) Automatically
segmented teak trees from TLS point cloud depicting ground (brown) and vegetation (green) classified
points.

The processed TLS point clouds were clipped with a circular shape of 18 m radius.
Next, bare earth points were classified by applying the octree search method implemented
in the open-source software 3D Forest [23] (Figure 2b). A 20 cm grid spacing DTM was
built from ground points to proceed with the calculation of the normalized heights of each
TLS point. In addition, each tree in the plot was automatically segmented by using the
point clusters method implemented in the software 3D Forest [23]. It should be noted that
additional manual editing was also carried out to remove some errors observed in the
automatic segmentation of each tree.

Finally, 3791 teak trees were extracted from the 58 reference plots. Those teak trees
with DBH < 5 cm and/or CD < 1 m (underdeveloped trees) were removed from the original
dataset. Thus, 2272 trees remained as the final dataset to develop the regression models
(DBH = Φ(h) and DBH = Ψ(h, CD)) tested in this study.

A MATLAB code was developed for the automatic extraction of the dendrometic vari-
ables DBH and H [14] from the point clouds corresponding to segmented trees, while CD
was manually measured for each tree in the digital environment provided by Fusion/LDV
software [24]. A complete description about the methods followed in order to obtain the
dataset used in this study can be found in [14].

2.3. Allometric Models

Six allometric models were tested to fit the DBH estimation from H and H + CD
predictor variables; one based on traditional linear regression and the remaining five
focused on supervised machine learning algorithms. An individual-based modelling
approach was used by considering each individual tree measurement as an instance of the
complex relationships modelled

The linear regression model used in this study was based on the widely known
potential form (e.g., [14,18]). After taking logarithms to linearize the potential expression,
we obtained the following equations:

DBH = e(α+β ln (H))eε = e(α+β ln (H))e
σ2
2 , (1)

DBH = e(α+β ln (H.CD))eε = e(α+β ln (H.CD))e
σ2
2 , (2)

where DBH is given in centimeters, and H and CD in meters. α and β are model coefficients,
and ε is an error term. If it is considered that the error term is normally distributed with

zero mean and standard deviation σ, the mean of eε could be approximated by e
σ2
2 [17].

This additional term would function as a correction factor applied to back transform the
predicted values and remove bias from the logarithmically transformed data.
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Regarding supervised machine learning methods, this study has focused on testing
tree-based regression learners such as individual tree-based models (Decision Tree Regres-
sion, DTR) and some derive ensemble algorithms grouped in bagging techniques (Random
Forest Regression, RFR) and boosting techniques (AdaBoost Regression, AdaBoost; Gra-
dient Boosting Regression, GBoost; and Categorical Boosting Regression, CatBoost). The
optimal combination of hyperparameters for each machine learning model was computed
by applying a grid search with cross-validation method [25].

The validation of the tested allometric models was based on the widely accepted true
validation method. This method states that the data used to train the model can never
be used for validation. In this sense, the testing set for validation consisted of 20% of
the 2272 available trees, leaving the remaining 80% as a set for training and computing
the regression model. This procedure was repeated 100 times, splitting the original data
between the training and the testing sets by using random sampling. It allowed studying
the stability of the tested regression models against changes in the training samples.

Some error indicators related to the systematic and random error of the DBH values
predicted by the regression models were calculated according to the following expressions:

Bias (%) =
100
N

N

∑
i=1

(
DBHpi −DBHoi

DBHoi

)
, (3)

RMSE (cm) =

√
∑N

i=1(DBHpi −DBHoi)
2

N
, (4)

RMSErelative (%) = 100
RMSE
DBHo

, (5)

where DBHp and DBHo corresponds to DBH values predicted and observed, respectively.
N and DBHo are the number of teak trees in the testing dataset and the mean value of DBH
observed values for the teak trees, respectively. Note that the Bias indicator constitutes
a measure of the systematic error or bias of the model, while RMSE (root-mean-square
error) is a quantitative indicator of its random error. RMSErelative represents a percentage
measure of the random error with respect to the mean of the observed values.

The entire procedure mentioned above was coded in Python 3.8 with the support of
the scikit-learn and catboost libraries.

3. Results

Table 1 shows the statistics of goodness-of-fit (R2) for the six tested allometric models in
the case of only including H as explanatory variable for estimating DBH. Specifically, it rep-
resents the mean value, the standard deviation, and the range of R2 for the 100 repetitions
performed, pointing out that individual tree-based models like DTR performed signifi-
cantly worse (p < 0.05) than linear regression or ensemble machine learning regression
algorithms. In fact, small changes in the learning sample can cause dramatic changes in the
built tree derived from individual tree-based models, and so the estimated results can be
unstable and inaccurate. This is the reason why most recent studies have adopted bagging
and boosting ensemble algorithms [25,26].

Traditional linear regression turned out to be very competitive, providing results
statistically similar to those yielded by sophisticated ensemble boosting algorithms, while,
surprisingly, RFR worked significantly worse than boosting or linear regression methods,
showing a high variability in prediction when varying training samples. It is important
to note that ensemble learning is a branch of machine learning that builds and combines
multiple learners to improve the outcomes of the learning process. In the case of bagging
methods, such as RFR, they apply bootstrap samples randomly generated from the original
dataset to train tree models and then aggregate the ensembles to obtain final predictions
by majority voting. In this sense, the RFR algorithm usually improves predictions by
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decreasing the variance and avoiding overfitting, which is more recommended when
developing models that include several explanatory variables (multivariate models).

Table 1. Statistics of R2 for bivariate allometric models DBH = Φ(H). Mean values with different
superscript letters in a column are significantly different (p < 0.05) (two-sample t statistic).

Regression Method R2 Mean Value (%) R2 Standard
Deviation (%)

R2 Range
(Min/Max %)

GBoost 87.21 a 1.02 84.92–89.65
CatBoost 87.08 a 1.06 84.80–89.43

LR 86.87 a 1.08 83.17–89.32
AdaBoost 86.59 a 1.26 83.16–89.80

RFR 82.50 b 1.44 79.04–86.42
DTR 78.35 c 2.23 72.93–83.76

The statistics of goodness-of-fit corresponding to the multivariate allometric models,
in which DBH depends on H and CD, are shown in Table 2. First, it should be noted that
the prediction results were clearly better than those provided by the bivariate allometric
models presented in Table 1, especially in the case of machine learning methods. Except
linear regression, they also showed lower variability in R2 when varying training samples,
which points to a greater stability of the machine learning models tested in the case of
multivariate regression than in the bivariate.

Table 2. Statistics of R2 for multivariate allometric models DBH = Ψ(H, CD). Mean values with
different superscript letters in a column are significantly different (p < 0.05) (two-sample t statistic).

Regression Method R2 Mean Value (%) R2 Standard
Deviation (%)

R2 Range
(Min/Max %)

GBoost 90.16 a 0.91 87.52–92.32
CatBoost 90.15 a 0.93 88.00–91.98
AdaBoost 88.73 ab 1.02 85.75–91.46

RFR 88.67 ab 1.04 85.23–91.13
LR 87.81 b 1.13 84.33–90.70

DTR 81.22 c 1.67 76.31–86.01

Quite the opposite occurred with traditional linear regression, where the inclusion of
the CD variable slightly improved the mean value of R2, but also increased its standard
deviation. This result indicates that machine learning regression methods are able to
identify complex relationships between covariates not found using conventional regression-
based approaches. In this regard, GBoost has been rated as one of the most competitive
methods for learning problems when it comes to noisy data and complex non-linear
dependencies [27].

GBoost and CatBoost boosting regression algorithms performed significantly better
(p < 0.05) than traditional linear regression and DTR, also showing high stability to the
variation of training samples. These similar results between GBoost and CatBoost were
expected as CatBoost is a member of the family of gradient boosting decision tree machine
learning ensemble techniques.

AdaBoost and RFR were statistically situated between the very good results offered
by GBoost and CatBoost and the good results offered by linear regression, providing
predictions not significantly different from those provided by linear regression. In this way,
boosting methods, such as GBoost, CatBoost, and AdaBoost, are qualified as sequential
ensemble algorithms that converts weak learners to strong learners by paying the most
attention to the samples with the highest prediction errors, so increasing their weights in
the next iteration and improving prediction accuracy by decreasing bias [27].

The bias of the multivariate models tested in this study was very low, as can be
qualitatively appreciated in Figure 3. Indeed, the multivariate DTR model provided bias
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values between −0.62% and 3.87% for the 100 repetitions, with a mean value of 1.31%. It
means a very slight overestimation of the observed values of DBH. The rest of the models
represented in Figure 3 also showed very low bias values, with mean values of 1.33%,
1.57% and 1.84% for RFR, GBoost and LR, respectively.
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Regarding the random error of the multivariate regression models, the four models
represented in Figure 3 yielded acceptable RMSE mean values for estimating DBH, which
ranged from 2.02 cm (std = 0.10 cm), in the case of DTR, to 1.45 cm (std = 0.06 cm) in
the case of GBoost. These values involved a mean relative RMSE of 16.56% and 11.95%
for DTR and GBoost models, respectively. LR and RFR models provided an intermediate
random error, with RMSE mean values of 1.62 cm (std = 0.07) and 1.57 cm (std = 0.06 cm),
respectively, which means relative RMSE values of 12.85% for RFR and 13.34% in the case
of LR.

4. Discussion

The main objective of this work is to model the allometric relationships—DBH = Φ(H)
or DBH = Ψ(H, CD)—of teak trees located in the Coastal Region of Ecuador. Such models
are important components for calibrating remote sensing products used to estimate natural
forest stocks. In fact, AGB estimates at tree level could be obtained from airborne and space-
borne sensors by only extracting some key variables such as tree height and crown diameter.
This remote sensing-oriented approach is gaining importance in recent years [18] because
it enables large-scale mapping of AGB for forest management and monitoring [10,28] in
the context of mitigating climate change (REDD monitoring programmes) [5,29]. It is
worth noting that this is the exact opposite of what is common in traditional fieldwork
based inventories, where DBH is usually easier and cheaper to measure than tree height,
especially due to the difficulty of locating tree tops inside closed-canopy forests [30].
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Most allometric models to estimate AGB at tree level are based on knowing the
DBH value. This is the case of the generalized pantropical AGB model proposed by
Chave et al. [17] given by the following equation:

AGB = 0.0673
(
ρDBH2H

)0.976
, (6)

where AGB represents estimated aboveground biomass (kg), DBH is diameter at breast
height (cm), H is tree height (m), and ρ is wood density (g cm−3). The same occurs with
specific models developed for the estimation of AGB of teak trees such as those proposed
by Lara [31] or Pérez and Kanninen [32] that also have DBH as an explanatory variable.

However, it is not possible to directly measure DBH from airborne or spaceborne
sensors, a drawback that could be overcome if we counted on reasonably accurate allo-
metric models to estimate DBH from variables that can be extracted from remote sensing
techniques such as H and CD [4,19,33–35]. This requires accurate algorithms to extract the
position and height of each tree within a study plot as well as methods aimed at automated
tree crown delineation [15].

Machine learning methods have been widely applied to develop AGB prediction
models from different remote sensing data sources such as optical satellite imagery, UAV
stereo-imagery, airborne hyperspectral images, ALS (airborne laser scanning), and space-
borne SAR [15,16,25,26,36,37].

However, there are very few published works comparing the results offered by tra-
ditional linear least squares regression with those provided by machine learning meth-
ods in relation to modeling tree height-diameter allometry. Most of these studies test
some formulation of artificial neural networks (ANN) [38–40] or even Deep Learning
(DL) approaches [30,41], which generally showed greater precision than traditional linear
regression methods.

For example, Chen et al. [40] successfully applied a new approach for using ANN
machine learning to synthesize spatiotemporal tree measurement data collected in a boreal
forest in central Canada to model DBH-H and DBH-H-age relationships for six dominant
tree species. Ogana and Encarli [30] trained a complex DL algorithm with 100 neurons
distributed into six, seven or nine hidden layers for predicting tree heights in a tropical
rain forest of Nigeria. They found that DL approach outperformed the results provided by
nonlinear least squares and nonlinear mixed-effects models. In the same way, Ercanli [41]
reported that a DL model with 100 neurons and nine hidden layers was the best network
model compared to ANN, nonlinear regression, and nonlinear mixed-effect models to
predict the relationships between H and DBH in stands of even aged and pure Anatolian
Crimean Pine.

Even fewer studies have addressed tree height and diameter allometry relative to
machine learning methods other than ANN and DL. In this sense, Filho et al. [42] tested
four machine learning algorithms (k-nearest neighbors, RFR, support vector regression
[SVR], and ANN) for modeling the height–diameter relationship of Pinus taeda L. stands at
different ages, comparing the results to those obtained by linear regression models. They
reported that the machine learning models showed statistical indicators similar to the linear
regression models when only H was included as an explanatory variable, which fully agrees
with the results obtained in this work. They did not test including CD as an additional
explanatory variable. In the same research line, Tavares Júnior et al. [43] evaluated the
accuracy of predictions of annual periodic increment in diameter of individual trees in the
Atlantic Forest using three machine learning techniques (ANN, SVR, and RFR), finding
that ANN was the technique that presented the highest efficiency to predict the diameter
increment of trees.

In a recent work published by the authors, a traditional regression univariate model
based on robust least squares fitting was proposed to express DBH as a function of H [14].
In this case, the inclusion of CD as an additional explanatory variable (multivariate model)
did not significantly improve the accuracy of the predicted DBH values. In this way, the
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present work represents a step forward, aiming at testing the potential of machine learning
regression models as an alternative to traditional linear regression methods to fit highly
nonlinear allometric relationships in teak trees. Indeed, our study has demonstrated that
allometric models involving both H and CD to estimate DBH performed better than those
based solely on H. In addition, easy-to-apply boosting machine learning regression methods
such as GBoost or CatBoost outperformed LR models (traditional linear regression) both in
terms of goodness-of-fit (R2) and stability (variations in training and testing samples).

When quantitatively comparing multivariate GBoost, one of the best machine learning
methods tested in this work, and multivariate LR, both showed a low systematic error,
slightly overestimating the observed values of DBH with a mean bias of 1.57% (ranging
from 0.05% to 3.35%) and 1.84% (ranging from −0.04% to 3.65%), respectively. Multivariate
GBoost and LR also provided reasonably low values of random error, predicting the
observed values of DBH with mean RMSE figures of 1.45 cm (RMSErelative = 11.95%) and
1.62 cm (RMSErelative = 13.34%), respectively.

In any case, the techniques used in this work should be adapted in order to be applied
to other forest areas and species, since the height–diameter models not only depend on
the species, but also on the characteristics of the stand and edaphoclimatic factors. In
this regard, the authors of this study are currently testing machine learning regression
algorithms to model tree allometric relationships in Mediterranean forest species such as
Aleppo pine (Pinus halepensis Mill.).

It is worth underlining that the TLS-based method applied in this study to extract
some dendrometric variables at tree level could be applied even to natural forests with
mixed species. However, the two following drawbacks should be considered. First, the
total height of the trees could probably be underestimated depending on the density and
3D structure of the forest stand, the phenological conditions, and the design of the TLS
scan positions [44]. Note that the main reason of the underestimation of tree height by TLS
is that the top of the tree crown is occluded by itself or a neighboring tree [45]. This issue
can be partially solved by performing TLS fieldwork in leaf-off conditions [14], although
it only works on deciduous tree species. Second, dealing with mixed species poses an
additional requirement, such as prior classification of individual trees by species to obtain
single-species allometric relationships, which are often much more accurate than those
for multiple species. The need to do so will depend on the objective of the study and
the precision required. Focusing on dendrometric variables extracted from TLS data over
monoculture deciduous plantations (teak plantations in this case), it has been found that
the results obtained can be qualified as very similar to those provided by traditional field
techniques [46].

As it was discussed above, it would be difficult to guarantee the precision required in
estimating the total tree height using TLS data in the case of very dense evergreen forests,
being more appropriate to use point clouds derived from above-canopy flights of airborne
or UAV-mounted sensors (e.g., digital aerial photogrammetry or LiDAR sensor) [7,47].
However, it should be noted that top-down approaches based on above-canopy flights can
be a very useful way to obtain the total height of dominant trees, but are not effective for
detecting small trees below the canopy or estimating DBH in evergreen dense forests [48].

Finally, it is necessary to clarify that the dendrometric data used in this study could
have been properly collected by means of traditional field techniques instead of being ex-
tracted from TLS data. However, prior research has demonstrated that high-resolution/high-
accuracy point clouds acquired by TLS are valuable for deriving not only georeferenced
DBH, total tree height, and crown diameter measurements at stand level, but also an
automatically computed 3D description of tree architecture [49]. This detailed 3D tree
description is very valuable for estimating, for example, the commercial/total stem volume
of a tree or even its stem taper curve [14,50,51].
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5. Conclusions

In this study, we tested several supervised machine learning algorithms to model
height–diameter allometry in teak plantations. The results obtained were compared
with those provided by traditional linear regression, checking both bivariate
models—DBH = Φ(H)—and multivariate models—DBH = Ψ(H, CD). In this way, the
allometric models that involved both H and CD to estimate DBH performed better than
those based solely on H. Furthermore, boosting machine learning regression algorithms
(CatBoost and GBoost) significantly outperformed (p < 0.05) individual tree-based model
(DTR) and traditional linear regression model (LR), both in terms of goodness-of-fit (R2)
and stability of regression models against changes in training samples. Random forest
regression (ensemble bagging based algorithm) was statistically situated between the
very good results offered by GBoost and CatBoost and the good results offered by linear
regression, not achieving a significant improvement on the predictions provided by LR.

The results obtained in this work demonstrate the great potential of supervised
machine learning regression methods to model complex nonlinear allometric relationships
between DBH and two variables, such as tree height and crown diameter, which can be
remotely sensed from spaceborne or airborne sensors. Without a doubt, it is a great step
to facilitate the swift upscaling of plot-based field forest inventories to the immediate
geographic area by applying remote sensing methods.
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