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Abstract: We study the influence of impurity scattering on transverse magnetic (TM) and transverse
electric (TE) surface plasmons (SPs) in graphene using the Lindhard approximation. We show how
the behaviour and domains of TM SPs are affected by the impurity strength γ and determine the
critical value γc below which no SPs exist. The quality factor of TM SPs, for single-band and two-band
transitions, is proportional to the square of αλSP/γ, with α being the fine-structure constant and λSP

being the plasmon wavelength. In addition, we show that impurity scattering suppresses TE SPs.
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1. Introduction

The building blocks of all contemporary digital electronic devices, communications,
and circuits, which are employed to process, transport, and store information, are made up
of metal-oxide-semiconductor field-effect transistors (MOSFETs) [1–3]. As many issues in
the vast majority of scientific fields and economy rely on very fast transistors nowadays,
the demand for low-cost and high-speed MOSFETs with lower power consumptions is very
strong. The clock speed of information processing in transistors directly pertains to the
size, miniaturization, and density of comprised elements in them [4]. In contrast, smaller
transistors have high speeds but there is a strong challenge related to the interconnect
number. By reducing the size of the latter, the delay time increases and imposes critical
limitations on the clock speed frequencies [3] . Fiber-optic cables are another promising
candidate for communication and the transportation of information due to their high
transparency [2,5]. They are capable of carrying information about one thousand times
faster compared to electronic circuits. In addition, in fiber-optic cables, light packets carry
information as they travel over long distances [3].

These fiber-optic features suggest a synergy between these two technologies [6].
However, because the strength of light–matter interactions in these dielectric materials
is not sufficient to exhibit nonlinear behaviour, they require a high power density and
volume and lead to limitations in their integration with electronic circuits [7]. The major
obstacle is a consequence of the diffraction limit, which does not allow light to squeeze in a
region smaller than its wavelength [2,3,8]. One promising candidate to face this challenge
is surface plasmons (SPs) [9–13]. An SP is a sub-wavelength evanescent electromagnetic
wave that propagates at the interface of a metallic-dielectric medium [14,15]. The SP
frequency in the noble metal is in the order of femtoseconds, reflecting higher clock speeds
compared with state-of-the-art transistors [1]. SPs enable us to investigate the light–matter
interaction in the sub-wavelength area, which is otherwise inaccessible. SPs allow one
to manipulate and route light at the nanoscale [3,6,12,13,16]. They have a plethora of
prospective applications such as optical switches, spacers, near-field optical microscopy,
bio-sensing and nanosensors, improving efficiency of light-emitting diodes (LEDs), solar
cells, cancer treatment, biomedical tests, quantum sensing, and teleportation [17–26].
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One of the most interesting materials that supports SPs at room temperature is
graphene. In contrast to bulk-dielectric systems that support only transverse magnetic
(TM) SPs [27], graphene also supports transverse electric (TE) and TM SPs [28]. In addition,
SP losses in graphene are lower than those in noble metals. Scattering, e.g., by impurities,
can profoundly affect SPs. In the literature, these effects has been regarded phenomeno-
logically by heuristically introducing a Drude-form conductivity in the long-wavelength
limit [29,30]. In this paper, we borrow some results from Ref. [31] and evaluate TM and TE
SPs in graphene in the presence of impurity scattering.

In Section 2, we present some general expressions for the Lindhard polarization in the
presence and absence of impurities as well as the transmission and reflection amplitudes.
In Section 3, we investigate TM SPs in graphene for intra-band and inter-band transitions,
renamed, for clarity and brevity, as SB and TB transitions, in the presence and absence
of impurity scattering. In Section 4, we evaluate the quality factor (QF) of these SPs. In
Section 5, we evaluate transverse electric surface plasmons for SB and TB transitions. Our
summary follows in Section 6.

2. Scattering-Dependent Optical Properties

We consider a graphene sheet in between two media with the permittivities ε1 and ε2,
respectively. The corresponding reflection and transmission coefficients are obtained by
satisfying the boundary conditions for the longitudinal and perpendicular components of
the TM field. The transmission coefficient is given by [15]

t(q, ω) = 2
[

n2

n1
+

cos θt

cos θi
+

σ(q, ω) cos θt

n1ε0c

]−1

. (1)

Here, ε0n2
i = εi , i = 1, 2, ni is the refractive index, σ is the conductivity of graphene, and

θi, θt are the angles of incidence and transmission, respectively. In general, the index n
depends on the momentum and frequency, but here we assume that it is constant. The
conductivity can be evaluated as, e.g., in [15]. The result is

σ(q, ω) = ie2ωχ(q, ω)/q2, (2)

where χ is the polarization function also known as density–density response function.
The polarization function can be evaluated in the absence or presence of the Coulomb
interaction. Here, we employ the Lindhard approximation, in which the effects of electron–
electron interactions and the local field factor are neglected. It is worth pointing out
that including many-body effects such as electron–electron interaction or exchange effects,
known as the random-phase approximation (RPA) or Hubbard approximation, respectively,
provide a good insight about the system response but its evaluation becomes very compli-
cated. For the sake of simplicity, we limit our calculation to the Lindhard approximation in
which the computation time is much shorter than in the RPA or Hubbard approximation.
The Lindhard polarization function in the presence of impurity scattering, within the van
Hove limit, is given by [31]

χ0(q, ω) = χ0
non(q, ω) + χ0

imp(q, ω), (3)

where χ0
non and χ0

imp are the polarization functions in the absence [32] and presence [31]
of impurity scattering, respectively. Since we are interested in SPs with lower and higher
energies than the Fermi energy, which are known as intra- and inter-band SPs or SB and TB
SPs, the polarization functions at zero temperature and in the long-wavelength limit [31,32]
are given by

χ
′0,SB
non (q′, ω′) =

q′2

ω′2
, χ

′0,SB
imp (q′, ω′) = C(ω′, γ′)/2, (4)

χ
′0,TB
non (q′, ω′) =

M(ω′)q′2

2ω′
, χ
′0,TB
imp (q′, ω′) = C(ω′, γ′), (5)
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where we introduced the dimensionless parameters χ
′0, q′, ω′, and γ′ (χ

′0 = χ0χh̄vF/kF,
q′ = q/kF, ω′ = h̄ω/EF, γ′ = h̄γ/EF to simplify all expressions. EF, kF = EF/h̄vF, and vF
are the Fermi energy, wave vector, and velocity, respectively. We used vF = 9× 105 m/s.
Further,

C(ω′, γ′) =
1− δγ′ ,0

ω′ + iγ′
, M(ω′) =

[
A(ω′)− i

π

2
Θ(ω′ − 2)

]
, (6)

and

A(ω′) =
2

ω′
+

1
2

ln
∣∣∣2−ω′

2 + ω′

∣∣∣. (7)

The form of the response function (3) is derived in Ref. [33] for homogeneous systems: χnon is
independent of the scattering, while χim depends on it but it was not explicitly evaluated in
Refs. [33,34]. Importantly, when the response is evaluated from the collisionless Boltzmann
equation, one obtains the term χ0,SB

non [35] and the term χ0,TB
non is absent. The latter term is

obtained, e.g., in Refs. [28,32] using Kubo formulas.
In Figure 1, we plot the real and imaginary parts of the TB polarization function in the

absence of impurities. The real part shows that its magnitude decreases, with increasing
frequency, for all values of the momentum. The decrease is very fast for large frequencies.
In contrast, the imaginary part decreases dramatically, when the momentum decreases, for
ω′ > 2 and vanishes for ω′ 6 2. The divergent behaviour of the real part of the polarization
function in the absence of impurities, Reχnon, due to the logarithmic term in Equation (7)
at ω′ = 2 is easily noticeable in the contour plot. In addition, the contour plot of the
imaginary part of Reχnon shows its step-function behaviour for ω′ ≤ 2 in Equation (6),
where it vanishes.
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Figure 1. 3D bar and contour plot of the real and imaginary parts of the polarization function χ
′0,TB
non

in the absence of impurities.

The real and imaginary parts of χ
′0,TB
imp , when impurity scattering is present, are shown

in Figure 2. In contrast with χ
′0,TB
non , χ

′0,TB
imp does not rely on momentum since γ′ has been

assumed to be independent of it. Therefore, it is shown in terms of the impurity strength
and frequency. It is worth pointing out that the order of magnitude of χ

′0,TB
imp is much larger
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than χ
′0,TB
non . Consequently, we expect that χ

′0,TB
imp will be higher than χ

′0,TB
non . As seen in the

contour plots of the real and imaginary parts of χim, their values at low frequencies and
low impurity concentrations are approximately three orders of magnitude higher than the
other parts of their spectrum.

In Figure 3, we plot the real and imaginary parts of χ for a typical impurity strength,
γ′ = 0.06. As clearly shown in the contour plots, for low frequencies, ω′ ≤ 0.05, the
real part of χ increases dramatically with increasing momentum. However, for a typical
momentum and ω′ ≥ 0.1, it decreases. On the other hand, its imaginary part increases
with frequency for a typical momentum, reflecting the fact that for larger frequencies the
energy dissipation increases.
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Figure 2. 3D bar and contour plot of the real and imaginary parts of polarization function in the
presence of impurity, χ

′0,TB
imp .
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Figure 3. 3D bar and contour plot of the real and imaginary parts of χ for γ′ = 0.06.

3. Transverse Magnetic Surface Plasmons

The poles of the transmission or reflection coefficients give the SPs [15,36]. For TM
modes, we have

q = iωε0(n2
1 + n2

2)/σ(q, ω). (8)

We emphasize that Equation (3) is valid only for SP momenta that are much larger than
that of light, q� ω/c. Since the polarization function can be evaluated in the Lindhard,
random-phase or Hubbard approximation, so can the SPs resulting from (8) due to the
relation between χ and conductivity, Equation (2). The simplest approximation on which
we focus here is the Lindhard one that neglects the effects of the Coulomb interaction
and local field factor [31]. Since the polarization function acquires different values for SB
and TB transitions, the SPs would be different in each case. Notice that the real part of
the transmission pole yields an SP mode [36], while its imaginary part is responsible for
dissipation. For SB transitions, Equations (2), (4), and (8) give

q′2 − q′βω′2 +
ω′2

2
ReC(ω′, γ′) = 0 (9)

with β = vF(n2
1 + n2

2)/4αc and α, vF, and c being the fine-structure constant, Fermi velocity,
and light velocity, respectively. The physical solution is given by

q′ =
1
2

[
βω′2 +

[
(βω′2)2 − 2ω′2ReC(ω′, γ′)

]1/2
]

. (10)

For TB transitions using Equations (2), (5) and (8) we obtain the physically accept-
able solution

q′ =
ω′β

A(ω′)

(
1 +

[
1− 2A(ω′)

ω′β2 ReC(ω′, γ′)
]1/2

)
. (11)

Notice that there are other solutions for Equations (10) and (11) with the + sign in front of
the square root +[..]1/2 replaced by a − sign. However, these solutions are unphysical and
therefore rejected.
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In Figures 4a and 5a, we show the TM SP dispersion relation, for several values of γ′,
obtained with n1 = 1 and n2 = 2. To render its behaviour more clear, we replotted it in
Figures 4b and 5b for a smaller range of q′. As seen, with decreasing γ′ the acceptable value
of q′ increases and that for SB transitions is smaller than for the TB ones. Moreover, the SP
frequency is larger in the TB case for typical values of q′. In either case, the group velocity
∂ω/∂q is nearly constant and independent of the impurity strength. The SP dispersion
changes when the strength γ′ is varied. This can be understood as follows. A coherent
ensemble of dipole moments (DMs) oscillating about their equilibrium configuration, un-
der a phase matching condition, starts to generate an evanescent electromagnetic field
that propagates at the interface of the metallic-dielectric medium. Damping effects due to
defects, impurities, or electron–phonon interactions are expected to reduce the effective
number of these coherent DMs. That is, a higher value of γ′ leads to a higher scattering
probability and reduces the number of coherent DMs. Hence, the energy of an EMF that
originated from an ensemble of DMs for a lower γ′, with the same momentum, is larger
than that for a higher γ′.
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Figure 4. (a) SB TM SP for different values of γ′. (b) The segment of (a) for q′ × 10−3 ≤ 0.0035.
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Figure 5. (a) TB TM SP for different values of γ′. (b) The segment of (a) for q′ × 10−3 ≤ 0.01.

In Figures 6 and 7, we plot the 3D TM SP spectrum and the (ω′, γ′) contour plot of SB
and TB, respectively. As can be seen, for a fixed γ′, increasing the SP frequency leads to
momentum increases as well. The bars in these figures indicate the allowed values in a
region where SPs exist. It can be seen, in particular in Figures 4 and 5, that below a critical
value of γ′, called γ′c, no SPs exist. This critical strength γ′c can be determined by setting
the quantities [..]1/2 to zero in Equations (10) and (11). This gives

γ
′SB
c = [2/β2ω′ −ω′2]1/2, (12)

γ
′TB
c =

[
2A(ω′)/β2 −ω′2

]1/2
. (13)
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The strength γ′c versus the SP frequency ω′ is shown in Figure 8 for the SB and TB
cases. In either case, γ′c decreases very fast with an increase in the SP frequency. Moreover,
for a fixed frequency, γ′c is smaller in the SB case.
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Figure 6. 3D bar and (γ′, ω′) contour plots of TM SB SPs.
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4. Quality Factor

To efficiently transport high-speed information and energy, devices must, to the
highest extent possible, have the least number of obstacles or defects, e.g., impurities, so
that the energy dissipation is the lowest. Devices with the best functionality are usually
distinguished by the quality factor (QF) defined as the ratio of the stored to the dissipated
energy. The higher the QF, the higher the device functionality and performance are [37].
The QF is defined by

Q =
Ustor

Udis
=

U0 −Udis
Udis

=
U0

Udis
− 1, (14)
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where Ustor, Udis and U0 refer, respectively, to the stored, dissipated, and total energy
densities. U0 is the energy density of the incoming field, U0 = ε0|EI |2/2. The dissipated
energy of the SP, Udis, is

Udis =
1
2

ε0|Edis|2 =
1
2

ε0|EI |2
∣∣∣Im t(q′sp, ω′sp)

∣∣∣2, (15)

where Im t(q′sp, ω′sp) is the imaginary part of the transmission amplitude at the plasmon
momentum and frequency. For SB and TB transitions, the results are

QSB =
[
η ImC(ω′sp, γ′)/2q′sp

]2
− 1, (16)

QTB =
[
ηD(ω′sp, γ′)/2q′sp

]2
− 1, (17)

with
D(ω′sp, γ′) = ImC(ω′sp, γ′) + (πq′2sp/4ω′)Θ(ω′ − 2), (18)

and η = 4αc/(vFn1n2). For low frequencies, by combining Equations (10) and (16) in the
SB case, or Equations (11) and (17) in the TB case, we obtain

Q ≈ α2λ2
sp/γ′2; (19)

this result depends only on the fine-structure constant, the SP wavelength, and the impu-
rity strength.

In Figure 9a,b, we show, respectively, the SB and TB QF of TM SPs versus their
frequencies ω for several values of γ′. As seen, the QF decreases strongly with increasing
frequency. In addition, for a fixed ω, the QF decreases, in both cases, upon increasing γ′,
which is expected since higher values of γ′ imply an increase in dissipation. According to
Equations (10) and (11), for low frequencies ω, the SP wavelength is proportional to ω−2,
see also Figure 9, and in both cases the QF decreases as ω−4. As the dissipation is stronger
in the TB case than in the SB one, cf. Equations (4) and (5), we expect that the QF will be
higher in the SB case; indeed, this is made clear in Figure 9. Correspondingly, the energy
density stored in the SB case is higher than in the TB one.
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Figure 9. (a) SB and (b) TB TM SPs QF versus SP energy for several values of γ′.

5. Transverse Electric Surface Plasmons

As in the case of TM SPs, the transmission coefficient for TE SPs is given by [15]

t(k, ω) = 2
[

1 +
n2 cos θt

n1 cos θi
+

σ(k, ω)

n1ε0c cos θi

]−1

. (20)
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Corresponding to Equation (8), we find

k = iσ(k, ω)ω/2ε0c2. (21)

In the SB case there are no TE SPs as in the absence of scattering [28]. In the TB case
corresponding to Equation (9), we obtain

q′3 + aq′2 + b = 0, (22)

where a = 2αcω′A(ω′)/vF and b = 4αcω′2ReC(ω′, γ′)/vF. Equation (22) has a real
solution with negative value for q′ which is unphysical. Accordingly, we infer that impurity
scattering suppresses TE SPs in graphene.

6. Summary

We evaluated TM SPs in graphene for SB and TB transitions in the Lindhard ap-
proximation for the polarization function, in which the Coulomb interaction and local
field factors are neglected, but thoroughly took into account scattering by impurities, see
Equations (3)–(5), without making the usual, phenomenological change ω → ω + iτ in the
scattering-independent polarization function χnon. The main results are as follows.

(1) Impurity scattering changes the spectrum of the TM surface plasmons. (2) The
scattering strength γ restricts the SP domains for SB and TB transitions. Importantly, for
each frequency, there is a critical scattering strength γc below which SPs do not exist. The
strength γc decreases with frequency; it is very fast for very low frequencies and much less
so for higher frequencies. (3) The quality factor (QF) is affected by the scattering. We found
it approximately equal to the square of αλSP/γ, where α is the fine-structure constant and
λSP the wavelength; see Equation (19). For a fixed frequency, the QF decreases with γ for
SB and TB transitions and is higher for the SB ones, cf. Figure 9. (4) TE SPs are suppressed
by impurity scattering.

We hope these findings will be tested experimentally.
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