Space–Time Trade-Off of Precursory Seismicity in New Zealand and California Revealed by a Medium-Term Earthquake Forecasting Model
Abstract
:1. Introduction
2. EEPAS Forecasting Model
3. Method
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerstenberger, M.; McVerry, G.; Rhoades, D.; Stirling, M. Seismic Hazard Modeling for the Recovery of Christchurch. Earthq. Spectra 2014, 30, 17–29. [Google Scholar] [CrossRef]
- Gerstenberger, M.C.; Rhoades, D.A.; McVerry, G.H. A Hybrid Time-Dependent Probabilistic Seismic-Hazard Model for Canterbury, New Zealand. Seismol. Res. Lett. 2016, 87, 1311–1318. [Google Scholar] [CrossRef]
- Jordan, T.; Chen, Y.; Gasparini, P.; Madariaga, R.; Main, I.; Marzocchi, W.; Papadopoulos, G.; Sobolev, G.; Yamaoka, K.; Zschau, J. Operational Earthquake Forecasting: State of Knowledge and Guidelines for Utilization. Ann. Geophys. 2011, 54, 316–391. [Google Scholar]
- Rikitake, T. Earthquake Prediction and Warning. Interdiscip. Sci. Rev. 1978, 3, 58–70. [Google Scholar] [CrossRef]
- UNESCO; International Symposium on Earthquake Prediction. Earthquake prediction. In Proceedings of the International Symposium on Earthquake Prediction, Tokyo, Japan, 1984; UNESCO: Paris, France.
- Kossobokov, V.G.; Maeda, K.; Uyeda, S. Precursory Activation of Seismicity in Advance of the Kobe, 1995, M = 7.2 Earthquake. Pure Appl. Geophys. 1999, 155, 409–423. [Google Scholar] [CrossRef]
- Gulia, L.; Wiemer, S. Real-time discrimination of earthquake foreshocks and aftershocks. Nature 2019, 574, 193–199. [Google Scholar] [CrossRef]
- Zavyalov, A. Medium-term prediction of earthquakes from a set of criteria: Principles, methods, and implementation. Russ. J. Earth Sci. 2005, 7, 51–73. [Google Scholar] [CrossRef]
- Holliday, J.R.; Chen, C.-C.; Tiampo, K.F.; Rundle, J.B.; Turcotte, D.L.; Donnellan, A. A RELM Earthquake Forecast Based on Pattern Informatics. Seismol. Res. Lett. 2007, 78, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Chorozoglou, D.; Iliopoulos, A.; Kourouklas, C.; Mangira, O.; Papadimitriou, E. Earthquake Networks as a Tool for Seismicity Investigation: A Review. Pure Appl. Geophys. 2019, 176, 4649–4660. [Google Scholar] [CrossRef]
- Evison, F.; Rhoades, D. Precursory scale increase and long-term seismogenesis in California and Northern Mexico. Ann. Geophys. 2002, 45, 479–495. [Google Scholar]
- Evison, F.F.; Rhoades, D.A. Demarcation and Scaling of Long-term Seismogenesis. Pure Appl. Geophys. 2004, 161, 21–45. [Google Scholar] [CrossRef]
- Rhoades, D.A.; Evison, F.F. Long-range Earthquake Forecasting with Every Earthquake a Precursor According to Scale. Pure Appl. Geophys. 2004, 161, 47–72. [Google Scholar] [CrossRef]
- Aki, K. A new view of earthquake and volcano precursors. Earth Planets Space 2004, 56, 689–713. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, D.A. Long-range earthquake forecasting allowing for aftershocks. Geophys. J. Int. 2009, 178, 244–256. [Google Scholar] [CrossRef]
- Rhoades, D.A. Lessons and Questions from Thirty Years of Testing the Precursory Swarm Hypothesis. Pure Appl. Geophys. 2010, 167, 629–644. [Google Scholar] [CrossRef]
- Christophersen, A.; Rhoades, D.A.; Colella, H.V. Precursory seismicity in regions of low strain rate: Insights from a physics-based earthquake simulator. Geophys. J. Int. 2017, 209, 1513. [Google Scholar] [CrossRef]
- Richards-Dinger, K.; Dieterich, J.H. RSQSim Earthquake Simulator. Seismol. Res. Lett. 2012, 83, 983–990. [Google Scholar] [CrossRef]
- Shaw, B.E.; Milner, K.R.; Field, E.H.; Richards-Dinger, K.; Gilchrist, J.J.; Dieterich, J.H.; Jordan, T.H. A physics-based earthquake simulator replicates seismic hazard statistics across California. Sci. Adv. 2018, 4, eaau0688. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, D.A.; Rastin, S.J.; Christophersen, A. The Effect of Catalogue Lead Time on Medium-Term Earthquake Forecasting with Application to New Zealand Data. Entropy 2020, 22, 1264. [Google Scholar] [CrossRef] [PubMed]
- Daley, D.J.; Vere-Jones, D. An Introduction to the Theory of Point Processes; Springer: Berlin/Heidelberg, Germany; Volume II, 2008. [Google Scholar]
- Ogata, Y.; Zhuang, J. Space–time ETAS models and an improved extension. Tectonophysics 2006, 413, 13–23. [Google Scholar] [CrossRef]
- Vere-Jones, D. Probabilities and information gain for earthquake forecasting. In Selected Papers From Volume 30 of Vychislitel’naya Seysmologiya; 2003; pp. 104–114. [Google Scholar]
- Rhoades, D.A.; Schorlemmer, D.; Gerstenberger, M.C.; Christophersen, A.; Zechar, J.D.; Imoto, M. Efficient testing of earthquake forecasting models. Acta Geophys. 2011, 59, 728–747. [Google Scholar] [CrossRef]
- Evison, F.; Rhoades, D. Long-term seismogenesis and self-organized criticality. Earth Planets Space 2004, 56, 749–760. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Saleur, H.; Sammis, C.; Sornette, D. Precursors, aftershocks, criticality and self-organized criticality. Europhys. Lett. 1998, 41, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Kossobokov, V.G. Earthquake prediction: Basics, achievements, perspectives. Acta Geod. Geophys. Hungarica 2004, 39, 205–221. [Google Scholar] [CrossRef]
- Schneider, M.R.; Clements, R.; Rhoades, D.; Schorlemmer, D. Likelihood- and residual-based evaluation of medium-term earthquake forecast models for California. Geophys. J. Int. 2014, 198, 1307–1318. [Google Scholar] [CrossRef] [Green Version]
- Rhoades, D.A.; Christophersen, A.; Gerstenberger, M.C.; Liukis, M.; Silva, F.; Marzocchi, W.; Werner, M.J.; Jordan, T.H. Highlights from the First Ten Years of the New Zealand Earthquake Forecast Testing Center. Seismol. Res. Lett. 2018, 89, 1229–1237. [Google Scholar] [CrossRef]
- Zechar, J.D.; Schorlemmer, D.; Liukis, M.; Yu, J.; Euchner, F.; Maechling, P.J.; Jordan, T.H. The Collaboratory for the Study of Earthquake Predictability perspective on computational earthquake science. Concurr. Comput. Pract. Exp. 2010, 22, 1836–1847. [Google Scholar] [CrossRef]
Parameter | Details | NZ EEPAS-1F | California EEPAS-1F |
---|---|---|---|
Minimum precursor magnitude | 2.95 * | 2.95 * | |
Minimum target magnitude | 4.95 * | 4.95 * | |
Maximum target magnitude | 10.05 *,! | 10.05 *! | |
Gutenberg–Richter b-value | 1.16 † | 1.0 † | |
Equation (3) | 1.10 † | 1.74 † | |
Equation (3) | 1.0 * | 1.0 * | |
Equation (3) | 0.35 † | 0.60 † | |
Equation (4) | 1.44 † | 2.11 † | |
Equation (4) | 0.43 † | 0.40 † | |
Equation (4) | 0.53 † | 0.43 † | |
Equation (5) | 0.37 † | 0.35 † | |
Equation (5) | 1.16 † | 0.88 † | |
μ | Equation (8) | 0.18 † | 0.27 † |
NZ EEPAS-1F | California EEPAS-1F |
---|---|
0.34 | 0.26 |
0.41 | 0.31 |
0.49 | 0.37 |
0.58 | 0.44 |
0.69 | 0.53 |
0.82 | 0.97 |
0.97 | 0.74 |
1.16 † | 0.88 † |
1.38 | 1.05 |
1.64 | 1.25 |
1.95 | 1.49 |
2.32 | 1.77 |
2.75 | 2.10 |
3.27 | 2.50 |
3.89 | 2.98 |
NZ EEPAS-1F | California EEPAS-1F |
---|---|
2.49 | 3.16 |
2.34 | 3.01 |
2.19 | 2.86 |
2.04 | 2.71 |
1.89 | 2.56 |
1.74 | 2.41 |
1.59 | 2.26 |
1.44 † | 2.11 † |
1.29 | 1.96 |
1.14 | 1.81 |
0.99 | 1.66 |
0.84 | 1.51 |
0.69 | 1.36 |
0.54 | 1.21 |
0.39 | 1.06 |
Parameter | Value |
---|---|
2.95 * | |
4.95 * | |
10.05 * | |
1.16 † | |
1.00 † | |
1.0 * | |
0.32 * | |
1.40 † | |
0.40 * | |
0.23 * | |
0.35 * | |
1.74 † | |
μ | 0.24 † |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastin, S.J.; Rhoades, D.A.; Christophersen, A. Space–Time Trade-Off of Precursory Seismicity in New Zealand and California Revealed by a Medium-Term Earthquake Forecasting Model. Appl. Sci. 2021, 11, 10215. https://doi.org/10.3390/app112110215
Rastin SJ, Rhoades DA, Christophersen A. Space–Time Trade-Off of Precursory Seismicity in New Zealand and California Revealed by a Medium-Term Earthquake Forecasting Model. Applied Sciences. 2021; 11(21):10215. https://doi.org/10.3390/app112110215
Chicago/Turabian StyleRastin, Sepideh J., David A. Rhoades, and Annemarie Christophersen. 2021. "Space–Time Trade-Off of Precursory Seismicity in New Zealand and California Revealed by a Medium-Term Earthquake Forecasting Model" Applied Sciences 11, no. 21: 10215. https://doi.org/10.3390/app112110215
APA StyleRastin, S. J., Rhoades, D. A., & Christophersen, A. (2021). Space–Time Trade-Off of Precursory Seismicity in New Zealand and California Revealed by a Medium-Term Earthquake Forecasting Model. Applied Sciences, 11(21), 10215. https://doi.org/10.3390/app112110215