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Abstract: In this paper, we investigate the multimodal discrete network design problem that si-
multaneously optimizes the car, bus, and rail transit network, in which inter-modal transfers are
achieved by slow traffic modes including walking and bike-sharing. Specifically, a super network
topology is presented to signify the modal interactions. Then, the generalized cost formulas of each
type of links in the super network are defined. And based on the above formulas a bi-objective
programming model is proposed to minimize the network operation cost and construction cost with
traffic flow equilibrium constraints, investment constraints and expansion constraints. Moreover, a
hybrid heuristic algorithm that combines the minimum cost flow algorithm and simulated anneal-
ing algorithm is presented to solve the proposed model. Finally, the effectiveness of the proposed
model and algorithm is evaluated through two numerical tests: a simple test network and an actual
multimodal transport network.

Keywords: super network; discrete network design problem; multimodal transport network; bi-
objective programming; hybrid heuristic algorithm

1. Introduction

With the acceleration of urbanization and the development of intelligent transportation
systems (ITS), multimodal travel behavior has become the main form for residents. A single
travel mode fails to meet the increasing travel demand. The coordinated development
of a diversified comprehensive transportation system, which includes car, bus, and rail
transit, has gradually become the focus of meeting people’s travel and restraining the rapid
expansion of the number of cars. Therefore, the study of multimodal transportation is
conductive to guide passengers” multimodal travel behavior and relieve congestion.

A multimodal transportation system can be described as a complicated network
composed of nodes and links. However, the coupling and interaction of the complicated
network bring a new problem: networks in networks. For example, some nodes/links of the
car network are also the nodes/links of the bus or rail transit network in a comprehensive
urban transportation system and vice versa. To deal with the problem, we use the super
network theory, which is an effective tool to deal with network hierarchies, to study the
multimodal transportation network design problem. Next, a literature review on super
network, discrete network design problem, bus network design problem, and multimodal
network design problem is as follows.

1.1. The Super Network

Super network concept was first proposed in 1984 to describe the urban transportation
network [1]. Then the super network was described as “above and beyond existing
networks” [2]. The concept of the super network was improved to “networks in networks”
as well [3]. At present, the super network theory is mainly used among two areas: traffic
flow assignment and logistics supply chain [4-8]. For example, Daniele et al. used the
super network method to achieve Wardrop equilibrium of traffic flow in the Banach space
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environment and applied variational inequality to define it [4]. Yamada et al. proposed
a discrete network design problem model to optimize the supply chain efficiency of the
freight network and applied the super network method to realize the equilibrium of the
transportation network [5]. In 2015, they further studied the multimodal freight transport
network design problem by using particle swarm optimization [6]. Feng et al. proposed a
closed-loop supply chain supernetwork model including suppliers, manufacturers, retailers
and consumers at demand market [7]. Chen et al. considered the demand change problem
composed of four travel choices (travel generation, travel distribution, travel mode division,
and traffic flow assignment) as a nonlinear mathematical model, and each combination
model can be treated as an “extended” traffic flow assignment problem by using super
network technology [8].

From the above analysis, the super network theory is appropriate and effective in
the application of topology description and traffic flow assignment of the complex trans-
portation system. Therefore, the super network is applied in this paper to set up a super
network topology of multimodal transportation network including care, bus, rail transit,
and slow travel modes (bicycle and walking).

1.2. The Discrete Network Design Problem

Generally, the network design problem (NDP) of urban transportation refers to an
optimal investment decision problem. For clarity, the decision problem is to determine the
expansion of certain links or adding of new links under certain investment constraints and
the choices of traffic travelers, which makes the entire transportation network reach certain
indicators. Currently, NDP is divided into two forms according to the different types
of decision variables: continuous network design problem (CNDP) [9-13] and discrete
network design problem (DNDP) [14-20]. The first one tends to improve the capacity of
existing road sections, while the second one is to add new road sections to the existing
network. The multimodal transportation network design problem in this paper is a discrete
network design problem (DNDP).

For DNDP, LeBlanc presented a nonlinear mixed-integer programming model and
proposed a branch and bound algorithm to solve the model, which optimized some
sections of the urban road network to minimize the overall congestion [14]. Farfaresh
et al. improved B & B algorithm based on LeBlanc [15]. Poorzahedy et al. transformed the
bi-level programming model into a model and proposed a heuristic algorithm based on
B & B to solve the model [16]. Gao et al. established a bi-level programming model, and
used the support formula method to express the relationship between the expanded links
and the added links, and designed an algorithm to solve the bi-level programming model.
Considering the optimal number of lanes added for each candidate link in the network [17].
Wang et al. proposed a multi-level planning model with multiple capacity levels and
solved the model by the method of system relaxation and user equilibrium reduction [18].
Wang and Liu developed a mixed-integer nonlinear model that decides whether a link is
added to the network and developed a solution algorithm of global optimization method
with linearization, external approximation, and range reduction technology [19]. Di et al.
studied demand-originated reversible lane design plans for car network and presented a
nonlinear bilevel mixed-integer programming model to find the optimal lane combination
strategy. In addition, for solving the proposed model, they developed heuristic algorithms
to obtain its approximate optimal solution [20].

1.3. The Bus Network Design Problem

For the bus NDP, the main study is to optimize the layout of bus routes, fare levels,
and service frequencies, among which the layout of bus routes is the key and difficult. Wan
and Lo established a mixed-integer linear programming model to design multiple bus
routes simultaneously [21]. Baaj and Mahmasani [22] and Mauttone and Urquhart [23]
used the shortest routes as bus routes, and improved them by single node insertion and
paired node insertion. Yang et al. [24] and Yu et al. [25] directly generated bus routes
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using ant colony optimization algorithm. Yao et al. constructed candidate bus routes by
deleting and modifying some existing links and applied a tabu search to determine the
optimal route set [26]. Amirgholy et al. used a macroscopic approach to optimize the
line spacing, stop spacing, headway, and fare of the transit system [27]. Chen and Liu
proposed two continuum approximation (CA) models to optimize the design of the hybrid
transit network with the objective formula of minimizing the related costs of passengers
and operating agencies [28]. Based on the Internet of Things, Feng et al. studied the design
of an intelligent bus positioning system to improve the means of bus dispatch and improve
the efficiency of bus operations [29].

1.4. The Multimodal Network Design Problem

There are a few studies about the multimodal DNDP, which mainly focus on two
aspects: one is how to optimize the bus network considering congestion interaction with
other modes. The other one is how to optimize both the car network and the bus network.

For the first aspect, Wan and Lo studied transit network design problem in the multi-
modal network and presented a systematic phase-wise methodology that considering both
the effect of congestion and integration of modal transfers [30]. Moreover, they modeled
inter-route and inter-modal transfers through the state augmented multimodal (SAM)
network approach. Uchida et al. established a multimodal network design problem model
to solve the problem of optimal frequency design for bus services. They applied sensitivity
analysis to define linear approximation functions between the Probit SUE link flows and
the design parameters, which are then used as constraints in the sub-problem of the NDP
instead of the original stochastic user equilibrium (SUE) condition [31]. Li et al. considered
the impact of bike-sharing on transfer, optimized the design problem of the bimodal transit
network, and proposed a continuum model to optimize the bimodal transit system and
shared bikes in a grid network at the same time [32].

For the second aspect, Gallo et al. optimized both car and bus networks by increasing
the capacity of existing roads and the service frequency of bus routes, but the network topol-
ogy remained unchanged and the added optimization was not considered [33]. Zhang et al.
simultaneously optimized the auto network and bus network by establishing a single-level
mathematical program with complementarity constraints and solved the model with an
active-set algorithm, however, they only considered two transportation modes without
considering the modal interactions [34].

Cai et al. reviewed the research status of cycling network planning and design in
cold-climate cities in China and worldwide and summarized the relevant methods that
can be used in China [35]. Liu et al. investigated the optimal network design problem
of bike paths, which are on or adjacent to roadways but are physically separated from
motorized traffic within the existing urban network. They proposed a mixed-integer
nonlinear nonconvex model for the problem and solved the proposed model with a global
optimization method and a matheuristic [36]. In addition, in this paper, based on the
optimal scheme of the bike network design problem, we use the known bike routes and
walking routes to connect car, bus, rail transit networks as a multimodal transportation
network, then study the multimodal transportation DNDP.

In summary, we consider the interactions among various transportation modes and
comprehensively optimize the multimodal DNDP of the car, bus, and rail transit, which is
meaningful and innovative. The main contributions are listed as follows:

Firstly, the slow travel modes in the multimodal transportation network are consid-
ered in this paper, which is usually neglected in existing studies. Apart from walking,
bike-sharing has become another popular transfer mode. Therefore, we take the bicycle
and walking as transfer modes to describe the modal interactions of car, bus, and rail
transit. Secondly, the car, bus, and rail transit network are simultaneously studied for the
optimization of multimodal DNDP. Most studies only considered the car network and
bus network. However, owing to the large capacity, fast speed, and high comfort of rail
transit, it occupies a very important position in multimodal travel behavior. Therefore,
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it is necessary to consider rail transit into multimodal DNDP. Moreover, a multimodal
super network topology is presented, which clearly expresses inter-modal transfers of car,
bus, and rail transit networks, as well as inter-route transfers of the bus and rail transit
network. Besides, a bi-objective programming model of multimodal DNDP is proposed
to make decisions about expanding or adding links in the car, bus, or rail transit network.
It aims to minimize the network operation cost and construction cost. Lastly, a hybrid
heuristic algorithm based on the minimum cost flow algorithm and the simulated an-
nealing algorithm is developed to efficiently and effectively solve the proposed model.
The proposed algorithm in this paper and the branch and bound algorithm proposed by
reference [14] are all suitable for solving combinatorial optimization problems. However,
the branch and bound algorithm needs more branch operations and consumes more time.
Compared with the algorithms proposed by references [18,19], they are improved based
on the traditional DNDP model and solve the global optimal solution through the Mix
Integer Linear Programming (MILP) solver. While we use mathematical planning methods
and network flow theory to establish the multimodal DNDP model and apply heuristic
algorithms to efficiently solve the optimal solution. They did not make use of the network
structure of relevant problems. In addition, the MILP solver cannot solve the problem of a
large number of integer variables to the optimal in a reasonable time, which thus hinders
the computational efficiency.

The rest of the paper is organized as follows: In Section 2 a multimodal super network
topology is presented. In Section 3 a bi-objective programming optimization model of
multimodal DNDP is proposed. In Section 4 a hybrid heuristic algorithm to solve the
proposed model is developed. In Section 5 two numerical tests are implemented to validate
the proposed model and algorithm. Concluding remarks and possible future research
directions are presented in the last section.

2. Multimodal Super Network Topology

2.1. Multimodal Network Representation

There are 5 kinds of transportation modes considered in this paper: car, bus, rail transit,
bicycle, and walking. Multimodal transportation weighted directed graph G = (V, A, W, K).
is presented, in which some notations and definitions are shown in Table 1.

Table 1. The notations and definitions of the multimodal transportation network.

Notations Definitions
K Set of transportation modes. It includes car, rail transit, and bus, which are indexed by ¢, 7, and p respectively. Thus
for any mode k € K = {c,r,p}.
v Set of nodes, node i € V. In a multimodal transportation network, nodes have multiple attributes, which can
represent bus stations, rail transit stations, road intersections, and interchange hubs.
Set of links, link (i, ) € A. In this paper, the links in topological networks are divided into four types: AF ( the set of
A entering links), AL (the set of leaving links), AP (the set of driving links), AT (the set of transfer links). It is
concluded that A = AF U ALU AP U AT,
AEK Set of the entering links of transportation mode k. It means that passengers begin to enter the network.
ALK Set of leaving links of transportation mode k. It indicates that passengers’ leave behavior from the network.
ADK Set of driving links of transportation mode k. It expresses that transportation mode k is driving in the network.
ATk Set of links for transferring to transportation mode k. It includes the transfers between the same or different
transportation modes.
W Set of weights, weight w;; € W. The weight of links in the multimodal network has a variety of attributes, which can

be represented as a generalized cost formula.

The relationship among the elements in the multimodal transportation super network
studied in this paper is shown in Figure 1.
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— Road Intersections

— Transfer Hubs
— Nodes -—
— Bus Stations
Multimodal — Rail transit Stations
Transportation -~
SIS — Entering Links
— Leaving Links
— Links -—

— Transfer Links

— Driving Links

Figure 1. The structure diagram of elements in the multimodal transportation super network.

2.2. Procedure of Establishing a Multimodal Super Network Topology

In this section, we present a multimodal transportation network that meets two
requirements: one expresses the transfer among car, bus and rail transit modes; the other
one shows the internal transfer of bus or rail transit mode. As shown in Figure 2, a
traveler departs from the origin O to the destination D. The transfer relationship among
the transportation modes are described as follows: Firstly, passengers on bus line 2 can
transfer to rail transit line 1 by transfer node 3, which represents the inter-modal transfer
between bus and rail transit. Secondly, node 6 is the transfer station between bus line 2
and bus line 3, which stands for the inter-route transfer in the bus network. Moreover,
passengers can drive from node 7 to node 10 and transfer to rail transit line 2 through the
transfer link (9,10), which indicates the inter-modal transfer between car and rail transit.
Besides, by the transfer node 12 passengers can transfer from rail transit line 1 to rail transit
line 2, which shows the inter-route transfer in the rail transit network. Finally, all transfer
nodes 3 — 3/,6 — 6/, and 12 — 12’ are achieved by walking; and transfer links (9,10) and
(16,17) are achieved by bike-sharing. Next, based on the super network theory, the process
of establishing a multimodal transportation super network topology is as described in the
following section.

—~Car Link — Rallldit;imit ——Bus Link - Transfer Link ~ ------ Enter/ Leave Link

Figure 2. The diagram of the multimodal transportation network.
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2.2.1. Bus Network

The bus network is illustrated in Figure 3, which includes three bus routes, namely
bus line 1, bus line 2, and bus line 3, where the pink node 6 is the transfer station. The
information of routes in the bus network is shown in Table 2.

Bus 3

o ®
o
® O-®

—Bus Link - Transfer Link ~ ------ Enter/ Leave Link

Figure 3. The routes of the bus network.

Table 2. The information of bus routes.

Line Link Transfer Node
1 (7/8) (8/9) -
2 (1,2) (2,3) (3,4) (4,5) (5,6) 6
3 (6,15) (15,16) 6

The transfer node 6 in Figure 3 can be extended to nodes 6 and 6’ through super

network expansion, so Figure 3 becomes the bus super network topology, which is shown
in Figure 4.

//@—m»@—sz»@sz»@-m»@m»@--83@33»@\‘4
D) e (3)er(d)

—Bus Link - Transfer Link  ------ Enter/ Leave Link

Figure 4. The bus super network topology.

2.2.2. Rail Transit Network

The rail transit network is shown in Figure 5, which contains two rail transit routes,
namely rail transit line 1 and rail transit line 2, where the pink node 12 is the transfer
station. The information of routes in the rail transit network is shown in Table 3.

Table 3. The information of rail transit routes.

Line Link Transfer Node

1 (3,11) (11,12) 12
2 (10,12) (12,13) (13,14) 12




Appl. Sci. 2021, 11, 10143 7 0f 26

%

Rail 1
Rail 1
Rail 24>®7 Rail 2—»@7 Rail 2@
—— Rail transit Link e Leave Link

Figure 5. The routes of the rail transit network.

Like transfer node 6 discussed above, the transfer node 12 can be extended to nodes
12 and 12’ by super network expansion. As a result, the rail transit super network topology
is as shown in Figure 6.

@— R14>@— Rl—»@
@ R2 >/1Y2\ RZ—@i R2----> D

—Rail transit Link - Transfer Link - Leave Link

Figure 6. The rail transit super network topology.

2.2.3. Car Network

The car network is shown in Figure 7. It contains three car routes, named car route 1,
car route 2, and car route 3, respectively. The information of each route in the car network
is shown in Table 4.

® 0 0
10 >:12[ ;@ ...... ........ ,@

/ "
—Car Link - Enter/ Leave Link

Y
(@)

Figure 7. The routes of the car network.

Table 4. The information of car routes.

Line Link Transfer Node
1 (1,3) (3,6) (6,17) 3
2 (1,3) (3,12) (12,14) 3

3 (7,10) (10,12) (12,14) 12
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In general, for car mode passengers or drivers needn’t transfer in one trip, so it is
unnecessary to expand nodes in the car network, the car super network topology is shown

in Figure 8.
© 'C ().
ok EE
(7 »(10) »(12 A,@""
C N\ ol

—Car Link - Enter/ Leave Link

@
) 4

Figure 8. The car super network topology.

In summary, by connecting the same nodes among different modes, a multimodal
transportation super network topology (Figure 9) is obtained, of which three layers are
bus, rail transit, and car network topology respectively. In Figure 9, the pink dotted links
clearly illustrate the inter-modal transfers among bus, rail transit, and car, as well as the
inter-route transfers of bus or rail transit.

@—BZ»@—BZ»@»BZ»@—BZ»@—BZ

<> BusNetwork <> Rail Network < CarNetwork

—~Car Link — Ra1iit$(n51t ——Bus Link - Transfer Link ~ ------ Enter/ Leave Link

Figure 9. The multimodal transportation super network topology.

3. Formulating the Multimodal Discrete Network Design Problem

In this section, firstly the generalized cost formulas of each type of links are de-
fined. Then, a bi-objective programming optimization model of multimodal DNDP will
be introduced.
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3.1. The Generalized Cost Formula

Many factors affect the impedance of links in the multimodal networks. In this paper,
the impact of travel time, monetary cost, and comfort are mainly considered. Among them,
travel time includes walking time, driving time, and waiting time. Monetary cost can be
divided into two types: mileage-based fare (such as the car mode) and route-based fare
(such as the bus and rail transit mode).

The perception of comfort varies with the travel time due to different transportation
modes. Besides, we reserve some time to prevent emergencies. Consequently, the general-
ized cost of links is mainly composed of travel time, monetary cost, and comfort loss, risk
reserve time, which is specifically quantized as:

wl; = aTf + BPS + Sf; + 6Rf;, V(i j) € Ak € K 1)
where «, B,,0: the weight coefficients and we have « + f+ v+ = 1, T: the travel
time cost, P: the corresponding time cost converted from currency conversion, S: the
corresponding time cost converted from the loss of comfort and R: the reserved time
for risk.

3.2. The Generalized Cost Formulas of Entering Links and Leaving Links

(1) Travel time

In the actual transportation system, entering links AEk vk e {r,p} indicate the
process of reaching the stations, which mainly include walking time and waiting time;
entering links AP, k = {c} express the process of reaching the parking lot, which mostly
includes walking time. Therefore, it can be concluded that the travel time of the entering
links mainly consists of walking time and waiting time. Consequently, the travel time of
the entering link can be formulated as:

Ek _ ,Ek Ek s Ek
T = bk + twaitijr V(i j) € AV k€K, @
where tw alkij’ : the average walking time of the entering links and tw nit ij* : the waiting time of

the entering links. In this paper, it is set that twmt i 2f' V(i,j) € AEK k€ {p,r}, f is the
wmt Qi = =0, Y(i,j) € ABK k = {c}.
Meanwhile, in the actual transportation system, leaving links AL* (Vk € K) show the

process of arriving at the destination, which mostly contains walking time. Hence, the
travel time of the leaving links can be described as:

departure frequency, and tE

Lk -
Ty =t V(i) € AM ke K €)

where t% is the average walking time of leaving links.

wal k,ij
(2) Monetary cost

Since there is no monetary cost on the entering links and leaving links, we set the
monetary cost to zero, which is formulated as:

Pk = Pk =0, V(i j) € AP U A ke K (4)

where PE ¥ the monetary cost of entering links and P, k. the monetary cost of leaving links.
(3) Comfort loss

Since the trip is very short and the value of comfort loss is very small, we also set the
comfort loss to zero on the entering links and leaving links. The equation is as follows:

i =si% =0, V(i) € AFFU A ke K (5)
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where S fj’k: the comfort loss of entering links and SiLj’k: the comfort loss of leaving links.

(4) Risk reserve time

According to travel time, so we set the risk reservation time of the entering links as:
Ek _ Ek Ek © o Ek
REF = (of* = 1) T, v(i,j) € AP ke K ©6)

where pfj’k: the delay parameter of the entering links, and pi’k >1, V(i,j) € ABK ke K.
Similarly, the risk reservation time of the leaving links is formulated as:

Lk _ Lk Lk o
RiF = (o 1) T, v(ij) € Al ke K @)
where pl.L].’k : the delay parameter of leaving links and piLj’k >1, V(i,j) € ALk € K.

3.3. The Generalized Cost Formulas of Driving Links

(1) Travel time
In the actual transportation system, driving links ADk vk e {c}, stand for the road
between adjacent intersections. In this paper, we set the travel time of car driving links as:

xl']' + M: o
e | |V e APE ®)
ij

D,c _ ,D,c0
Tl.j = tl.]. 14+¢

f]? 0 the free-flow travel time, x;j: the newly assigned traffic flow, Ml.lj) “; the original

traffic flow, cll.? : the capacity of driving links, ¢: the average number of passengers and

where t

@, 0: the undetermined coefficient.

Meanwhile, in the actual transportation system, driving links ADk ik e {r,p} in-
dicate adjacent stations, and the travel time of the bus and rail transit driving links are
set as:

DK _ Dk \/0: ; D,k
T =790, j) € A7 ke {p,r} 9)

where tll.? : the average travel time of the transportation mode k.
(2) Monetary cost

Since the car is charged depending on mileages, in this paper, the monetary cost of the
car driving links is described as:

PPC = p 0« L4 V(i ) € AP (10)

where p,? 0 the monetary cost per unit mileage,

Lf]? “; the length of the link (i, ).

Moreover, as the price of the ticket is up to mileages, the monetary cost of the bus and
rail transit driving links are set as:

pDKO [ Dk < [ Dk
pPk = ! v V(i,j) € AP* ke {pr} (11)
D,k0 Dk D,k0 Dk 1Dk D0 7"\ ’ ’
where p” k0. the starting fare, LP*0: the number of miles corresponding to the starting fare

)
of the mode k, Ll.r}.) k: the length of the link (,j) and pl.r}.) k. the increasing ticket price per
unit mileage.

(3) Comfort loss
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As the comfort loss is proportional to the travel time on the car network, it can be
formulated as:
57 =yPTA V(i j) € AP (12)

where: yP: the degree of comfort loss per unit time of the car mode.
In addition, the comfort loss is mainly determined by travel time and congestion on
the bus or rail transit network, so it can be described as:

SP¥ = (ng* + nP* (max (0,90 — £P%0P4) ) ) TPA V(i f) € AP ke {pr} (1)

where ;763 K. the comfort loss parameter when the transportation mode k is empty, 17? K. the
comfort loss parameter when congestion occurs, q? k. the number of passengers, fi]D K. the

departure frequency and 011-]3- k: the capacity of vehicles.

(4) Risk reserve time

Similarly, we set the risk reservation time of the driving links as follows:
Dk _ ( Dk D,k P )
RDF = (o = 1)TPX W(i j) € AP ke K (14)
where pll-]?’k: the delay parameter of driving links and pllj).’k >1, ¥(i,j) € AP¥ ke K.

3.4. The Generalized Cost Formulas of Transfer Links

(1) Travel time

It has been mentioned above that the transfer modes mainly consist of walking and
bike-sharing. Therefore, the travel time of transferring to the transportation mode k can be
formulated as:

Tk _ Tk © . Tk
Tij - walk ,ij + twmt Jij (l’]) €A keK (15)
or:
Tk _ ,Tk Tk . Tk
Tij — Tcycling,ij + twuit,ij’ V(l’]) €A keK (16)
where tw alk, i’ : the average walking time for transfer to the transportatlon mode k, t1” o C, ingij*

the average cycling time for transfer to the transportatlon mode k, X - the waiting time

wazt S

waltz; 2f’v(l ])GATkkG{pﬂ’}/
=0,V(,j) e ATk | = {c}.

for transfer to the transportation mode k, and we set ¢/

f is the departure frequency and ¢!

wazt ij
(2) Monetary cost

Since there is no monetary cost for walking, and only the monetary cost of bike-sharing
exists, the monetary cost of transferring to the mode k can be represented as:

Tk _ Tk _ . Tk

Py = Pyairi; = 0,V(i,j) € A%, k€K (17)
or:
T,k0 Tk T,k0

Pif L~ < L" -
pLk — pTk ,V(i,j) € ATK, ke K 18
Peyeting,ij pIT K0 [Li?k _ LT’kO} . pl]k LTk LTk (1)) (18)
where pT 0. the starting fare for cycling, LT*0: the number of miles corresponding to

the starting fare for cycling, L£ : the length of the link (i, j) and p, ].’ : the increasing fare
per unit mileage.

(3) Comfort loss
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Since the transfer trip is very short and the comfort loss can be ignored, we set the
comfort loss of transferring to the transportation mode k as:

Si*=0,¥(i,j) € ATH ke K (19)

(4) Risk reserve time

Similarly, the risk reservation time of transferring to the transportation mode k is
expressed as:

RiF = (plF =) T% ¥ j) € AT ke K (20)

where p k. the delay parameter of transferring to the transportation mode k and pT ks,
V(i,j) € AT k € K.

3.5. Bi-Objective Programming Model

The objective of multimodal DNDP is to decide on an optimal scheme U* from
the candidate schemes U = {U¢, U", UP} to minimize the total cost, which includes the
network operation cost and the construction cost of the optimization scheme. U is the set
of candidate links; U° is the set of added or expanded links for the car network; U" is the
set of added or expanded links for the rail transit network, and U? is the set of added or
expanded links for the bus network.

(1) Network operation cost

According to the generalized cost formulas mentioned above, the network operation
cost of the multimodal transportation network can be formulated as follows:

L Y

(i,j)e AUUkeK
Z Z aT + PP + S + 6R)-j;
(i,j)e AUUkeK
=) ) T PR ST g REF) (21)

(i,j)e AuUkeK
+(a TLk—i—ﬁPLk—i—'ySLk—i—zSRLk) L]"
(TDk—ir[%PDk—i—'ySDk—i—éR[])k) Lj’k
+(aT ¥+ BP* 4 ySTF 4+ SRTY)x

Here, xf-‘]- is the traffic flow of the link (i, j).
(2) Construction cost

For DNDP, there are two methods to optimize the network: one is to add a new link;
the other one is to expand the original link. In the multimodal super network topology, an
added link is to connect two unconnected nodes, while an expanded link is to add a link to
the originally connected nodes.

As shown in Figure 10: for the car network, since node 3 and node 14 were not
connected originally, the added link (3,14) (the blue dotted link) represents the added
optimization. Meanwhile, as node 7 and node 10 were connected originally, so link (7,10)
(the blue dotted link) illustrates the expanded optimization. Therefore, we use the 0-1
variable yc and zC to respectively express whether to add or expand links. If the link (i, )
is added/ expanded 5 j /z8 zj; is equal to 1, otherwise yy; j /z8 zj; is equal to 0, V(i,j)eU"

For the bus network, the added method indicates addmg a new link on the existed
route, like link (16,17) (the green dotted link). The expanded method means to increase the
frequency of departure, so it will change the whole route, such as link (1,2), (2,3), (3,4), (4,5),



Appl. Sci. 2021, 11, 10143 13 of 26

(5 6) (the green dotted link). Hence if the link (i, j) is added/expanded the 0-1 variable
Yij P/zh zj; is equal to 1, otherwise Yij Pzt zj; is equal to 0, V(i, j)eUP in the bus network.

Slrmlarly, for the rail tran51t network the added method expresses to add a new
link on the existed route, like link (1,3) (the red dotted link). And the expanded method
represents to increase the frequency of departure, so it will change the whole route, such as
links (10,12), (12,13), (13,14) (the red dotted link). Thus, if the link (7, j) is added /expanded
the 0-1 variable yj;/z}; is equal to 1, otherwise y;/zj; is equal to 0, Y(i,j)eU" in the rail
transit network.

Bus2_ Bus2 _Bus2._ _Bus2.
@ >&B}152 Bus 2’ Bus 2 Bus 2 o
" Rail 177 _
Rail 1™
A
(i
Rail 1
. Bus3i
Rail 2 3 Rail 2 Rail 2,
~12)c H(13)— .
Rail 2" “Rail 2 "Rail 2
—Car Link — Rail transit —Bus Link  ----Transfer Link  ------ Enter/ Leave Link

Link
Figure 10. The diagram of optimization schemes.

Consequently, the construction cost of the optimization scheme is formulated as:

B= 2 ZB” -y + Bi2.2K

(i,j)eUkeK
_ 1 pl P2..p
= Y, By +B2z)+ Y. (BLyl+ B2 )
(ij)eurc (i,j)eur
+ Y, (Bl + B
j
(i,j)eu’

where Bf-‘jl: the cost of the added link (i, j) for the mode k, Vk € K and Bf-‘]»zz the cost of the
expanded link (i, ) for the mode k, Vk € K.

(3) Bi-objective programming model

In summary, a bi-objective programming model for multimodal DNDP is proposed

based on Equations (21) and (22) to minimize the network operation cost and construction
cost as follows:

minZ(x,y,z) = min[6W + tB] = min[0 Z Zw»-~x--+T Z Z Bk]-1~yi-‘j++Bf§»2‘zi-‘j)] (23)
(i,j)e AUUkeK (i,j)eUkeK
R R 0< Y ieu B ¥5j + Bz < BG® V(i,j) e U° (24)
1 2 ..
0= Y ijeu BY -yl + Bl 2l < BGP V(i,j) € UP (25)

0< Z(i,j)eu Bil-yl: + B?-zl; < BG' V(i,j) e U (26)
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0 <k + M5 <k +yfcdl + 257 v(i,j)eAuu, kek 27)
xhE =Y xh =g V(ij) € AUUkEK (28)

b =Y xk=—q V(ij€eAUUkeK (29)

Yo X =YX =0 V(ij)e AUl keK (30)

x>0 V(i jleAuUk €K (31)

Yipeaou s =@ N, Y(ij) € AUUKE {pr} (32)

where 6, T: the weight coefficients and we have 6 + T = 1, BGF: the budget cost of the
transportation mode k, Mffj,ci.‘j: the original traffic flow and the original capacity of the
link (7,]) respectively, grs: the traffic demand of OD pair s, cfjl// cf-‘]-zlz the capacity of
the added/expanded link (i, j) for the mode k, w: the binary variable, if the link (i, ;) is
expanded, w is equal to 1, otherwise, w is equal to 0 on the bus or rail transit route and N:
the number of expanded links on the bus or rail transit route.

Constraints (24)—(26) indicate that the cost of optimization schemes is less than the
budget cost for car, bus, and rail transit network.

Constraint (27) shows that the sum of the assigned traffic flow and the original traffic
flow is less than the sum of the original capacity and the increased capacity of the added or
expanded optimization.

Constraints (28)—(31) are traffic flow equilibrium constraints, where constraint (28)
means that for the starting point, the outflow minus the inflow is equal to g;5s. Constraint
(29) shows that for the destination point, the outflow minus the inflow is equal to —g,s. Con-
straint (30) expresses that for each node, the outflow and inflow must be equal. Constraint
(31) indicates that the traffic flow cannot be less than zero.

Constraint (32) ensures that the expanded method will change the whole existed route
for the bus and rail transit network. Specifically, if one link of the route is expanded, then
the other links must be expanded.

4. Solution Algorithm

Since there are two types of decision variables in the proposed optimization model:
the assignment of traffic flow and the decision of adding or expanding candidate links, the
algorithm is divided into two parts:

Firstly, we need to assign the traffic flow to minimize the network operation cost.
Since the capacity of each link is considered in the proposed model, it is appropriate that
the minimum cost flow algorithm is applied to solve this problem.

Secondly, as multimodal DNDP is an integrated optimization problem, conventional
solving algorithms are difficult to solve efficiently, heuristic algorithms are developed in
this paper: simulated annealing algorithm to search the near-optimal decision U* from the
candidate schemes U = {U¢, U", U*}.

4.1. Minimum Cost Flow Algorithm

Let yx be the minimum cost augmentation chain of the k-th iteration, ¢ be the ad-
justable flow on the augmentation chain p, and x¥ be the feasible flow of the k-th iteration.
Based on the shortest path method, a network L(x) is constructed, whose nodes are the
nodes of the original network G, specifically, the link (v;, v;) of the original network G is
changed into two links with opposite directions (v;, vj) and (v}, v;). Define the weights of
links (v;,v;) and (vj,v;) in L(x) as I;j and I;;:

o Wij if Xij < Cij
ll] n { +o0 if xi]- = Cij ’ (33)
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o —W;jj if Xjj > 0
l]l N { +o00 if Xij = 0 (34)

Set the matrix D = (d;;)
original network G; S = (s;;)

, d;; represents the shortest length from v; to v; in the
nxn’ Y ]

1 Sij Tepresents the end number of the first link of the

shortest path from v; to v;. For example, if 55;1) = t, the first link of the shortest path from
v; to vj is (v;, vt).

Above all, the algorithm for solving the minimum cost feasible flow with the target
flow g5 is as follows:

Step 1: Setk=0

Start with a minimum cost initial feasible flow x(o), (x(o) < q,s) (generally, x(0) = 0).

Step 2: Generate L (x(k)> , find the minimum cost path from v, to vs in L (x(k)>, and

use the Floyd algorithm to solve the shortest path.
Step 2.1: Set m = 0

wjj (vl,v]) cA
DO = ("), = { o (00) £ 4 o9
0 v = v;
s — (Sl(]@)nm,sl(]@ —=j(i,j=1,2,---,n). (36)
Step2.2:m=m+1
Calculate:
plm) _ (dl(]m))m/sw - (sg@)m (37)
where:
a = min{d" Y, Y -l (38)

/ im " . (39)
m—1 m—1 m—1

i

If m # n go to step 2.2, else go to step 2.3.
Step 2.3: when m = n, the algorithm ends.

D) = (d@) d'" is the shortest path length from v; to v;;

Z] nxn ! Zj

st — (sf}”) , sf}1> is the end node of the first link in the shortest path from v; to v;.

nxn

Step 3: If L (x(k)> does not have the shortest path from v, to vs, then x(*) is regarded
as the maximum flow, there is no minimum cost flow with the target flow of g5, end the
algorithm; otherwise, go to the next step.

Step 4: Find the augmented chain yy corresponding to the shortest path from v, to vs
inL (x(k)) in the original network G, and calculate ¢ = min{min (cij — xffj), min xi‘]} If
e < qps — x(k>, according to the maximum flow adjustment scheme, adjust the augmented
flow ¢; on the augmented chain i to obtain a new flow x’ = x®) e, andletk =k+1,
assign new flow ¥’ to x¥, go to step 2; otherwise, when g; > g, — x%), adjust the augmented
flow gs — x%) on the augmented chain y, to obtain a new flow x’, where x’ is the minimum
feasible flow of the target flow g;s. End the algorithm.

4.2. Simulated Annealing Algorithm
(1) Determination of solution space

In this problem, all the possible added and expanded candidate schemes U =
{U¢, U", UP} constitute the solution space, and a specific candidate scheme can be regarded
as a partition of the set U = {Uj, ..., Uy}, where U, U; = U, U; N Uj=2,i# jand U;
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or Uj is the feasible solution. The solution space is composed of all possible partitions, that
is S = {{U1,~ . ,Um},Ulm:lui =U,U;N LI] =0, 75]}
(2) Objective formula

According to the discussion presented in Section 3.5, the objective function of the
optimization schemes {Uj, - - - , Uy, } can be defined as:

fth, - Uy} =minfo ) Zw..~x..+rz23@1-y§++B§§2~zﬁfj)] (40)

(i,j)e AulUkeK cUkekK

(3) The choice of initial solution

The initial solution is the initial point of the simulated annealing algorithm. A large
number of experiments show that the final solution of the simulated annealing algorithm
does not depend on the selection of the initial solution, so we randomly choose an initial as
u,ie{l,---,m}.

(4) The generation of a new solution

For this algorithm, we first need to use a certain strategy to generate a new solution
based on the current solution in the space, then decide whether to accept the new solution.
When the new solution is accepted, which will be treated as a new current solution, and
the value of the objective function is modified correspondingly. The next iteration is started
on this basis. If the new solution is not accepted, the next experiment will be continued
based on the current solution.

Since the proposed optimization model is a binary integer programming, we can
arbitrarily choose u € U;. If u is 0, it will be replaced by 1; otherwise, if it is 1, it will be
replaced by 0. Therefore, a new solution U; is generated and the difference of values of the
objective function in two iterations can be calculated by the following formula:

A fii = f(U;) = f(Uy) (41)

(5) Acceptance criterion

An acceptance criterion is set to judge whether the new solution is accepted or not.
Generally, the most commonly used acceptance criteria is Metropolis criteria:

. 1 Afl <0
'~ {Lep(-ag ofs ®

where t is the control parameter.
According to the settings above, the procedure of the simulated annealing algorithm
is listed as follows:

Step 1: Randomly select an initial solution Uj, let the current solution Uy = U;; the
current number of iteration steps k = 0; the current temperature f; = t;4x.

Step 2: When reaching the maximum number M of iterations the inner loop, go to step
3; otherwise, randomly select a neighbor U; from the neighborhood N(U;) and calculate
Afii, if Afji < 0then U; = Uj, otherwise, if exp(— A fii/ tx) > random(0, 1) (represents a
uniform random number between 0 and 1), then U; = Uj, repeat step 2.

Step 3: k = k+1,t,,1 = d(t) (representing the formula of temperature drop), and
the classic simulated annealing algorithm cooling formula is d(f;) = #ﬂtk If the end
temperature t,,4, is reached, go to Step 4, otherwise, go to Step 2.

Step 4: Output the calculation result and stop.

As shown in Figure 11, the simulated annealing algorithm includes an inner loop
and an outer loop. The inner loop is the second step, which means random search in
the neighborhood N(U;) at the same temperature t. The outer loop mainly includes the
temperature drop change t;,1 = d(fx), the number of iteration steps k = k + 1, and the
stop condition in the third step.
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Figure 11. The flow chart of the multimodal DNDP solution algorithm.

Consequently, we combine the minimum cost flow algorithm and simulated annealing
algorithm as a hybrid heuristic algorithm that can solve the proposed model. The relation-
ship between the minimum cost flow algorithm and the simulated annealing algorithm is
shown in Figure 11. The minimum cost flow algorithm will be used to assign traffic flow
before solving the objective function in each iteration of the simulated annealing algorithm.

5. Numerical Examples

In this section, two numerical tests are implemented to validate the proposed model
and algorithm: a simple test network (the multimodal transportation network shown in
Figure 2) and an actual network (an area of Beijing, China). All experiments are executed
in Python software on a Lenovo laptop configured with an Intel Core i5-8250U 3.40 GHz
CPU equipped with 8 GB RAM.

5.1. Simple Network

Before optimization, the maximum feasible flow of the network is 78, and the traffic
demand g¢;s is 100, so it is necessary to improve the network. According to the pas-
senger demand, some candidate links are given, as shown in Figure 12: the blue dot-
ted links (3,14), (7,10) are the candidate links for the car network, namely U°={(3,14),
(7,10)}; the green dotted link (16,17) is the candidate link for the bus network, namely
UP={(16,17)}; the red dotted link (1,3) is the candidate link for the rail transit network,
namely U"={(1,3)}. Therefore, it can be concluded that the set of candidate schemes
u = {us,ur,ur}=1@3,14), (7,10), (16,17), (1,3)}, so there are in total 24 schemes. Next, we
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will use the exact algorithm and heuristic algorithm respectively to find the near-optimal
scheme U* from the 2* schemes.

Bus 3
15
11 Bus 3
16
Rail 1 N e >
: Bus3

——~Car Link

. :
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. — S

S .

. -

.
S
S
S
.
.
S
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. .
. .
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——Rail transit Link —Bus Link - Transfer Link  ------ Enter/ Leave Link

Figure 12. The optimization schemes on a simple multimodal network.

(1) Exact algorithm

To test the feasibility of the developed heuristic algorithm, an exact algorithm is first
used to solve the model. The specific steps are as follows:

Step 1: Calculate the generalized cost of each type of links

Firstly, give the information of links for each network in the multimodal transportation,
among which, the car network mainly includes length (km), zero traffic flow driving time
(min), existing vehicle (pcu/h), capacity (pcu/h); the bus network and rail transit network
mainly include average driving time (min), frequency (number/ hour); transfer network
mainly includes length (km), walking time (min) and cycling time (min). Then, calculate
the generalized cost of each type of links according to the formulas in Section 3, and the
results are shown in Figure 13: in brackets, the first term is the generalized cost of links
and the second term is the capacity of links.

As shown in Figure 13: in the multimodal transportation super network topology, the
blue dotted links (26,27) and (23,29) respectively represent the candidate links (3,14), (7,10)
(in Figure 12) for the car network; the red dotted link (14,15) stands for the candidate link
(1,3) (in Figure 12) for the rail transit network, and the green dotted link (12,13) expresses
the candidate link (16,17) (in Figure 12) for the bus network.

Step 2: Traffic flow assignment

The minimum cost flow algorithm is coded by PYTHON based on the steps in
Section 4.1 to assign the traffic flow. The traffic flow assignment and the composition
of transportation mode for each shortest path are obtained, as shown in Table 5, in which
all candidate links are taken.
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Table 5. The traffic flow assignment and composition of transportation mode for the shortest path.

Number Path Traffic Mode Traffic Flow
1 14-15-16-17-19-20-21 R1-R2 34
2 7-8-9-18-19-20-21 B1-R2 11
3 22-23-24-25 C 16
4 22-23-29 C 14
5 26-27-28-29 C 24
6 1-2-3-4-5-6-10-11-12-13 R2-R3 1

: (5,16) (6,31) (5,23) 559 —
BZ@BZ'@BZ’.'BD( : )—Bz
80_ ___________________________
B G 8 (8,36) (6,80)B

R @,

(3 42) :

(3 80).--

""""""""" 67(24 AT
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©Bus Network © Rail Network © Car Network

——Car Link

—— Rail transit Link —Bus Link  -----Transfer Link = ------ Enter/ Leave Link

Figure 13. The generalized cost and capacity of each link in the super network topology.

Step 3: Calculate the value of the objective function

The optimal result of traffic flow assignment in step 2 is used to calculate the value of
the network operation cost by Equation (21); then based on the optimization cost and the
budget cost of each candidate link to calculate the value of construction cost by Equation
(22); finally, the weighted sum of the operation cost and the construction cost by Equation
(23) is the value of the objective function. When the generalized cost formula coefficients
« =025, B=025 v7=0.25 6 =0.25 in Equation (1), and the objective function weight
coefficients 6 = 0.5, T = 0.5 in Equation (23), the calculation results are illustrated in Table 6
and Figure 14.

It can be concluded from Table 6 and Figure 14 that the optimal solution of the exact
algorithm is U* = (1,3), and the corresponding operation cost is 4114, construction cost is
3000, and total cost is 3557. Some schemes are without values of construction cost B and
objective function Z in Table 6. Because the maximum feasible flow of the schemes does
not reach g,s = 100, so the optimization schemes are not adopted, and there is no need to
calculate the objective function.
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Table 6. Optimization results of the exact algorithm.

(7,10) (3,14) (1,3) (16,17) Flow w B V4
0 0 0 0 78 3429 - -
1 0 0 0 90 4041 - -
0 1 0 0 78 3428 - -
0 0 1 0 100 4114 3000 3557
0 0 0 1 78 3365 - -
1 1 0 0 90 4028 - -
1 0 1 0 100 3958 4000 3979
1 0 0 1 90 3977 - -
0 1 1 0 100 4044 5000 4522
0 1 0 1 78 3364 - -
0 0 1 1 100 4062 3500 3781
1 1 1 0 100 3888 6000 4944
1 0 1 1 100 3954 4500 4227
1 1 0 1 90 3964 - -
0 1 1 1 100 3992 5500 4746
1 1 1 1 100 3884 6500 5192

2000 m Operation cost mmmm Construction cost Total cost

6000

5000 N0 =

4000 N T w2l

3000

S HEIEEEEE

1000

0
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Figure 14. The optimization results of the exact algorithm.

(2) Heuristic algorithm

Similarly, the developed heuristic algorithm is also coded by PYTHON based on the
steps in Section 4.2 to solve the model, and we set the initial temperature ¢, = 500, the
end temperature t,,; = 100, the maximum number of iterations M = 50. Besides, according
to Equation (43), the relative error between the heuristic algorithm and the exact algorithm

is calculated. The results are shown in Table 7.

GAP= (near-optimal solution — exact solution)/exact solution x 100%

Table 7. Comparison between the heuristic algorithm and the exact algorithm.

(43)

. Optimization Transportation
Algorithm Scheme Mode z GAP
Heuristic algorithm 1,3) rail transit 3557
0.00%

Exact algorithm 1,3) rail transit 3557
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Clearly, the solution calculated by the heuristic algorithm is the same as the exact
algorithm, which verifies the effectiveness and feasibility of the heuristic algorithm. To
further test the heuristic algorithm, then we carry out sensitivity analysis of parameters in
Equations (1) and (23).

(3) Sensitivity analysis

In this section, the sensitivity analysis is carried out on the weight coefficients of the
generalized cost formula Equation (1) &, B, ¥, ¢ and the weight coefficients of the objective
formula Equation (23) 6, T. The specific results are listed in Table 8.

It can be seen from Table 8 that the results obtained by the heuristic algorithm are
basically consistent with the exact solution, and only two calculation results deviate from
the exact value. Moreover, the relative errors of the two results obtained by the two
algorithms are within 1.5%, which validates the effectiveness and reliability of the heuristic
algorithm within the allowable error range. In addition, the exact algorithm takes several
hours to obtain the optimal solution, while the heuristic algorithm takes only within 56 s.
Therefore, the heuristic algorithm is superior to the exact solution algorithm in terms of
calculation time.

Table 8. Comparison between heuristic and exact algorithm under different weight coefficients.

Exact Algorithm Heuristic Algorithm
& p v o o T Optimization 7 Optimization 7 GAP
Scheme Scheme

025 025 025 025 0.9 0.1 (1,3), (7,10) 3962.2 (1,3), (7,10) 3962.2 0.00%
025 025 025 025 0.1 0.9 (1,3) 31114 (1,3) 31114 0.00%
0.4 0.4 0.1 0.1 0.5 0.5 (1,3) 3876.6 (1,3) 3876.6 0.00%
0.4 04 0.1 0.1 0.9 0.1 (1,3), (7,10) 4532.3 (1,3), (7,10) 4532.3 0.00%
0.4 0.4 0.1 0.1 0.1 0.9 (1,3) 3281.2 (1,3) 3281.2 0.00%
0.6 0.2 015  0.05 0.5 0.5 (1,3), (3,14) 4927.3 (1,3), (3,14) 4927.3 0.00%
0.6 0.2 015  0.05 0.9 0.1 (1,3),(7,10),(16,17) 4028.6 (1,3),(7,10),(3,14) 4079.2 1.26%
0.6 0.2 015  0.05 0.1 0.9 (1,3) 3356.4 (1,3) 3356.4 0.00%
0.2 0.6 0.05 0.15 0.5 0.5 (1,3), (16,17) 3241.7 (1,3), (16,17) 3241.7 0.00%
0.2 0.6 0.05 015 0.9 0.1 (1,3),(3,14),(16,17) 4239.6 (1,3),(3,14) 4245.7 0.14%
0.2 0.6 0.05 015 0.1 0.9 (1,3) 3027.3 (1,3) 3027.3 0.00%

5.2. Actual Network

The actual transportation network in this case is an area from Xizhimen to Dongdan
in Beijing, China. It is one of the busiest traffic areas in Beijing. The network of this area
includes multiple bus, rail transit lines and integrates various travel modes, such as car,
rail transit, bus, bicycle, and walking. It has many important transfer hub stations. So it is a
typical multimodal transportation network. Moreover, there are many facilities for sharing
bicycles near each transfer station, which facilitates passengers’ transfer behavior. That is
consistent with the model proposed in this paper, which takes bike-sharing as a transfer
mode. In addition, due to the huge passenger demand from Xizhimen to Dongdan and the
bottleneck of the transportation network, the network capacity is insufficient. Thus, it is
necessary to expand or add some links for the car, bus, and rail networks respectively. This
is also an important reason why this regional network is selected as an actual case. The
multimodal transportation network diagram is as follows, which combined car, bus, and
rail transit modes.

As shown in Figure 15: the origin is Xizhimen while the destination is Dongdan. The
transfer relationship among modes is as follows, among them, the pink nodes are the
transfer stations:

e  Firstly, inter-modal transfers between bus and rail transit include 3 routes: (1) bus line
1 — rail line 3; (2) bus line 2 — rail line 3; (3) bus line 3— bus line 4 — rail line 2.
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e  Secondly, the inter-route transfers in the bus network include 2 routes: (1) bus line 3
— bus line 5; (2) bus line 3 — bus line 4 — bus line 5.

e  Moreover, the inter-route transfer in the rail transit network only includes 1 route: rail
line 2 — rail line 3.

e  Besides, the inter-modal transfer between car and rail transit includes 1 route: passen-
gers drive from the origin Xizhimen to node 13 and transfer to rail line 3 by node 13.

Before optimization, the maximum feasible flow of the network is 1524, and the traffic
demand gy, is 2000, so it is necessary to improve the network. According to the passenger
demand, the candidate links are given, as shown by the dotted line in Figure 15: for the car
network, the blue dotted links (1,2), (2,3) represent the expansion optimization, and the
blue dotted link (3,7) is the candidate link for the adding optimization, namely U°={(1,2),
(2,3), (3,7)}; for the bus network, the green dotted links (12,13), (15,16), (17,20) are the
candidate links for adding optimization, namely UP={(12,13), (15,16), (17,20)}; for the rail
transit network, the red dotted link (6,7) is the candidate link for adding optimization,
namely U" ={(6,7)}. Therefore, it can be concluded that the set of candidate schemes
u={u-u,ur}y={12),223), (37), (12,13), (15,16), (17,20), (6,7)}, so there are totally
27 schemes. Next, we use the heuristic algorithm to find the near-optimal scheme from the
27 schemes.
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Rail 2

Rail 1
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— " B B

>

(1%,13)

Dongdan

Car Link =—Rail transit Link —Bus Link -----Transfer Link ------ Enter/ Leave Link

Figure 15. Multimodal transportation network from Xizhimen to Dongdan.

The multimodal transportation super network topology is built and the link infor-
mation of each network is given to calculate the generalized cost of each type of links, as
shown in Figure 16: in brackets, the first term is the generalized cost of links and the second
term is capacity of links.

Finally, the proposed heuristic algorithm will be coded by PYTHON for the numerical
test based on Section 4, which combines the minimum cost flow algorithm and simulated
annealing algorithm. And we set the initial temperature ¢,y = 1000, the end temperature
teng = 100, the maximum number of iterations M = 200. To analyze the optimal schemes
under different weight coefficients, 12 groups of numerical experiments are carried out.
The near-optimal schemes under different weight coefficients are shown in the table below.
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Figure 16. The generalized cots and capacity of each link in the super network topology.

It can be concluded from Table 9 that the choice of the near-optimal scheme is affected

by the weight coefficients:

1)

@)

When the value of ff is larger than fi in Equation (1), the travel time is the main priority,
and passengers are more willing to choose the car mode that can reach the destination
quickly. In this case, when ff = 0.6 (group 8,9,10), the car’s candidate links (1,2), (2,3)
are all adopted in various groups, which are consistent with the choice of passengers.
On the contrary, the monetary cost is focused on, and passengers prefer to choose the
transportation mode that can save a lot of money. While fi = 0.6 (group 11,12,13), the
bus’s candidate links (12,13), (15,16), (17,20) are all adopted in various groups, which
are also tally with the actual situation

When the value of " is larger than ¢ in Equation (23), the decision-maker pays more
attention to the network operation cost. In this case, when *~ = 0.9 (group 2,5,8,11),
the car’s candidate links (1,2), (2,3) are the principal part of the near-optimal scheme
under different groups. Conversely, the construction cost is mainly considered. While
o = 0.9 (group 3,6,9,12), the bus’s candidate links (12,13), (15,16), (17,20) are the
main component of the near-optimal scheme in various groups. These are consistent
with the actual situation, which proves that the developed heuristic algorithm can
efficiently find the near-optimal solution with good stability and reliability.

Therefore, in an actual operation situation, the value of each parameter can be set

according to the attention of the decision-maker, for example, when the travel time is
more important, the value of « is larger than f, otherwise, the monetary cost is mainly
considered; when decision-maker pays more attention to the operation cost, the value of ¢
is larger than 7, conversely, the construction cost is principal considered.

Consequently, the good results of the two numerical tests are obtained in this section,

which shows that the proposed model and developed algorithm in this paper are feasible
and efficient.
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Table 9. Optimization results of the actual network under different weight coefficients.

Case o B v 5 0 T Optimization Schemes z
1 0.25 0.25 0.25 0.25 0.5 0.5 (1,2), (2,3), (12,13), (15,16) 56823.0
2 0.25 0.25 0.25 0.25 0.9 0.1 (1,2), (2,3), (12,13), (15,16), (17,20) 78161.4
3 0.25 0.25 0.25 0.25 0.1 0.9 (1,2), (12,13), (15,16), (17,20) 34684.6
4 0.4 0.4 0.1 0.1 0.5 0.5 (1,2), (2,3), (12,13), (15,16) 62457.3
5 0.4 0.4 0.1 0.1 0.9 0.1 (1,2), (2,3), (12,13), (15,16), (17,20) 84172.2
6 0.4 0.4 0.1 0.1 0.1 0.9 (1,2), (12,13), (15,16), (17,20) 41435.1
7 0.6 0.2 0.15 0.05 0.5 0.5 (1,2), (2,3), (12,13), (15,16) 65381.5
8 0.6 0.2 0.15 0.05 0.9 0.1 (1,2), (2,3), (12,13), (6,7) 70242.2
9 0.6 0.2 0.15 0.05 0.1 0.9 (1,2), (2,3), (12,13), (15,16) 62369.7
10 0.2 0.6 0.05 0.15 0.5 0.5 (1,2), (12,13), (15,16), (17,20) 52854.8
11 0.2 0.6 0.05 0.15 0.9 0.1 (1,2), (2,3), (12,13), (15,16), (17,20) 75254.6
12 0.2 0.6 0.05 0.15 0.1 0.9 (1,2), (12,13), (15,16), (17,20) 30357.3

6. Conclusions

In this paper, we comprehensively optimize a multimodal transportation DNDP that
is composed of car, bus, rail transit, bicycle, and walking. Firstly, a multimodal super
network topology that includes four types of links (entering links, leaving links, driving
links, transfer links) is proposed, which clearly expresses inter-modal transfers among
car, bus, and rail transit networks, as well as inter-route transfers in the bus or rail transit
network. And to complete the above transfers, walking and bike-sharing are considered as
transfer modes. Specifically, in Section 2 we present a simple multimodal transportation
network that meets two types of the above transfer relationships and we also discuss the
process of establishing a multimodal transportation super network topology. Secondly, the
generalized cost formulas of each type of links in the super network topology are defined.
Among them, the generalized cost is mainly composed of four types, namely travel time,
monetary cost, and comfort loss, risk reserve time. Based on the above formulas, a bi-
objective programming model to minimize the network operation cost and construction
cost is proposed to decide whether to expand or add links for the car, bus, and rail
network respectively. Moreover, based on the minimum cost flow algorithm and simulated
annealing algorithm, we develop a hybrid heuristic algorithm to solve the proposed model,
which can efficiently and effectively get the near-optimal solution. Finally, two numerical
tests of a simple test network (designed in Section 2) and an actual network (an area from
Xizhimen to Dongdan in Beijing, China) are implemented:

(1) For the simple network, to test the feasibility of the developed heuristic algorithm,
an exact algorithm is first used to solve the model. And the results show that the
proposed algorithm is effective and feasible within the allowable error range of 1.5%.

(2)  For the actual network, 12 groups of numerical experiments are carried out to analyze
the optimal schemes under different weight coefficients. The results indicate that
the choice of the near-optimal scheme is affected by the weight coefficients, and the
results are consistent with the actual situation, Consequently, the proposed model
and developed algorithm can promote the planning of multimodal transportation
systems in the actual transportation network.

In this paper, the proposed model and developed algorithm are flexible, and the
objective function and constraints can be modified. In our future works, we can consider
the network accessibility, environmental pollution, and other aspects, and modify the
objective function and constraints correspondingly. In addition, the algorithm can be
combined with other heuristic algorithms, such as tabu search algorithm, genetic algorithm,
and so on, to get the near-optimal solution more quickly.

The study of multimodal transportation DNDP is conductive to guide passengers’ mul-
timodal travel behavior and relieve congestion. The practical implications are as follows:
(1) By studying the multimodal transportation DNDDP, the optimal investment scheme of
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transportation network planning and construction can be obtained to provide comparison
and reference for traffic planning departments, decision-makers, and researchers. (2) In the
complicated urban transportation network formed by various modes, grasping the mutual
influence between the operation of the multimodal transportation networks as a whole is
helpful to improve the level of transportation management measures, and also conducive
to giving full play to the advantages of various modes and coordinate the combination of
various modes. These will bring great improvement to the transportation congestion, thus
reducing vehicle delays and transportation costs.

Certain disadvantages of the proposed methods need to be mentioned here. In this
paper, only single OD is considered, and the passenger demand is determined. In future
work, we will study the multimodal DNDP of multi-OD under uncertain demand. In
addition, this paper only studies five representative travel modes: car, bus, and rail transit,
walking, and bike-sharing. However, they can be subdivided into many types in real
life. For example, the car model includes private cars, taxis, online car-hailing, etc. And
electromobile, motorcycle and so on are also the travel modes that many people choose.
Therefore, we can take these into account to improve the proposed model in future work.
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