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Abstract: In this paper, we propose a method for near-field-based 5G sub 6-GHz array antenna
diagnosis using transfer learning. A classification network was implemented for normal/abnormal
operation of the array antenna and the failure of a specific port. Furthermore, a regression network
that could predict the amplitude and phase of the excitation signal of the array antenna was employed.
Additionally, to accelerate the array antenna diagnosis, several near-field lines were sampled and
reflected in the regression network. The proposed method was verified by measuring a fabricated
5G sub-6 GHz band 4× 4 array antenna in various scenarios using a divider and coaxial cables. The
tests showed that the trained network accurately diagnosed 29 of 30 measurement results.

Keywords: near-field measurement; machine learning; transfer learning; array antenna diagnosis;
5G sub 6-GHz

1. Introduction

Recently, with the expansion of the 5G mobile communication business, there has
been a rapid increase in the demand for both single antennas, which are used in existing
mobile phones, and array antennas, which have high gain and beam steering [1,2]. An
array antenna consists of radiation elements and electronic components for controlling
transmission and reception signals. It adjusts the amplitude and phase of the signal
applied to each radiation element differently, and it subsequently steers the beam based
on the principle of combination and cancellation of the radiation signals of the individual
radiation elements [3]. In general, although an array antenna is composed of the same
radiation elements and electronic components, the amplitude and phase errors of the
applied signal are caused by problems such as component failure, mutual interference,
and heat generation [4]. As these errors affect the performance of an array antenna, its
diagnosis is essential.

Array antenna diagnosis methods are primarily classified as far-field and near-field
methods. A far-field diagnosis based on the three-dimensional one-point measurement
method has high accuracy; however, the measurement time is long, and the economic
feasibility is low. The latter is a result of the requirement of an expensive, large-scale
method, such as an electromagnetic wave anechoic chamber that can provide a far-field
area. A near-field diagnosis method measures the electric field at regular intervals on an
arbitrary plane in a radiating near-field of the antenna to be tested. Under modal expansion,
the magnitude and phase of the angular spectrum of the plane wave can be determined
from the measured near field [5]. Specifically, the electric field at any position can be
calculated, and this method is called the back-projection technique. If this technique is
applied to the surface of an array antenna, the electric field distribution near the surface can
be predicted, and the correction/error, amplitude, and phase error can be determined in
units of the array antenna elements. However, this technique is effective when more than a
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certain amount of the energy radiated by the array antenna can be measured [6]. The back-
projection technique requires measurements in a radiating near-field at a certain distance
from the array antenna. Thus, a wide-area near-field measurement is required, which
increases the measurement time. This means there is a trade-off relationship between the
measurement time and the accuracy. In addition, because the resolution of the electric-field
distribution image of an array antenna surface obtained by the back-projection technique
is one wavelength interval, it is difficult to diagnose a particular antenna element when
the antenna elements are dense. Therefore, it is difficult to obtain high accuracy and
a short measurement time with the conventional array antenna diagnosis method [7].
To overcome these shortcomings, in this paper, we propose an array antenna diagnosis
method by applying the imaged electric-field distribution to a convolutional neural network
(CNN) [8].

Recently, the field of computer vision has rapidly developed with deep learning
technology. In particular, the CNN method has led to breakthroughs in image recognition,
classification, extraction, and tracking based on big data images, such as ImageNet [9].
Moreover, its performance has also been significantly improved, and it has been commonly
used in various fields. To employ a general CNN, a developer must implement all layers
directly and derive a CNN structure that is suitable for the target purpose by repeated
training. However, this method requires high skills and is also inefficient in terms of the
time and the computational cost. As an alternative, transfer learning [10], which trains a
new model using the weights of a pre-trained deep learning model, has recently received
significant attention. It is being applied in various fields, such as medicine, engineering,
and agriculture, owing to the easy generation of information suitable for a new purpose
using previously acquired information [11–13].

In this study, we aimed to diagnose a 5G sub-6-GHz array antenna based on a near
field using transfer learning. A trained network based on the near field implemented the
array antenna diagnosis technique with high accuracy and a short measurement time. First,
the possibility of its diagnosis was reviewed by applying a classification network, and the
amplitude and phase of the array antenna excitation signal were accurately predicted by
implementing a regression network for the subsequent complete diagnosis. Additionally,
to accelerate the measurements, a regression network was trained using the sampled near-
field. The measurements verified the validity of the array antenna diagnosis by transfer
learning. The remaining paper is organized as follows. The transfer learning and training
data formation are introduced in Section 2, and the experimental results for the trained
networks are presented in Section 3. Section 4 discusses the effectiveness of the array
antenna diagnosis using transfer learning based on measurements on a fabricated array
antenna, and finally, Section 5 presents the conclusion.

2. Research Method
2.1. Transfer Learning

A CNN is a type of artificial neural network used to analyze visual characteristics such
as edges and textures of images, and it is made deep by repeatedly placing convolution
and pooling layers and finally implementing a fully connected layer. A convolution layer
extracts the image features by the convolution operation, and a pooling layer reduces the
dimension using the average and maximum values in the filter size. Moreover, the fully
connected layer connects the extracted features to create a feature map and classifies the
image using a function. However, because a CNN contains various variables, such as initial
value, activation function, number of layers, learning rate, and batch size, numerous factors
need to be considered. To compensate this shortcoming, transfer learning was devised.
Briefly, the concept of transfer learning originated from the problem of slow learning when
training from scratch a very large deep learning model. In this case, the learning can be
accelerated by introducing and reusing the lower layer of a similar pre-trained model [10].
Figure 1 shows the concept diagram of the transfer learning method employed in this study.
For CNN models trained on ImageNet, the convolution kernels are set suitably for object
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classification. In the pre-trained model trained on ImageNet, the output of the last stage is
set to classify 1000 classes. The transfer learning can be performed if only the classification
layer, i.e., the last stage, is supplemented and modified to enable the classification of the
data desired by the user. In this study, Alexnet [14] and Resnet-50 [15] were used as the
pre-trained networks; the classification layers of these networks were changed for the
purpose of the array antenna diagnosis.
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Figure 1. Concept diagram of transfer learning.

2.2. Preparation of training

As mentioned earlier, the classification layer of the pre-trained network is modified
according to the purpose of the user and used as transfer learning. Table 1 shows the
structure of Alexnet implemented in MATLAB. Alexnet consists of five convolutional layers
and three fully connected layers. In five convolution layers, feature maps are extracted with
the filter kernel and activated with the ReLU function. Through intermediate normalization,
max pooling, etc., a 6× 6× 256 feature map is finally obtained. Then, two fully connected
layers convert the 6× 6× 256 feature map into a one-dimensional form and connect it to
4096 neurons. This is the step of feature extraction from Alexnet. Only subsequent layers
are modified to suit the purpose. The user changes the number of neurons in the third fully
connected layer (layer 23 in Table 1), which consists of 1000 neurons, and also modifies
the output layer (layer 25 in Table 1) to the corresponding class. If the specific port failure
diagnosis of Section 3.2 described later is applied, layer 23 is modified to a fully connected
layer composed of 17 neurons, and layer 25 is modified to corresponding classes such as
pass, port 1 failure, etc.
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Table 1. Structure of Alexnet implemented on MATLAB.

Layer Name Role Note

1 ‘data’ Image Input 227× 227× 3 images with ’zerocenter’ normalization
2 ‘conv1’ Convolution 96 11× 11× 3 convolutions with stride [4 4] and padding [0 0 0 0]
3 ‘relu1’ ReLU ReLU
4 ‘norm1’ Cross Channel Normalization Cross channel normalization with 5 channels per element
5 ‘pool1’ Max Pooling 3× 3 max pooling with stride [2 2] and padding [0 0 0 0]
6 ‘conv2’ Convolution 256 5× 5× 48 convolutions with stride [1 1] and padding [2 2 2 2]
7 ‘relu2’ ReLU ReLU
8 ‘norm2’ Cross Channel Normalization Cross channel normalization with 5 channels per element
9 ‘pool2’ Max Pooling 3× 3 max pooling with stride [2 2] and padding [0 0 0 0]

10 ‘conv3’ Convolution 384 3× 3× 256 convolutions with stride [1 1] and padding [1 1 1 1]
11 ‘relu3’ ReLU ReLU
12 ‘conv4’ Convolution 384 3× 3× 192 convolutions with stride [1 1] and padding [1 1 1 1]
13 ‘relu4’ ReLU ReLU
14 ‘conv5’ Convolution 384 3× 3× 192 convolutions with stride [1 1] and padding [1 1 1 1]
15 ‘relu5’ ReLU ReLU
16 ‘pool5’ Max Pooling 3× 3 max pooling with stride [2 2] and padding [0 0 0 0]
17 ‘fc1’ Fully Connected 4096 fully connected layer
18 ‘relu6’ ReLU ReLU
19 ‘drop6’ Dropout 50% dropout
20 ‘fc2’ Fully Connected 4096 fully connected layer
21 ‘relu7’ ReLU ReLU
22 ‘drop7’ Dropout 50% dropout
23 ‘fc3’ Fully Connected 1000 fully connected layer
24 ‘prob’ Softmax Softmax
25 ‘output’ Classification Output Crossentropyex with ’tench’, ’goldfish’, and 998 other classes

As input data, near-field data are required. However, it takes considerable time and
financial resources to obtain more than thousands of sample data by measurements; thus,
it is practically impossible to obtain sample data. Therefore, a realistic method is to obtain
the sample data required for training from simulation, instead of measurements. In this
study, near-field data based on the change in the excitation signal were used through a
combination of post-processing results of the CST microwave studio (MWS). This allows
collecting near-field data of an array antenna within a few seconds by a simple post-
processing as well as reduces the time and cost for obtaining a sample database. The
sample database was secured by linking MATLAB and CST MWS [16]. The labeling of
the input data was implemented in MATLAB, and the near-field data were calculated
through a combination of post-processing results after applying an excitation signal in CST
MWS corresponding to the labeling. After re-importing the calculated near-field data in
MATLAB, the sample data were obtained by adding the above data to the database.

Near-field data were extracted from the CST MWS environment, as shown in Figure 2.
A 4× 4 patch array antenna with radiating elements arranged at 0.5λ intervals was used
as the antenna under test (AUT), and the operating frequency of the array antenna was
3.55 GHz in the 5G sub-6 GHz band. The area surrounding the array antenna at a distance
of 1λ (84.5 mm) was extracted at a distance of 3λ (243.5 mm) above the array antenna. The
total area was 330× 330 mm2, and the interval between the sample points was set as 10 mm.
The total number of sample points extracted was 34× 34. The data were extracted from a
computer environment with Intel i5-9400F CPU and 16 GB RAM, and approximately 9.2 s
was required for each datum.
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Figure 2. Near-field data extraction simulation environment in CST MWS.

3. Experiments with Simulation-Based Data

The experiments were conducted on a PC equipped with a 3.6 GHz CPU (Intel
core i7-7820X), 128 GB RAM, and NVIDIA Quadro P6000 GPU, and CNN models were
implemented and learned using MATLAB Deep Learning Toolbox. The datasets were
divided and used for training, validation, and testing in the ratio of 7:1:2, respectively. For
classification, Alexnet was used as the pre-trained network, and for regression, Alexnet
and Resnet-50 were used as the pre-trained networks.

3.1. Classification of Normal/Abnormal Operations of Array Antenna

First, uniform excitation of the array antenna (0.9 < amplitude ≤ 1, −10◦ < phase <
10◦ for all port excitation signals) was assumed to be its normal operation, and all other
cases were assumed to be abnormal (See Table 2). An example of the near field according
to the conditions is shown in Figure 3. For the near-field image, only the co-polarization
component of the antenna was used. The amplitude of the near field was normalized to the
maximum value when the uniform signals were excited to all ports, and the amplitude and
the phase distribution image were arranged in parallel (left: amplitude, right: phase) as
input image data. A total of 10,000 data were obtained by extracting 5000 normal data and
5000 abnormal data. The stochastic gradient descent method was used as the optimization
algorithm, and the learning rate was set as 0.001. A maximum of 100 epochs were trained,
and the batch size was set as 128.

Table 2. Normal/abnormal classification criteria for array antennas.

Normal When 0.9 < amplitude ≤ 1, –10◦ < phase < 10◦ for all port excitation signals

Abormal When 0.9 < amplitude ≤ 1, −10◦ < phase < 10◦ for any port excitation signal
is not satisfied

(a) (b)

Figure 3. Examples of near-field data in case of (a) normal and (b) abnormal operations.

The total training time was 1 h 07 min 46 s, and the accuracy of the network for 2000 test
data was 99.6% (1992/2000). The minimum number of sample data for normal/abnormal
diagnosis was determined by reducing the data for each class at the same rate. Table 3
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shows a comparison of the accuracy and execution time of the trained network by the
number of sample data while maintaining the training option. The accuracy reaches
approximately 99% or more, and the minimum number of sample data that achieves 99%
accuracy is 1000. Therefore, for normal/abnormal diagnosis of the 4× 4 array antenna, the
accuracy of the network can be ensured with only 1000 sample data.

Table 3. Normal/abnormal diagnosis result of array antenna by number of sample data.

Number of Sample Data

500 1000 3000 5000 10,000

Accuracy 86.0% 99.0% 99.5% 99.2% 99.6%

Execution time 0 h 03 m 09 s 0 h 07 m 10 s 0 h 21 m 15 s 0 h 35 m 22 s 1 h 07 m 46 s

3.2. Classification of the Failure of Specific Port of Array Antenna

Specific failure port diagnosis of the array antenna was conducted in the same envi-
ronment as that for its normal/abnormal diagnosis. The excitation signal of a specific port
was assumed to be normal when the amplitude exceeded 0.9 and the phase ranged from
−10◦ to 10◦, and when all ports satisfied the normal condition, the case was assumed to be
passed. When many ports were assumed to fail, the number of cases became extremely
large. Thus, data were extracted by assuming failure for only one port; the network has
17 classification classes. The details are provided in Table 4. Examples of the near-field
distribution for a specific port failure are shown in Figure 4. A total of 19,000 samples were
obtained by extracting 3000 sample data for the pass case and 1000 samples for each 16
failure port cases.

Table 4. Specific port failure classification criteria for array antennas.

Port 1 Port 2 Port 3 Port 4 . . . Port 16

Pass Normal Normal Normal Normal . . . Normal

Port 1 Failure Abnormal Normal Normal Normal . . . Normal

Port 2 Failure Normal Abnormal Normal Normal . . . Normal

. . . . . . . . . . . . . . . . . . . . .

Port 16 Failure Normal Normal Normal Normal . . . Abnormal

The total training time was 2 h 15 min 57 s, and the accuracy of the specific failure
port diagnosis network for 3800 test data was 95.24% (3619/3800). While reducing the
pass and failure data for each port at the same rate, the minimum number of sample data
that can diagnose a specific failure device was obtained. To this end, the training option
was maintained, and the accuracy of the trained network by the number of sample data
was compared (see Table 5). The accuracy reached approximately 95% or more, and the
minimum number of sample data that achieved 95% accuracy was 10,000.

Table 5. Specific port failure diagnosis results for array antenna by number of sample data.

Number of Sample Data

3000 5000 10,000 15,000 19,000

Accuracy 91.04% 92.11% 95.00% 94.60% 95.24%

Execution time 0 h 18 m 47 s 0 h 31 m 55 s 1 h 04 m 46 s 1 h 37 m 07 s 2 h 15 m 57 s
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Figure 4. Dataset configuration of specific port failure diagnosis.

3.3. Regression of Excitation Signal Amplitude and Phase of Array Antenna

The assumption of failure of each port for the diagnosis of the 4× 4 array antenna is
very difficult to reflect in reality, owing to the numerous combinations. Therefore, directly
predicting the amplitude and phase of the excitation signal applied to each array antenna
port is an understandable solution for diagnosing the array antenna. For this, training was
conducted by implementing a regression network for predicting the amplitude and phase
of the excitation signal applied to each port. This regression network predicts excitation
amplitudes and phases for 16 ports, i.e., values for a total of 32 variables. The extraction
environment of the near-field data was similar to that in the classification case. Signals
with a random amplitude between 0 and 1 and a random phase between 0 and 360◦ were
excited to 16 ports. Examples of extracted near-field data are shown in Figure 5.
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Figure 5. Examples of near-field data based on random excited signal: (a) excitation amplitude of
ports for cases 1 and 2, (b) excitation phase of ports for cases 1 and 2, (c) near-field distribution in
case 1, and (d) near-field distribution in case 2.

A total of 30,000 data were extracted by linking CST MWS and MATLAB. Table 6 lists
the accuracies obtained using the test data in the trained regression network as the epoch
progresses. Here, accuracy refers to the proportion of the predicted values that are within
±5% of the true values. When a total of 9000 epochs are performed, the training time is
7 days, 16 h, 27 min, and 17 s. The accuracies for amplitude and phase almost converge
from 7000 epochs, and accuracies of approximately 95% and 98% are achieved for the
excited amplitude and the excited phase, respectively. In order to check the performance
of the trained network, the images of cases 1 and 2 shown in Figure 5c,d were applied
to the network to predict the amplitude and phase of the signal. Table 7 is a comparison
between the true values and the predicted values of cases 1 and 2 applied to the trained
regression network. It can be seen that the predicted values are close to the true values.
Thus, using this transfer learning method will lead to accurate diagnosis and calibration of
array antennas.

Table 6. Training results for the excited signal prediction regression network (6000 test data).

Epochs

4000 5000 6000 7000 8000 9000

Accuracy (%)
Amp. 85.61 88.21 91.20 95.68 96.30 96.20

Phase 92.69 94.21 96.33 98.30 98.97 98.65

Execution time 3 d 8 h
53 m 21 s

4 d 05 h
36 m 24 s

5 d 1 h
43 m 03 s

5 d 22 h
33 m 13 s

6 d 19 h
33 m 10 s

7 d 16 h
27 m 17 s
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Table 7. Comparison between true values and predicted values of cases 1 and 2 applied to regression
trained network.

Port Number

Case 1 Case 2

Amplitude Phase (deg) Amplitude Phase (deg)

True Pred. True Pred. True Pred. True Pred.

1 0.74 0.78 268 274 0.97 0.93 56 56

2 0.38 0.43 202 198 0.93 0.91 110 120

3 1.00 0.99 52 47 0.55 0.58 265 273

4 0.20 0.16 228 246 0.29 0.24 216 231

5 0.15 0.13 226 209 0.23 0.27 213 227

6 0.80 0.79 305 319 0.77 0.79 328 322

7 0.97 0.98 325 340 0.22 0.22 182 189

8 0.92 0.90 44 55 0.44 0.45 285 274

9 0.77 0.78 29 15 0.35 0.32 290 273

10 0.43 0.45 195 186 0.42 0.42 234 243

11 0.05 0.02 304 298 0.81 0.86 216 216

12 0.96 0.92 20 26 0.03 0.03 107 106

13 0.16 0.14 287 274 0.23 0.23 348 3

14 0.14 0.12 4 12 0.91 0.88 332 336

15 0.72 0.71 106 92 0.84 0.84 234 238

16 0.95 0.95 79 85 0.83 0.84 63 76

3.4. Regression Using Sampling Line of E-Field Data to Reduce the Number of Near-Field
Measurement Points

In this study, array antenna diagnosis by transfer learning was conducted by extracting
near-field data from the area surrounding the array antenna at a distance of 1λ from a
distance of 3λ above the array antenna. However, actual measurements of the near field of
the corresponding area require at least several minutes to several tens of minutes. Although
the measurement time can be shortened by mechanical improvement of the scanner, there
are limitations if the area to be measured is wide. Therefore, we aim to implement a neural
network that can diagnose an array antenna using only a few sampling lines without
performing near-field measurements for the entire area. As shown in Figure 6, only e-fields
of a total of 14 lines were sampled from those of the 34× 34 points used in the present
training. The data were reconstructed into a 14× 34 array, and regression was performed
on the excited amplitude and phase of the 4× 4 array antenna. Similar to using the near
field of the entire area, signals with a random amplitude between 0 and 1 and a random
phase of 0 to 360◦ were excited to 16 ports.
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Sampling lines
▪ 7 horizon lines
▪ 7 vertical lines
▪ 34 points per line

Figure 6. Position of sampling line in the near field.

A total of 30,000 data were used in the regression network, which is similar to the case
of using the entire area. Table 8 compares the accuracies obtained using the test data in the
trained regression network using a sampling line as the epoch progresses. When a total
of 15,000 epochs are performed, the training time is 9 days, 21 h, 41 min, and 49 s. The
accuracies almost converge from 13,000 epochs onward, and accuracies of approximately
91% and 96% are achieved for the excited amplitude and the excited phase, respectively.
Although the number of near-field points is reduced by more than 58% from the previous
34× 34 (1156 points) to 14× 34 (476 points), more than 91% accuracy is attained in the
prediction of the excited signal of the array antenna.

Table 8. Training results for excited signal prediction regression network using sampling line data
(6000 test data, pre-trained network: Alexnet).

Epochs

5000 7000 9000 11,000 13,000 15,000

Accuracy (%)
Amp. 63.58 72.49 77.88 83.91 91.01 90.56

Phase 70.63 81.26 85.54 91.08 96.22 95.97

Execution time 3 d 14 h
0 m 36 s

4 d 23 h
33 m 21 s

5 d 16 h
58 m 55 s

7 d 02 h
29 m 38 s

8 d 12 h
06 m 41 s

9 d 21 h
41 m 49 s

Table 9 lists the results of the regression network trained in the same environment as
above using Resnet-50 as the pre-trained network for comparison according to the type of
pre-trained network. When Resnet-50, which is more stable than Alexnet, is used as the
pre-trained network, the convergence of the network accuracy occurs in a shorter time than
with Alexnet. However, using Alexnet as the pre-trained network leads to slightly higher
accuracy than Resnet-50.

Table 9. Training results for excited signal prediction regression network using sampling line data
(6000 test data, pre-trained network: Resnet-50).

Epochs

1000 1500 2000 2500

Accuracy (%)
Amp. 81.28 92.82 91.05 92.12

Phase 79.8 93.47 91.91 92.54

Execution time 3 d 11 h
06 m 19 s

5 d 04 h
30 m 43 s

6 d 22 h
07 m 24 s

8 d 15 h
21 m 54 s
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4. Validation of Diagnosis Network Using Measurements

Measurements were conducted to validate the proposed near-field-based array an-
tenna diagnosis using transfer learning. The tested array antenna and the measurement
environment are shown in Figure 7a,b, respectively. Figure 7c shows the reflection coef-
ficient characteristics of the tested 4× 4 array antenna. It consists of four 1× 4 series-fed
array antennas, which are designed and manufactured to operate in the 5G sub-6 GHz
band at 3.55 GHz. Figure 7d displays the shape and S-parameter characteristics of the
1× 4 power divider for feeding the tested antenna. It is a Wilkinson power divider, and
examination of the S-parameter characteristics shows that it distributes the same power of
approximately −7.1 dB at 3.55 GHz to the four ports, and the phases of all ports are similar.
For verifying the performance of the fabricated array antenna by near-field measurements,
four output ports of the 1× 4 power divider and four input ports of the antenna were
connected using cables. As the near-field probe, a dielectric rod waveguide probe with
low-scattering characteristics was used [17]. The measurement area was 370× 370 mm2,
the sampling interval was 10 mm, and the total sampling point was 37× 37. To examine
the accuracy of the measurements by the near-field probe, a uniform amplitude and phase
were supplied to the four input ports of the array antenna, and the measurement was made
assuming normal operation. The measured and simulated results are shown in Figure 8.
Noticeably, the simulation and measurement distributions are similar.
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Figure 7. (a) Configuration of tested array antenna and measurement information, (b) measurement
environment, (c) measured reflection coefficients of array antenna, and (d) measured S-parameters of
1× 4 Wilkinson power divider.
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Figure 8. Near-field distribution when applying uniform excitation to ports: (a) simulated amplitude,
(b) simulated phase, (c) measured amplitude, and (d) measured phase.

Different from the 16-port antenna analyzed by transfer learning, the tested array
antenna consists of a 1× 4 series feed antenna and is implemented with four ports. Im-
plementation of an array antenna with 16 ports would exponentially increase the number
of failure scenarios for each port, making verification by measurement difficult; therefore,
an array antenna with four input ports is used. Training for the array antenna diagno-
sis by measurements was conducted separately. Classes were categorized for a total of
16 cases, assuming normal/abnormal operation for each of the four ports, and training was
conducted using 1000 data for each class in the similar environment as in the previous clas-
sification. Finally, 98.13% accuracy was achieved with 3200 simulation-based test data. By
measuring under various scenarios of array antenna feeding, array antenna diagnosis using
a trained network was verified. The scenarios for array antenna diagnosis were assumed by
terminating or connecting cables to each input port of the array antenna. The classification
of the measurement condition is shown in Table 10. A total of 30 measurements were
performed, and the trained network succeeded in discriminating 29 cases and showed
an accuracy of 96.67%. The details of the classification network for measurement-based
verification are shown in Table 11. These results verify that array antenna diagnosis by
transfer learning is feasible.
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Table 10. Classification criteria for measurement conditions.

Measurement Condition
Classification

Cable Extension Termination

Measurement #1 X X Pass

Measurement #2 X Port 1 Port 1 Failure

Measurement #3 Port 3 Port 1 Port 1, 3 Failure

Measurement #4 Port 2, 3 X Port 2, 3 Failure

. . . . . . . . . . . .

Measurement #30 Port 1, 3 Port 2, 4 Port 1, 2, 3, 4 Failure

Table 11. Details of a classification network for measurement-based validation.

Classification Network for Measurement-Based Verification

Applied pre-trained network Alexnet

Number of sample data 16,000 total data (1000 data per class)

Max epochs 1000

Execution time 1 h 50 m 46 s

Accuracy on simulation-based test data 98.13% (3140/3200)

Accuracy on measurement data 96.67% (29/30)

5. Conclusions

In this study, near-field-based array antenna diagnosis was performed using trans-
fer learning. For a 5G sub-6 GHz band 4× 4 array antenna, a network capable of nor-
mal/abnormal and specific failure port classifications was implemented, and 99.6% and
95.24% accuracies were achieved, respectively. To improve the accuracy of the array
antenna diagnosis, a regression network that predicts the amplitude and phase of the
4× 4 array antenna excitation signal was implemented, and the obtained accuracies of the
amplitude and phase were 96.2% and 98.65%, respectively. In addition, the array antenna
diagnosis by transfer learning was verified by measurements. When the measured data
were discriminated using the trained network, accurate discrimination was achieved in 29
out of 30 cases, validating that the array antenna could be diagnosed by transfer learning.
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