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Abstract: Damage identification methods based on structural modal parameters are influenced by
the structure form, number of measuring sensors and noise, resulting in insufficient modal data
and low damage identification accuracy. The additional virtual mass method introduced in this
study is based on the virtual deformation method for deriving the frequency-domain response
equation of the virtual structure and identify its mode to expand the modal information of the
original structure. Based on the initial condition assumption that the structural damage was sparse,
the damage identification method based on sparsity with l1 and l2 norm of the damage-factor
variation and the orthogonal matching pursuit (OMP) method based on the l0 norm were introduced.
According to the characteristics of the additional virtual mass method, an improved OMP method
(IOMP) was developed to improve the localization of optimal solution determined using the OMP
method and the damage substructure selection process, analyze the damage in the entire structure
globally, and improve damage identification accuracy. The accuracy and robustness of each damage
identification method for multi-damage scenario were analyzed and verified through simulation
and experiment.

Keywords: structural health monitoring (SHM); damage identification; virtual mass; sparse con-
straint; IOMP method

1. Introduction

With the rapid development of modern science and technology, there has been an
increasing number of large and complex engineering structures [1,2]. When these structures
become damaged, the consequences are catastrophic, leading to a significant loss of human
lives and property [3,4]. Therefore, it is necessary to adopt effective health-monitoring
methods for such structures [5], and damage identification is a crucial aspect of structural
health monitoring (SHM) [6,7]. Reliable and efficient damage identification methods are
especially required to achieve the safety and integrity of structures [8]. The most widely
applied vibration theory in structural damage identification diagnoses damages by mea-
suring the dynamic response and modal parameters of structures [9,10]. As the basic
characteristics of structures, modal parameters do not change with the excitation form [11];
hence, the damage identification method based on modal parameters is reliable [12,13].
Rao et al. [14] analyzed the experimental and analytical modes of a cantilever beam using
an artificial neural network based on the vibration theory to identify structural damages.
Ali et al. [15]. assessed structural damage by comparing the dynamic response parameters
of the finite element model in damaged and undamaged states based on the experimental
natural frequency and vibration mode of the structure and verified the model using the
cantilever beam model. Wu et al. [16]. identified the crack location and extension depth of
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a cantilever beam by comparing the ratio variations in two adjacent natural frequencies.
Chang et al. [17] analyzed the variations in the structural frequency and mode shape of
steel truss bridge structures under different damage distribution conditions and analyzed
the reduction in precision after considering the damping ratio. Bhowmik et al. [18]. used
the first-order feature perturbation method in updating the feature space to evaluate the po-
tential structural damage and verified the stability and reliability of the recursive canonical
correlation analysis. Ghahremani et al. [19]. developed an objective function of the natural
frequency and mode shape of structures using the covariance matrix adaptive evolutionary
optimization method. The method was applied to truss and frame structures, and its
robustness was verified experimentally. Rainieri et al. [20]. established the modal mode. In
practical engineering applications, the damage identification method based on the dynamic
response and modal parameters of the structure has some limitations. First, the number of
structural modes is often numerous. Because of the effects of the structural scale, sensor
distribution, and other factors, only a small amount of low-order modal information can
be applied effectively, leading to incomplete modal information for damage identification.
Second, owing to the influence of sensor measurement accuracy, environmental noise, and
other factors, the damage identification method based on structural modal information is
not sufficiently accurate and sensitive to the structural local damage.

Hence, there is more serious damage identification precision with more structural
modal data. It is feasible to add physical parameters, such as stiffness and mass, to obtain
multiple structures with similar parameters and expand the data obtained experimentally.
Dinh et al. [21] identified the shear damage of a four-story frame through numerical simula-
tions and model experiments by adding a specific mass on the structure and determining its
modal parameters. Rajendran [22] analyzed the effects of an additional mass position and
weight on the rotational mode and damage identification of glass fiber composite beams.
Dems et al. [23]. added controllable parameters, such as support, load, and temperature, to
the original structure considering the mass, stiffness, and other physical parameters and
observed an improvement in the damage identification accuracy. However, it is challeng-
ing to design, install, and disassemble actual physical parameters in engineering practice.
Hou et al. [24]. developed a damage identification method using an additional virtual
mass based on the virtual deformation method. The frequency-domain response of the
structure was determined by applying excitation on the actual damaged structure, and
the frequency-domain equation relating to the additional virtual mass was derived. The
frequency-domain equations of different virtual structures were established by adding
various virtual masses at different points of the original structures to expand the modal
information.

On the other hand, damage in structures is generally local with a sparse distribu-
tion [25]. The damage identification objective function translates into over-determined form
when structural modal information is expanded by the additional virtual mass method,
which will lead to non-sparse result because of noise. Thus, the sparse damage identi-
fication method can highlight the sparsity of optimization results, to improve accuracy.
The deterministic sparse damage identification method introduces a sparse constraint
term, usually the lp norm of damage-factor, into the objective function for determining the
sparse solution. Wang et al. [26]. proposed a new Tikhonov iterative method for solving ill-
conditioned equations of damage identification and developed a singular-value dichotomy
program to determine regularization parameters. Wu et al. [27]. modified a structural
model and identified its damage using the l1 regularization method of sparse recovery
theory based on the structural frequency and mode shape. Weber et al. [28]. updated a
structural model using the regularization method and performed damage identification of
three-dimensional truss towers based on the sensitivity. Hou et al. [29]. established two
methods to determine the parameters of the l1 regularization method. One method ensures
that the remaining norm and solution norm of the optimization problem are both small,
and the other method makes the variance between the theoretical and measured responses
close to each other.
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In this study, the additional virtual mass and the sparse damage identification methods
were combined for higher identification precision and consistency with actual damage dis-
tribution. At first, these traditional sparse methods, such as the greedy iteration-orthogonal
matching pursuit (OMP) algorithm with the damage-factor l0 norm as the sparse constraint,
the Lasso regression model with the l1 norm as the constraint item, and the ridge regression
model with the l2 norm as the constraint term, were compared and analyzed based on the
additional virtual mass method. Moreover, aiming at the shortage of above traditional
sparse methods that the Lasso regression and the ridge regression need to obtain regular-
ization coefficient with complex process, and lack of integrity in the recognition process of
the OMP method, the improved OMP (IOMP) method was developed. Finally, through
numerical simulations and experimental verification, the advantages and disadvantages of
each method were proved.

2. Damage Identification Method Based on Additional Virtual Mass and
Damage Sparsity
2.1. Additional Virtual Mass Method

Actual engineering structures are typically large, and there is a tendency for their
sizes to increase. Therefore, the corresponding modal information is also numerous, so
usually, we can only apply a few lower-order modal information. However, incomplete
modal information leads to deviations when identifying the structural damage location
and extent. The additional virtual mass method can conveniently and effectively expand
the modal data used for structural damage identification in actual complex cases.

The structure is divided into n substructures, and µl is set as the damage factor of the
lth substructure, which is the ratio of damaged substructural stiffness k̃l to undamaged sub-
structural stiffness kl , that is, k̃l = µlkl . The whole structure damage-factor is expressed as
µ = [µ1, . . . , µl , . . . , µn]

T , and the damage structural stiffness matrix is expressed as follows:

k(µ) =
n

∑
l=1

µlkl (1)

A single-point excitation Fi(ω) is applied to the ith substructure, and the acceleration
response Ai(ω) is measured at the same position and direction as Fi(ω). Next, the fre-
quency domain response function hV

ii (ω, m) at the ith substructure with additional virtual
mass m is calculated using Equation (2). The total p-order frequency with additional virtual
mass m on the ith substructure is identified based on the constructed frequency domain
response hV

ii (ω, m). Let the jth order recognized frequency be ωji(m), and j = 1, 2, . . . , p:

hV
ii (ω, m) =

Ai(ω)

Fi(ω) + mAi(ω)
(2)

ω̂ is the experimental frequency constructed using the additional virtual mass method
based on the experimental modal information of the actual damaged structure.{

ω̂j(m) =
[
ωj1(m), . . . , ωji(m), . . . , ωjn(m)

]
ω̂ =

[
ω̂1(m), . . . , ω̂j(m), . . . , ω̂p(m)

]T (3)

ω(µ) is the model frequency established using the additional virtual mass method
based on the modal information of the structural finite element model when the damage-
factor is µ. {

ωj(µ, m) =
[
ωj1(µ, m), . . . , ωji(µ, m), . . . , ωjn(µ, m)

]
ω(µ) =

[
ω1(µ, m), . . . , ωj(µ, m), . . . , ωp(µ, m)

] (4)
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Considering the noise error in experimental measurement data, which means ω̂ =
ω(µ) + enosie, the objective function g(µ) is constructed, as expressed in Equation (5). The
optimal value of µ is solved using the objective function as actual damage structural factors.

min g(µ) = ‖ω̂−ω(µ)‖2
2 (5)

The sensitivity of the frequency to the damage factors is introduced to improve
optimization efficiency. When the structural damage-factor is µ, and the additional virtual
mass in the ith substructure is m, the sensitivity Rji,l of the jth order frequency ωji(µ, m) to
the lth substructure is calculated as follows.

Rji,l =
∂ωji(µ, m)

∂µl
=

ϕT
ji(µ, m)Klϕji(µ, m)

2ωji(µ, m)
(6)

Virtual structures can be constructed by attaching a virtual mass m to n substructures.
The sensitivity of each order frequency to n substructures is then calculated from the
measured first p orders frequency of each virtual structure and integrated into a sensitivity
matrix R. The integration process is expressed in Equation (7).

Rj,l =
[

Rj1,l , . . . , Rji,l , . . . , Rjn,l

]T

Rl =
[
R1,l , . . . , Rj,l , . . . , Rp,l

]T

R = [R1, . . . , Rl , . . . , Rn]

(7)

It is assumed that the damage-factor of the damaged structural finite element model
is µ, and that of the undamaged structural finite element model is µ0 = 1. If we consider
the expansion error etaylor based on the Taylor series expansion, the model frequency of
the actual damaged structure ω(µ) and undamaged model frequency ω(µ0) have the
following approximate linear relationship.

ω(µ) = ω(µ0) + R∆µ + etaylor (8)

2.2. Damage Identification Method Based on Sparsity

Because of the local damage in actually damaged structures, the damage-factor vari-
ation ∆µ should exhibit strong sparsity. Although the additional virtual mass method
expands the amount of structural modal data, the expanded data are not independent but
have some correlation and the objective function is transformed into an overdetermined
Equation. Moreover, the noise error still exists when the modal data are identified from
the experiment, leading to the insignificant sparsity of optimized damage-factor and a
significant deviation from the actual structure damage-factor.

2.2.1. Basic Theory and Regression Model

1. Traditional regression model

Based on the initial premise that structural damage is sparse, a new objective function
(9) is derived to obtain a sparse solution of the objective function consistent with the actual
damage condition. Equation (9) is derived by introducing the lp norm of damage-factor
variation as a regular constraint penalty term, which gradually approximates the solution
of the actual damage structure.

min f (µ) = ‖∆ω− R∆µ‖2
2 + λ‖∆µ‖p (9)

In the damage identification process, λ is a regularization coefficient that limits sparse
degree of the damage-factor variation ∆µ. When λ is high, the penalty degree of the
objective function for frequency residual is significant, and the sparsity of the optimization
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results will be significant, resulting in deviation from the least-square solution of frequency
residual. When λ is low, the fitting degree of the damage-factor variation lp norm penalty
term is minimal, and the result is close to the least-square solution of frequency residuals,
but the sparsity of the solution will not be significant. Based on the different constraint
norm, different optimization iteration methods can be adopted for the objective function.

When the constraint term is the l1 norm, the objective function is the Lasso regression
model, which means that the absolute value of the damage-factor variation is used as a
constraint. It is easy to update and iterate ∆µ to zero, so the Lasso regression model can
easily generate sparse solutions that conform to the sparse characteristics of structural
damage. The Lasso regression model can be solved using the coordinate axis descent
method or minimum angle regression method. Besides, when the constraint term is the l2
norm, the objective function is the ridge regression model. Each update of ∆µ is an overall
change based on a particular proportion, which only reduces it, and hard changes to zero.
Therefore, the ridge regression model shows a slight constraint on damage sparsity. The
ridge regression model can be solved using the Tikhonov regularization method.

However, regardless of using Lasso regression model or ridge regression model, the λ
value will have a decisive influence on the final results.

2. Non-parameter Gaussian kernel regression model

Exist engineering structures have large scale with much degree of freedom, which
also means that the FEM model is complex. So, the sensitivity matrix R is difficult to
calculate according to Equation (6). A non-parameter Gaussian kernel regression model is
adopted. The predicted function between structural frequency ω and the damage factor µ
is expressed as follows:

ω = ω̃(µ) + ε (10)

This function is performed Taylor expansion at µ0 to develop the local linear form
of non-parameter regression, which is also consist with the above approximate linear
relationship in Equation (8).

ω = ω̃(µ0) +
n

∑
p=1

∂

∂µp
ω̃(µ0)

(
µp − µ0,p

)
= ω̃(µ0) + R(µ− µ0) (11)

The ω̃(µ0) and R are fitted from N groups known data (µi, ωi) by optimizing
the local linear form non-parameter Gaussian kernel regression function as shown in
Equation (12) [30]. [

ω̃T(µ0), RT]T =
(
µT

DQµD
)−1

µT
DQωD

Kh(µi − µ0) =
1
h e
‖µi−µ0‖2

(2h2)

Q = diag(Kh(µi − µ0))

µD = [IN×1, µD0]

µD0 = [(µ1 − µ0)
T, . . . , (µi − µ0)

T, . . . ,
(
µN − µ0)

T]T
ωD =

[
ωT

1 , . . . , ωT
i , . . . , ωT

N
]T

(12)

Kh is the Gaussian kernel function, and the h is the bandwidth which represents the
influence range [31]. Q is the weight matrix which is consist of Kh(µi − µ0) as the diagonal
element.

2.2.2. OMP Method

When the constraint term is the l0 norm, it represents the number of nonzero elements
of ∆µ. The traditional greedy iteration-OMP method is used to solve this function. The
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advantages are that it does not need to estimate the regularization coefficient λ value, and
it can approach the real sparse solution of the original model satisfactorily.

The OMP method identifies damaged substructures by picking the sensitivity column
vector having the most significant correlation with the frequency residual. The structure
is divided into n substructures. The sth iteration is used as an example; Cs−1 is the
matrix composed of the sensitivity column vectors filtered out in the previous s−1 step,
C+

s−1 is its pseudo-inverse matrix, and the frequency residual is expressed as εs = ∆ω−
Cs−1

(
C+

s−1∆ω
)
.

By calculating the correlation coefficient of εs with each column vector of the re-
maining sensitivity matrix R̃s−1 =

[
r1, . . . . . . rn−(s−1)

]
, the sensitivity column vector rj

corresponding to the largest correlation coefficient Aj is filtered out:

Ai =
εT

s ri
‖ri‖2

(13)

where ri is the ith column vector of R̃s−1. The sth iteration-chosen sensitivity matrix Cs and
the remaining matrix R̃s are expressed as follows:

Cs = Cs−1 ∪ rj

R̃s =
[
r1, . . . , rj−1, rj+1, . . . , rn−(s−1)

] (14)

The sparsity K of the damage-factor variation ∆µ is estimated through experience
to determine iteration steps of this algorithm, and the damage-factor variation with n-K
nonzero elements ∆µ̃ = C+

K ∆ω is determined.

3. Improved OMP Damage Identification Method Based on Sparsity

The traditional damage identification methods based on sparsity all have disadvan-
tages. In Lasso regression model and ridge regression model with l1 norm and l2 norm
as sparse constraints, respectively, the selection of the regularization coefficient λ directly
affects the accuracy of the recognition results. The traditional methods for selecting λ
based on the L-curve is more complicated, and there is no selection process for the damage
substructure using the two traditional methods.

The OMP method selects forward the column vector from sensitivity matrix based
on the most significant correlation with the frequency residual. First, each selection step
depends on the previous step selection result; therefore, the damage determined by this
method is typically a local optimal result, and its integrity is insufficient. Second, because
the OMP method needs to estimate the sparsity of the damage-factor variation to determine
the iterative operation steps, the sparsity estimation accuracy directly confirms whether
the damage recognition results are correct, which has certain logical defects. Moreover,
the traditional OMP method only depends on the final pseudo-inverse calculation in
determining the damage factors value, inducing a significant error.

In this study, an improved OMP (IOMP) method was developed to overcome the
shortcomings of traditional sparse damage identification methods. The damage identi-
fication process for this method is divided into three main steps. First, we determine
the number of damaged substructures and consider the remain undamaged. Second, the
damage factors corresponding to the undamaged substructures removed from the damage
vector. Finally, the objective function (5) is used to determine the specific value of the
damage factors. From Equation (8), it can be observed that the frequency residual had the
following relationship with the sensitivity matrix and damage-factor variation.

∆ω = ω̂−ω(µ0) = R∆µ + etaylor + enoise (15)

It can be observed from Equation (7) that the sensitivity matrix is a full rank. The
ith element, ∆µi, of the damage-factor variation ∆µ is assumed to be zero, indicating that
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no damage occurred to the ith substructure. ∆µ∗i is the (n − 1) × 1 dimensional column
vector after ∆µi is removed from ∆µ. ri is the ith column of the sensitivity matrix R, R∗i is
the k× (n− 1) dimension matrix of R without the ith column, and

(
R∗i
)+ is the pseudo

inverse matrix of R∗i . 
∆µ∗i =

(
R∗i
)+∆ω(

R∗i
)+

=
((

R∗i
)TR∗i

)−1(
R∗i
)T

(16)

When ∆µi is zero, the structural frequency difference is ∆ωi, and the frequency
residual vector is expressed as follows:

εi = ∆ω− ∆ωi = ∆ω−R∗i
(
R∗i
)+∆ω

εi = (I−R∗i
(
R∗i
)+R∗i ∆µ∗i +

(
I−R∗i

(
R∗i
)+)

(Ri∆µi + e)

εi =
(

I−R∗i
(
R∗i
)+)

(ri∆µi + e)

(17)

According to Equation (17), the residual vector εi is related to the ith element of
damage-factor variation, ∆µi. The larger this damage-factor variation element, the more
severe damage to the substructure, the more significant its contribution to the structural
frequency change, and the larger the corresponding residual vector. The magnitude of the
residual vectors is also related to experimental measurement error. The larger the error, the
higher the overall value of the residual vectors. Their difference is insignificant, which is
unconducive for separating the damage elements and rearranging the sensitivity matrix.
Therefore, the measurement error should be controlled to the maximum possible extent.

Moreover, considering the nonlinear correlations and the error of linearity assumption,
there is an iteration process in the calculation of εi as shown in Equation (18). Take the sth
iteration as example.

min‖ω̂−ω
(
µs

0
)
‖2

2 = ‖ω̂−ω
(

µs−1
0

)
−Rs−1

(
µs

0 − µs−1
0

)
‖

2

2
⇒ µs

0

min‖ω̂−ω
(
µs∗

i
)
‖2

2 = ‖ω̂−ω
(

µs−1∗
i

)
−Rs−1∗

i

(
µs∗

i − µs−1∗
i

)
‖

2

2
⇒ µs∗

i

εs
i = ω

(
µs∗

i
)
−ω

(
µs

0
) (18)

µs−1∗
i is the damage factor when the i-th substructure is assumed undamaged in the s-th

iteration and Rs−1∗
i is the corresponding sensitivity matrix. Based on this procedure, the

frequency residual vector εi is more accurate to the real value when on the ith substructure
is damaged.

In contrast to the OMP method of identifying the damage substructure location in
the forward direction, the IOMP method developed in this study reflected two different
identification criteria based on the residual vector variance criterion and residual vector cor-
relation with the sensitivity criterion. The proposed method reverses selection, eliminates
the damage-factor elements of undamaged substructures, and determines the number of
damaged substructures using a specific threshold and the principal component analysis
method based on singular value decomposition.

3.1. Residual Vector Variance Criterion

According to Equation (17), the residual vector corresponding to the variation of each
damage-factor element is calculated to obtain the residual matrix ε = (ε1, ε2, . . . . . . , εn)
and its variance matrix σ2.

σ2 = diag
(

εTε
)

(19)

The sparse degree of the damage-factor is determined to be N by sorting each element
of σ2 from large to small and setting the threshold value p0. The n-N column vectors
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corresponding to the smaller variance in the sensitivity matrix R are eliminated to obtain
R̃0,1. The residual vector ε0,1 corresponding to R̃0,1 is calculated using Equation (17).

p0 ≤
∑N

i=1 σ2
i

∑n
i=1 σ2

i
(20)

Let the residual vector corresponding to the remaining N damage factors form the
residual matrix ε̃0,1. The variance matrix σ̃2

0,1 is then calculated and sorted to obtain
the sensitivity matrix R̃0,2 and its residual vector ε0,2 by removing the column vector rs
corresponding to the minimum variance σ2

j from matrix R̃0,1. The final residual matrix
ε0 = (ε0,1, ε0,2, . . . . . . , ε0,N) is obtained by repeating the above step to determine the
number and location of damage substructures using the principal component analysis
method and compute the specific values of the possible structural damage factors using
the objective function (5).

3.2. Sensitivity Correlation Criterion

The residual vector corresponding to each damage-factor variation was calculated
using Equation (17) to form the residual matrix ε = (ε1, ε2, . . . . . . , εn) and obtain the corre-
lation coefficient between each residual vector and its corresponding sensitivity column
vector:

Ai =
rT
i εi
‖ri‖2

A = [A1, . . . , Ai, . . . , An]
T

(21)

where ri is the ith column element of R. Each element of the correlation vector A is sorted
from the largest to the smallest, and the sparse degree of damage -factor variation is deter-
mined to be N by setting the threshold value p0. The n-N column vectors corresponding to
the smaller correlation coefficient in the sensitivity matrix R are eliminated to obtain R̃0,1.
The residual vector ε0,1 corresponding to R̃0,1 is computed using Equation (17).

p0 ≤
∑N

i=1 Ai

∑n
i=1 Ai

(22)

Let the residual vector corresponding to the remaining N damage factors form the
residual matrix ε̃0,1. The correlation vector Ã0,1 is calculated and sorted to obtain the
sensitivity matrix R̃0,2 and its residual vector ε0,2 by removing the column vector rs corre-
sponding to the minimum correlation coefficient Aj from matrix R̃0,1. The final residual
matrix ε0 = (ε0,1, ε0,2, . . . . . . , ε0,N) is determined by repeating the above step to determine
the number and location of damage substructures using the principal component analysis
method and obtain the specific values of the possible structural damage factors using
objective function (5).

The damage to structure mainly occurs in the local position, which exhibits a strong
sparseness. The main principle of the principal component analysis method is to reflect
most variables using a small amount of variable information, and the information contained
in few variables is not repeated. This principle is consistent with the actual structural
damage identification, in which a few damaged substructures, instead of all substructures,
may be analyzed. Therefore, the principal component analysis method was used in this
study to analyze the residual matrix and determine the number of damaged substructures.
The specific steps are as follows:

1. The mean value of each row of the residual matrix ε0 was determined, and all elements
were subtracted from their rows mean value to form matrix ε0,m.

2. The covariance matrix (ε0,m)
Tε0,m of ε0,m was calculated, and the eigenvalues of

this covariance matrix were determined and arranged in descending order to form
Λ = (λ1, λ2, . . . . . . , λN).
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3. The ratio, p =
∑i

j=1 λj

∑N
j=1 λj

, of the first i substructures eigenvalues to all eigenvalues was

calculated. When p reached a particular threshold, it was assumed that the first i
substructures were damaged while the other parts of the structures were undamaged.

By combining the additional virtual mass method and the IOMP method, the fre-
quency vector ω̂ and sensitivity matrix R of the virtual structure can be assembled to
increase the amount of modal data for structural damage identification and to improve
the accuracy. In addition, the IOMP method overcomes the disadvantage of non-sparse
to achieve optimization results that satisfy the initial sparsity conditions consistent with
actual engineering.

4. Numerical Simulation of Simply Supported Beam and Space Truss
4.1. Simply Supported Beam Model
4.1.1. Model and Damage Scenario

Because of the shortcomings of three traditional structural damage identification
methods based on sparsity, that is, the OMP method, Lasso regression model with l1
norm, and ridge regression model with l2 norm, the IOMP method was developed in
this study to minimize the shortcomings. These four methods were combined with the
additional virtual mass method described in Section 2 to assess the structural damage in
multi-damage scenario. A numerical simulation was conducted using to verify and analyze
the advantages and disadvantages of the above four methods.

A simply supported steel beam was used as the experimental model. The elastic
modulus and density of the steel were 210 GPa and 7.85× 103 kg/m3, respectively. The
section width, height, and span of the beam were 500 mm, 80 mm, and 1 m, respectively.
The structure was divided into 10 substructures, each of which was divided into two units,
consisting of a total of 20 units. The finite element model is shown in Figure 1. There were
multiple damage cases, indicating 70%, 80%, and 60% residual stiffness in substructures 3,
5, and 8, respectively.
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Figure 1. Model of simply supported steel beam.

4.1.2. Virtual Mass Addition and Response Construction

According to the theory of the additional virtual mass method, first, the position of the
additional virtual mass at the substructural midpoint is typically determined. Second, the
optimal additional virtual mass is selected using the calculated relative sensitivity of the
structural lower-order frequencies. Consider the addition of a virtual mass to substructure
5 as an example. The relative sensitivity of the first fourth-order frequency when the
substructure 5 added with each 0.1 kg virtual mass was calculated (Figure 2). Based on the
relative sensitivity calculations for the first fourth-order frequencies of each substructure
with respect to the additional virtual mass value, 0.3 kg virtual mass was added to each
substructure of the original structure to obtain ten different virtual structures.
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Figure 2. Relative sensitivity of first fourth-order frequencies with virtual mass in substructure 5.

Impulse excitation was applied to the original structure with an action time of 2 s and
a sampling frequency of 10,000 Hz to determine the acceleration response of the original
structure and virtual structures. The acceleration response signal was preprocessed using
an exponential window function. Based on Equation (2), the frequency-domain responses
of the original and virtual structures, adding a virtual mass on substructure 5, were
determined (Figure 3).
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4.1.3. Damage Identification

The assumed damage factors of substructures 3, 5, and 8 were 70%, 80%, and 60%,
respectively. The OMP method, Lasso regression model with the l1 norm, and ridge
regression model with the l2 norm, which are three traditional damage identification
methods based on sparsity, and the proposed IOMP method, were combined with the
additional virtual quality method to identify each damage substructure and determine the
degree of damage.

As shown in Figure 4, the damage recognition results for the objective function without
sparse constraints showed damage to substructures 3, 5, 7, 8, and 9, indicating inconsistency
with the actual local damage. When the regularization coefficient was 0.1 [28], the Lasso
regression model with the l1 norm and the ridge regression model with the l2 norm could
locate the damage positions more accurately. Under the l1 norm constraint, the damage
factors to substructures 3, 5, and 8 were 69.3%, 79.4%, and 62.2%, respectively, while
substructure 7 is misjudged with 96.9% damage. Under the l2 norm constraint, 70.4%,
79.7%, and 60.9% damage factors were identified in substructures 3, 5, and 8, respectively,
while substructures 6 and 7 are misjudged as 99.6% and 98.1% damage, respectively. Both
methods showed damage misjudgment, which directly resulted in larger deviations in
identifying the degree of actual adjacent damage to the substructures. Nevertheless, the
results significantly improved compared to the results for cases without constraint.
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The damage identification results for the OMP method were relatively ideal from
Figure 5. The damage extent identification of damaged substructures 3, 5, and 8 were 77.5%,
79.4%, and 55.6%, respectively, reflecting the actual damage conditions, but the damage
to substructure 2 was misjudged. The corresponding identification values, 78.4%, 79.2%,
and 54.9%, obtained using the IOMP method based on the residual variance criterion were
relatively accurate, and no misjudgment of the undamaged substructures was observed.
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Figure 5. Identification results obtained using OMP and IOMP method (residual variance criterion).

As shown in Figure 6, the OMP method misjudged the damage for substructures
6, and there was a significant difference in the identification between damage factors of
actually damaged substructures and that of the IOMP method based on the sensitivity
correlation criterion. The IOMP method based on the sensitivity correlation criterion
showed 72.3%, 80.1%, and 59.0% damage factors recognition for substructures 3, 5, and 8,
respectively. The identification accuracy satisfied the requirements, and no misjudgment of
the undamaged substructures was observed.



Appl. Sci. 2021, 11, 10152 12 of 19

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 18 
 

 
Figure 5. Identification results obtained using OMP and IOMP method (residual variance criterion). 

As shown in Figure 6, the OMP method misjudged the damage for substructures 6, 
and there was a significant difference in the identification between damage factors of ac-
tually damaged substructures and that of the IOMP method based on the sensitivity cor-
relation criterion. The IOMP method based on the sensitivity correlation criterion showed 
72.3%, 80.1%, and 59.0% damage factors recognition for substructures 3, 5, and 8, respec-
tively. The identification accuracy satisfied the requirements, and no misjudgment of the 
undamaged substructures was observed. 

 
Figure 6. Identification results obtained using OMP and IOMP method (sensitivity correlation criterion). 

As shown in Figure 7, when the regression model is non-parameter Gaussian kernel 
regression, the IOMP method is more accurate than OMP method. Because the non-param-
eter regression model is approximate, its accuracy is worse than the FEM model. However, 
the damaged substructures-selected process of the IOMP method has stronger integrality. 

1 2 3 4 5 6 7 8 9 10
Substructure

0

0.2

0.4

0.6

0.8

1

Damage-IOMP
Damage-OMP
Undamage-IOMP
Undamage-OMP
Actual value
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rion).

As shown in Figure 7, when the regression model is non-parameter Gaussian kernel re-
gression, the IOMP method is more accurate than OMP method. Because the non-parameter
regression model is approximate, its accuracy is worse than the FEM model. However, the
damaged substructures-selected process of the IOMP method has stronger integrality.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 18 
 

 
Figure 7. Identification results obtained using OMP and IOMP method (Gaussian kernel regression 
model). 

Both the OMP and IOMP methods determined the location and number of damaged 
substructures, and it was assumed that the remaining substructures were undamaged. 
The damage identification results indicated significant sparseness, consistent with the lo-
cal damage conditions of actual structures. The residual vector ࢿ(ࢿ,) norms were com-
pared to establish the superiority of the two methods, where k is the number of damaged 
substructures. 

Under multiple damage conditions, the residual vector norm was large when the 
number of identified damaged substructures was one. The curve in Figure 8 starts when 
the number of damaged substructures is two to improve the image contrast. Damage re-
siduals norm of the IOMP method based on the residual variance criterion and the IOMP 
method based on the sensitivity correlation criterion were lower than those of the OMP 
method, and the decrease rate was sharper. When the residual vector norm decreased to 
less than 0.025, the number of damaged substructures identified using the IOMP method 
was three, but that identified using the OMP method exceeded three. Therefore, the IOMP 
method yielded more accurate identification results than the OMP method, regardless of 
the degree of damage and the number of damaged substructures. 

 
Figure 8. Contrast with sparsity in simply supported beam simulation. 

For researching the effect of considering nonlinearity, the results based on procedure 
expressed in Equation (18) are shown in Table 1. 

Table 1. Identification results of OMP and IOMP(S) method with nonlinearity iteration. 

Substructure 1 2 3 4 5 6 7 8 9 10 
OMP 0.5087 1 0.4675 1 1 1 1 1 0.9531 0.7076 

IOMP(S) 0.5049 1 0.5658 0.6860 1 1 1 1 1 0.6076 
Actual value 1 1 0.7 1 0.8 1 1 0.6 1 1 

1 2 3 4 5 6 7 8 9 10
Substructure

0

0.2

0.4

0.6

0.8

1

Damage-IOMP
Damage-OMP
Undamage-IOMP
Undamage-OMP
Actual value

Figure 7. Identification results obtained using OMP and IOMP method (Gaussian kernel regres-
sion model).

Both the OMP and IOMP methods determined the location and number of damaged
substructures, and it was assumed that the remaining substructures were undamaged.
The damage identification results indicated significant sparseness, consistent with the
local damage conditions of actual structures. The residual vector εk(ε0,k) norms were
compared to establish the superiority of the two methods, where k is the number of
damaged substructures.

Under multiple damage conditions, the residual vector norm was large when the
number of identified damaged substructures was one. The curve in Figure 8 starts when
the number of damaged substructures is two to improve the image contrast. Damage
residuals norm of the IOMP method based on the residual variance criterion and the IOMP
method based on the sensitivity correlation criterion were lower than those of the OMP
method, and the decrease rate was sharper. When the residual vector norm decreased to
less than 0.025, the number of damaged substructures identified using the IOMP method
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was three, but that identified using the OMP method exceeded three. Therefore, the IOMP
method yielded more accurate identification results than the OMP method, regardless of
the degree of damage and the number of damaged substructures.
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Figure 8. Contrast with sparsity in simply supported beam simulation.

For researching the effect of considering nonlinearity, the results based on procedure
expressed in Equation (18) are shown in Table 1.

Table 1. Identification results of OMP and IOMP(S) method with nonlinearity iteration.

Substructure 1 2 3 4 5 6 7 8 9 10

OMP 0.5087 1 0.4675 1 1 1 1 1 0.9531 0.7076

IOMP(S) 0.5049 1 0.5658 0.6860 1 1 1 1 1 0.6076

Actual value 1 1 0.7 1 0.8 1 1 0.6 1 1

As shown in Table 1, neither OMP nor IOMP(S) have accurate results, which is most
probably because of that the optimization in iteration of Equation (18) is not sparse. What is
more important is the efficiency with nonlinearity iteration is much lower than without it.

4.1.4. Susceptibility to Noise

As mentioned in Section 4.1.1, the damaged substructures are the 3rd, 5th, and 8th,
and both the methods could select the damaged substructures. So, the stability of the IOMP
method to noise is verified by comparing the order and identification results of damaged
substructures under different level noise. The order and identification result of selected
damaged substructures with the IOMP method based on the residual variance criterion is
almost same as that one of the sensitivity correlation criterion. Therefore, taking IOMP(S)
as representative. The various noise level is 5%, 10%, 20%, and 30% rms. The results are
shown in Table 2.

Table 2. The order and identification result of selected damaged substructures under different level noise.

Noise Level (rms) 5% 10% 20% 30%

OMP
[8, 6, 3, 5] [8, 6, 1, 4] [8, 5, 4, 10] [8, 5, 4]

[62.36%, 100%,
67.34%, 80.58%]

[54.08%, 89.06%,
54.11%, 79.55%]

[47.20%, 82.30%,
99.51%, 67.78%]

[49.08%, 73.03%,
100%]

IOMP(S)
[8, 5, 3] [8, 5, 3] [8, 5, 3] [8, 5, 3]

[62.30%, 80.57%,
67.41%]

[58.12%, 80.44%,
72.88%]

[51.99%, 81.24%,
72.22%]

[64.28%, 75.66%,
68.84%]
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As known from Table 2, the identification results and selected order of damaged
substructures are worse with noise increasing and that one of IOMP(S) is always better
than OMP, which confirms that the susceptibility to noise of the IOMP methods is better.
When the noise is in low level like 5% rms, the OMP method is accurate. However, the
IOMP method has good results even in the noise level of 30% rms.

4.2. Space Truss Model
4.2.1. Model and Damage Scenario

The size of this space truss model is 2.4× 0.56× 0.45 m, and the bars are articulated
between each other. This model consists of 51 bars. Each bar is a hollow pipe, in which the
outer diameter is 1 cm and thickness is 3 mm. The position and number of bars are shown
in Figure 9. The elastic modulus, density, and position ratio of structural material were
206 GPa, 7.85× 103 kg/m3, and 0.3, respectively. The damage scenario is assumed that
the 3rd, 15th, 29th, 30th, and 48th bars respectively contain 50%, 70%, 60%, 77%, and 82%
residual stiffness. And the position of damaged bars have been marked with read circle in
Figure 9.
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4.2.2. Damage Identification

In this section, considering the complexity of the space truss, the non-parameter
Gaussian kernel regression model is adopted. The first frequency of the 51 virtual structures
under real damage situation, which is constructed by respectively adding 1.2 kg virtual
mass on each bar, is chosen to optimize the damage factors. The results of OMP and IOMP
method are shown in Table 3.

Table 3. Identification results of space truss by OMP and IOMP method.

Type OMP IOMP

Damaged substructures [3, 29, 15, 30, 48, 1, 6] [3, 29, 15, 30, 48]

Residual stiffness [49.87%, 60.44%, 69.40%, 79.06%,
80.59%, 93.01%, 92.81%]

[49.92%, 60.50%, 69.50%, 79.09%,
80.62%]

As known from Table 3, the identification results of IOMP method is more accurate
than OMP method. Either the selected damaged substructures or the residual stiffness of
OMP method has more error, which might be caused by the complexity of space truss or
the non-parameter regression model.

5. Verification of Frame Experiment
5.1. Model and Damage Scenario

The experimental three-layer plane frame structure was made of Q235 steel, shown in
Figure 10a. Its elastic modulus was 2.10 GPa, and its density was 7.85× 103 kg/m3. The
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height and span of each layer were identical, which is 0.3 m. The cross-section dimension
is 0.005 m× 0.06 m. The frame contained nine substructures and 36 elements, with each
substructure having four units. The finite element model is shown in Figure 10b.
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Figure 10. Frame model. (a) experimental picture; (b) FEM.

The experimental frame model damage was achieved by producing a 1 cm deep,
1 mm wide, and 1 cm spacing incision on substructure 2. Under this condition, the stiffness
of substructure 2 decreased by 33%, indicating that the damage factor was 0.67. In addition,
an incision of 1.5 cm depth, 1 mm width, and 1 cm spacing was made on substructure
9. Its stiffness decreased by 50%, showing that the damage factor was 0.5. During the
experimental tests, the load and structural acceleration responses were measured. The re-
quired equipment included a modal force hammer, acceleration sensor, and data acquisition
instrument.

5.2. Framework Dynamic Testing and Response Construction with Additional Virtual Mass

1. Dynamic testing of undamaged structure: An acceleration sensor was installed in
the middle position of substructures, and the other side was hit with a modal force
hammer several times to obtain multiple sets of loads and acceleration response data.
The measured data were processed to determine the experimental frequencies of the
undamaged structures.

2. Dynamic testing of damaged structure: The sensor was installed in the middle position
of the substructures, and the structure was hit with a modal force hammer on the
other side to obtain multiple sets of loads and acceleration data.

The acceleration response data of the virtual structure was constructed using the
additional virtual mass method, and the structure frequency was identified according to
the Eigen system realization achievement method. The virtual structure formed after the
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virtual mass was added to the ith substructure and is denoted as. The average values of
the fourth-order frequency of the 9 virtual structures are listed in Table 4.

Table 4. Selected fourth-order frequency means (Hz).

Substructure S1 S2 S3 S4 S5 S6 S7 S8 S9

Mean 108.27 107.13 108.27 107.13 108.27 107.13 108.27 107.13 107.13

5.3. Damage Identification

Based on the experimental frequency values of the damage structures, the OMP
method and the two types of IOMP methods were used for damage identification. The
identification results were as follows: substructures 2 and 9 were actual damaged, and the
damage factors were 0.67 and 0.5, respectively.

The damage factors obtained using the three methods are listed in Table 5. The damage
factors of substructures 2 and 9 identified using the OMP method were 0.685 and 0.475,
respectively, close to the actual damage (Figure 11). These results indicated that the OMP
method exhibited high accuracy in damage identification but misjudged the undamaged
substructure 4. The damage factor identification values based on the two IOMP methods
for damage substructures 2 and 9 were 0.666 and 0.47, respectively, consistent with the
actual damage results. These findings show that the IOMP damage identification method
based on additional virtual mass can precisely identify the damage to this frame model.

Table 5. Damage factors identification values obtained using OMP and IOMP method.

Substructure 1 2 3 4 5 6 7 8 9

Actual 1.000 0.670 1.000 1.000 1.000 1.000 1.000 1.000 0.500
OMP 1.000 0.685 1.000 0.936 1.000 1.000 1.000 1.000 0.475

IOMP (S) 1.000 0.666 1.000 1.000 1.000 1.000 1.000 1.000 0.470
IOMP (V) 1.000 0.660 1.000 1.000 1.000 1.000 1.000 1.000 0.470
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Figure 11. Damage identification results.

When the OMP and IOMP methods were used for damage identification, it was neces-
sary to determine the number of substructures preliminarily that could be damaged. After
calculations, a broken line chart of the damage residual norm with the number of damaged
substructures was plotted in Figure 12. When the number of damaged substructures was
two, the damage residual norm was approximately 0.249. Because of the high accuracy
of the experimental data, the OMP and IOMP methods both showed good performance
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in determining the number of damaged substructures. However, when the number of
identified damage substructures were equal, the residual norm of the IOMP method was
always smaller than that of the OMP method, indicating that the IOMP method was more
accurate than the OMP method.
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6. Conclusions

In this study, an IOMP method combined with the additional virtual mass was devel-
oped to improve damage identification based on structural modal and minimize suscep-
tibility to structural modal data, measurement point distribution, and noise, considering
the initial condition of sparse structural damage. Through numerical simulation of a sim-
ply supported steel beam and the experimental verification of the steel frame model, the
following conclusions are drawn:

1. The IOMP method combined with the additional virtual mass method can effectively
expand structural modal information to improve the accuracy of structural damage
identification while constraining the optimization results to obtain sparse optimization
results consistent with the actual local damage.

2. Compared to the Lasso regression model with the l1 norm and the ridge regression
model with the l2 norm, the IOMP method selects independently damage substruc-
tures, which satisfies the initial condition that structural damage is sparse. In addition,
the IOMP method does not need to select the regularization coefficient λ, and thus,
eliminates its direct influence on the optimization results to obtain more accurate
damage identification results.

3. The IOMP method improves the deficiency of the OMP method in that the recognition
result is a local optimal solution when combined with the additional virtual mass
method, which integrates the recognition result better. Furthermore, it improves the
logical defects of the OMP method effectively in predicting damage sparsity. The
IOMP method is also accurate for selecting damaged substructures.
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