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Abstract: Supply-chain network design is a complex task because there are many decisions involved,
and presently, global networks involve many actors and variables, for example, in the automotive,
pharmaceutical, and electronics industries. This research addresses a supply-chain network design
problem with four levels: suppliers, factories, warehouses, and customers. The problem considered
decides on the number, locations, and capacities of factories and warehouses and the transportation
between levels in the supply chain. The problem is modeled as a mixed-integer linear program. The
main contribution of this work is the proposal of two matheuristic algorithms to solve the problem.
Matheuristics are algorithms that combine exact methods and heuristics, attracting interest in the
literature because of their fast execution and high-quality solutions. The matheuristics proposed to
select the warehouses and their capacities following heuristic rules. Once the warehouses and their
capacities are fixed, the algorithms solve reduced models using commercial optimization software.
Medium and large instances were generated based on a procedure described in the literature. A
comparison is made between the algorithms and the results obtained, solving the model with a time
limit. The algorithms proposed are successful in obtaining better results for the largest instances in
shorter execution times.

Keywords: matheuristic; multimodal transport; supply-chain network design; decomposition

1. Introduction

An optimal supply chain is a fundamental part of any company’s success; a good
design and administration represent a competitive advantage or even a requirement for
market participation. Supply chains represent a large part of a company’s assets. Addition-
ally, costs or savings are dependent on their design. Among the advantages obtained by
a good design of the supply chain are reduced purchase costs, reduced production costs,
increased company profits, reduced investment in fixed costs, and increased cash flow,
among others.

In the end, the main objective of a supply chain is to provide an efficient way to
supply the products to the client at the lowest possible cost (Council of Supply-Chain
Management Professionals (CSCMP), 2019). However, within a supply chain, a large
number of costs are incurred. Additionally, within large companies, supply chains are
becoming increasingly complex. Knowing which is the best option among all the possible
combinations becomes quite a complex task. The global production and distribution
networks involve many actors and variables, exploding the combinatorial nature of the
decisions involved, especially when more characteristics are considered, such as location,
transportation, inventory, product architecture, or sustainability considerations. These
networks exist in industries such as pharmaceutical, automotive, and electronic products,
with suppliers, plants, and customers in different continents.
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One way to address the decision-making problem in the design of supply chains has
been to propose optimization models based on mathematical programming. As long as
computers increase power, it has been possible to solve more complex models involving
more elements. However, the mixed-integer linear programming models that have been
widely used in the optimization of the supply chain are mostly NP-hard [1], making it
impossible to obtain optimal solutions in reasonable times for instances of size similar to
those found in real problems. Fortunately, the ability of computers to calculate results for
different scenarios brought the opportunity to use heuristics and randomness to help in
the construction of solutions for NP-hard combinatorial problems. The first results showed
that although these solutions had variable and worse quality than those obtained with
exact methods, the computational effort required shorter times. With the goal of improving
the quality of these solutions, the research on metaheuristic algorithms was born. Many
advances were achieved with algorithms such as simulated annealing, tabu search, ant
colony optimization, genetic algorithms, and others. Recently, new algorithms are being
proposed, combining heuristics and exact mathematical programming methods, known
as matheuristics. The research in this field is new, and the goal is to combine the speed
of processing using heuristic components with the quality obtained with exact methods.
Thus, the main contribution of the work presented in this paper is to advance in the
research of matheuritics, proposing two algorithms to solve a complex problem efficiently
for supply-chain network design with good quality solutions in a reasonable time.

In this work, a supply-chain network design (SCND) problem will be presented, where
a literature review of both the problem and the methods of solution are shown first; then,
the problem is described in detail. A mixed-integer linear programming model is presented,
and the matheuristics are used to solve the same problem. The instances presented range
from 100 to 200 clients, and the results of the mixed-integer linear programming model will
be analyzed and compared with those of the matheuristic algorithms proposed. Finally,
the conclusions will be presented in the last section.

2. Literature Review

This section will describe some of the literature, first related to the problem of supply-
chain network design, and later, related to matheuristics, commenting about the gap
covered by the research presented in this paper.

Pirkul and Jayaraman [2] created a model called PLANWAR, which focused on
optimizing the supply chain through a heuristic to decide on the opening of plants and
warehouses and the flow between them. However, the model does not handle different
levels of capacity between facilities nor multimodal transportation.

Wu et al. [3] solved the supply-chain planning problem where the same product can
be produced in multiple facilities, but their work focuses more on analyzing different
algorithms and the complexity of each one of them. In their problem of supply-chain
design, Eskigun et al. [4] consider delivery times and transportation modes, but their work
focuses mainly on outbound logistics and is not multi-tier.

Sadjady and Davoudpour [5] solved a multi-product supply-chain problem using a
mixed-integer linear programming model in which the opening of facilities is decided,
as well as the level of capacity and the mode of transport of flows between levels of the
supply-chain. However, the work takes into account only finished products. Olivares-
Benitez et al. [6] focus on optimizing the transportation of a two-tier supply chain, calcu-
lating the flow and time between facilities using bi-objective optimization. The problem
addressed in this work is for a single product. Rahmaniani and Ghaderi [7] developed
a mixed-integer linear programming model and a heuristic based on the evolutionary
algorithm of the firefly, where transport and construction costs are taken into account,
but their solution method focuses on problems in telecommunications or power distribu-
tion companies.

Bertazzi et al. [8] developed min-max methods and a heuristic to solve the multi-tier
inventory problem taking into account purchasing, manufacturing, and transportation
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costs, but they do not address the issue of opening of facilities. Additionally, they do not
take into account the bill of materials.

Many more recent models address the problem of supply-chain network design with
different considerations, for example, ref. [9] describe a problem with environmental
and financial considerations, or [10] analyze a model considering inventory decisions
besides the classic decisions for location and transportation. However, the research in the
literature is far from a general model for supply-chain network design that includes all the
situations, variables, and decisions. Our purpose was to analyze a problem with a high
level of complexity to be a challenge for new methods of solution. In particular, very few
models consider the product architecture represented in the bill of materials. One of the
reasons is that introducing this element creates an explosion in the number of variables and
interactions, making it very hard to solve even small instances. As can be observed in the
literature presented, the most used solution methods are based on metaheuristics because
of the computational complexity of the models used. We are proposing new methods of
solution into the field of matheuristics, which rarely has been used in SCND.

The term matheuristic is relatively new; the term began to be used between 2008 and
2009. Maniezzo et al. [11] talk about the hybridization that can exist between mathematical
programming and metaheuristics. Fischetti and Fischetti [12] explain that matheuristics
exploit heuristics and metaheuristics to improve and facilitate the mixed-integer pro-
gramming (MIP) model. They show three applications: optimization of layout, packaging,
and routing. Moreover, there is a rising interest in these hybrid methods, demonstrated by a
growing literature and specialized tutorials in operations research [13]. Matheuristics have
been applied to different decision-making problems, for example in routing [14], produc-
tion planning [15], lot sizing [16], and risk management [17], among others. However, we
found in the literature few applications of matheuristics to supply-chain network design.

Boschetti et al. [18] solve a Single-Source Capacitated Facility Location problem
(SCFLP) using different matheuristics. Raa et al. [19] use a matheuristic to solve their
aggregate production-distribution problem, but the work is focused on mould-sharing
between factories. Tautenhain et al. [20] use the combination of a heuristic called MathFix
and a matheuristic called AugMathFix to solve a bi-objective model for sustainable supply-
chain design. However, the model has only two tiers: suppliers-plant and plant-clients.
Cantú et al. [21] propose a matheuristic for the design of sustainable hydrogen supply
chains using a multi-objective perspective, but the model is focused on a single product
and transportation mode. Souto et al. [22] propose a matheuristic algorithm to solve the
problem of supply-chain network design only with two levels, a single transportation
mode, and a single product.

Table 1 describe the features for the literature presented in this section. It can be
noted that the problem we are solving in this work has a higher level of complexity than
other problems solved in the literature using matheuristics. The elements that add this
complexity beyond the classic decisions on location and transportation are: a hierarchical
product architecture as described by a bill of materials, different capacities in the facilities,
and different available transportation modes. The complexity of the problem represents a
challenge for any solution method, and is a good choice to demonstrate the efficiency of
the matheuristic algorithms proposed.
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Table 1. Description the features for the literature presented.

Facilities
Opening

Transportation
Cost

Multi-Mode
Transportation Multi-Product BOM 4-Levels Facility

Capacity Levels Matheuristics

[2] X X

[3] X X X

[4] X X

[5] X X X X X

[6] X X X

[7] X X X X

[18] X X X

[19] X X

[20] X X X X X

[21] X X X X X X

[22] X X X

Our proposal,
based on

[23]
X X X X X X X X

3. Problem Description

This paper addresses the problem of designing a four-tier multi-product supply-chain
network (SCND): suppliers, factories, warehouses, and customers (Figure 1). The number
and locations of plants and warehouses must be chosen from a set of potential plants and
warehouses, respectively, and the capacity level of each factory and each warehouse must
be chosen from a set of predetermined capacity levels for each location. Each location with
each of its capacity levels has a fixed opening cost.

Figure 1. Representation of the supply chain posed in the problem.

Each of the materials can be supplied by a set of suppliers that have this material.
Each material has a different purchase price for each supplier. Materials are shipped to
factories, where they are converted into finished products. Each finished product has its
bill of materials (BOM), which states what materials are needed for each finished product
and how many units, so all the materials needed to produce a finished product will have to
be taken to the factory where it is produced. Figure 2, shows the representation of the BOM;
it exemplifies that to produce product p1, 4 units of material r1 and 3 units of material r2
are needed. The generic description is for any product p the necessary units of material r
are given by the parameter Arp.

Each product can be manufactured in a pre-established set of factories. Each of the
products has a manufacturing cost in each plant. Once the products are manufactured, they
can be taken to a set of pre-established warehouses. Finished products must be supplied
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to each customer in a single delivery; that is, products cannot be shipped to the customer
from two different warehouses.

Figure 2. Representation of the BOM of the products.

All materials and finished products can be transported by different transport methods for
each destination-origin pair, which can be the following: supplier-factory, factory-warehouse,
warehouse-customer. Each product or material has a transport cost for each means of transport
for each possible pair. Each means of transportation for each origin-destination pair has a
minimum quantity to be transported and a maximum transport capacity.

Each supplier has a maximum capacity to supply each material. Each product occu-
pies a different manufacturing or storage capacity. Each factory has a maximum production
capacity for each product, a total maximum production capacity, and a minimum pro-
duction capacity so that the factory can be opened for each of its capacity levels. Each
warehouse has a maximum storage capacity and a minimum of storage to be opened.

The objective of the supply-chain design is to minimize the sum of the fixed cost by
opening factories and warehouses, the total purchasing costs, the total manufacturing costs,
and the total transportation costs.

This supply-chain design can be applied to global networks of manufacturing and
distribution in industries such as pharmaceutics, automotive, and electronics. For example,
in the production of drugs, many ingredients can be blended, purchased from suppliers
in different countries, and distributed to customers in other continents using alternative
transportation modes. A potential example is to have suppliers in Asia, shipping materials
to plants in Europe to manufacture products, to be transported to markets in the US,
Canada, and Brazil. Similar cases can be devised to manufacture vehicles, tablets, cell
phones, computers, or vaccines.

Some assumptions of the model that may represent limitations to its applicability are:

1. It is a single-period problem that usually is applied to long-term planning.
2. The model is deterministic and is not considering variability, although being fast to

solve is useful for what-if analysis.
3. The model is not incorporating other operational and strategic elements such as

routing, sustainability, inventory, service level, etc.

4. MILP Model and Matheuristics
4.1. Mixed-Integer Linear Programming Model (MILP)

Following is the notation used for the MILP, based on the model of [23].

4.1.1. Decision Variables

Binary Variables

z f q =

{
1 if it is decided to open a factory w with a capacity level q, ( f ∈ F; q ∈ Q)
0 other case
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zwq =

{
1 if it is decided to open a warehouse w with a capacity level q, (w ∈W; q ∈ Q)
0 other case

vr
s f =

{
1 if material r is supplied to factory f by a supplier s, (s ∈ S; f ∈ F; r ∈ R)
0 other case

ut
od =


1 if origin o supplies destination d by mode of transport t,

((o, d) ∈ {(S, F) ∪ (F, W) ∪ (W, C)}; t ∈ T)
0 other case

Real Variables
xrt

s f : Amount of material r that is supplied by supplier s to factory f by mode of
transport t,

(s ∈ S; f ∈ F; r ∈ R; t ∈ T)
xpt

f w: Amount of product p that is sent from factory f to warehouse w by mode of
transport t,

( f ∈ F; w ∈W; p ∈ P; t ∈ T)

4.1.2. Objective Function

The objective function (1) is to minimize the sum of all the costs that we are taking into
account in the model. The first term adds the fixed costs of opening a factory, the second,
the fixed costs of opening a warehouse, the third the purchase and transportation costs
from the supplier to the factories of the materials, the fourth, the cost of manufacturing
and transportation from the factories to the warehouses and the fifth the transportation
from the warehouses to the customers.

Min ∑
f∈F

∑
q∈Q

FC f qz f q + ∑
w∈W

∑
q∈Q

FCwqzwq + ∑
r∈R

∑
s∈Sr

∑
f∈F

∑
t∈Ts f

(PCr
s + TCrt

s f )xrt
s f +

∑
p∈P

∑
f∈Fp

∑
w∈Wp

∑
t∈Tf w

(MCp
f + TCpt

f w)xpt
f w + (1)

∑
p∈P

∑
c∈Cp

∑
w∈Wp

∑
t∈Twc

DEMp
c TCpt

wcut
wc

4.1.3. Constraints

Supplier constraints
Constraint (2) limits the order quantity to a material supplier’s maximum capacity,

constraint (3) prevents a factory ordering a specific material from more than one supplier
and constraint (4) ensures that not only can the material be transported from a supplier to
a factory if we select that supplier.

∑
f∈F

∑
t∈Ts f

xrt
s f ≤ SQRr

s r ∈ R, s ∈Sr (2)

∑
s∈Sr

vr
s f ≤ 1 r ∈ R, f ∈ F (3)

∑
t∈Ts f

xrt
s f ≤ SQRr

svr
s f r ∈ R, s ∈Sr, f ∈ F (4)

Factory and warehouse constraints
Constraint (5) ensures that each potential location can only be opened with one level

of capacity. Constraint (6) ensures that the amount of material ordered from the supplier
is exactly what is needed to produce the finished products. Constraints (7) and (8) limit
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production to the minimum and maximum quantities in general of each factory and also
limit the maximum capacity per product, respectively. Finally, constraint (9) imposes the
lower and upper limits of storage in each warehouse.

∑
q∈Q

zlq ≤ 1 l ∈ F ∪W (5)

∑
s∈Sr

∑
t∈Ts f

xrt
s f = ∑

p∈Pr
∑

w∈Wp
∑

t∈Tf w

Arpxpt
f w (6)

∑
q∈Q

MQ f qz f q ≤ ∑
p∈P

∑
w∈Wp

∑
t∈Tf w

MQUpxpt
f w ≤ ∑

q∈Q
MQ f qz f q f ∈ F (7)

∑
w∈Wp

∑
t∈Tf w

MQUpxpt
f w ≤ ∑

q∈Q
MQPp

f qz f q p ∈ P, f ∈ F (8)

∑
q∈Q

SQwqzwq ≤ ∑
p∈P

∑
c∈Cp

∑
t∈Twc

SQUpDEMp
c ut

wc ≤ ∑
q∈Q

SQwqzwq w ∈W (9)

Customer and flow retention constraints
Constraint (10) ensures that a customer is only dispatched from a warehouse and

constraint (11) ensures that the quantity of product that reaches customers is the same as
that which reaches the warehouses.

∑
w∈W

∑
t∈Twc

ut
wc = 1 c ∈ C (10)

∑
c∈Cp

∑
t∈Twc

DEMp
c ut

wc = ∑
f∈Fp

∑
t∈Tf w

xpt
f w p ∈ P, w ∈W (11)

Transport related constraints
Constraints (12)–(14) limit the minimum and maximum quantities to transport be-

tween origins and destinations.

TQt
s f ut

s f ≤ ∑
r∈R

TQUrtxrt
s f ≤ TQt

s f ut
s f s ∈ S, f ∈ F, t ∈ Ts f (12)

TQt
f wut

f w ≤ ∑
p∈P

TQUptxpt
f w ≤ TQt

f wut
f w f ∈ F, w ∈W, t ∈ Tf w (13)

TQt
wcut

wc ≤ ∑
p∈P

TQUptDEMp
c ut

wc ≤ TQt
wcut

wc w ∈W, c ∈ C, t ∈ Twc (14)

Binary and non-negativity constraints

z f q ∈ {0, 1} f ∈ F, q ∈ Q (15)

zwq ∈ {0, 1} w ∈W, q ∈ Q (16)

vr
s f ∈ {0, 1} s ∈ S, f ∈ F, r ∈ R (17)

xpt
f w ∈ R≥0 f ∈ F, w ∈W, p ∈ P, t ∈ T (18)

xrt
s f ∈ R≥0 s ∈ S, f ∈ F, r ∈ R, t ∈ T (19)

ut
od ∈ {0, 1} (o, d) ∈ {(S, F) ∪ (F, W) ∪ (W, C)}, t ∈ T (20)

4.2. Matheuristics

The model described above can be reduced to the single-source capacitated facility
location problem [23] and therefore it belongs to the class of NP-hard problems. Thus, a
heuristic method is justified, especially to solve large instances.The matheuristics consist of
the steps described in Algorithms 1–3.The algorithm described in Algorithm 1 is the general
one. The problem is divided in two parts. In the first part the warehouses are opened
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following one of two methods: simple or selective (with probability). Once the decision
for the warehouses was fixed, an allocation sub-problem is solved using commercial
optimization software. The sub-problem is described in Section 4.2.1. This sub-problem
helps to determine the flows between the warehouses and the customers. Finally, a second
sub-problem is solved considering the decisions fixed previously. This sub-problem is
described in Section 4.2.2 as a reduced supply-chain network design (SCND) problem.
Here, the remaining non-fixed variables are solved.

The algorithm described in Algorithm 2 helps to open warehouses with a certain
capacity using a simple, random selection. The process finishes when the aggregated
capacity is greater than the total demand. This method is reported as “Simple Heuristic”.

The other method for warehouse selection is described in Algorithm 3. In this al-
gorithm, an estimated cost is calculated for each warehouse. This cost is a combination
of the fixed cost divided by the capacity of the facility, and an estimation of a potential
transportation cost per unit. A probability is calculated such that the more expensive
facility has a lower probability, and the cheapest facility has a higher probability. These
probabilities are used with a random number to select warehouses with a certain capacity.
The process finishes when the aggregated capacity is greater than the total demand. This
selective method is reported as “Heuristic with Probability”.

The complexity of both matheuristics is dominated by the complexity of the solution
of the Allocation Model which can be reduced to the Linear Assignment Problem, which
can be solved in O(n3) time [24].

Algorithm 1 General algorithm.

1: Perform one of the two heuristics to decide the opening of warehouses w.

2: Solve the allocation model with the parameter zwk obtained in step 1.

3: Solve the reduced SCND model with the parameters zwk and xpt
wc obtained in the

previous steps.

Algorithm 2 Simple Constructive Heuristics.

1: All the closed warehouses zw,q = {{0, 0, 0}, {0, 0, 0}, . . . , {0, 0, 0}}
2: Demanded storage capacity= ∑p∈P ∑c∈Cp ∑t∈Twc SQUp DEMp

c ut
wc

3: Available capacity= 0

4: Openw = {0, 0, 0, . . . , 0}
5: repeat

6: repeat

7: Generate random ws

8: Generate random qs

9: while Openws = 1

10: Openws = 1

11: zws,qs = 1

12: Available capacity = Available capacity + SQws,qs

13: while Available capacity < Demanded storage capacity
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Algorithm 3 Constructive Heuristics with Probability.

1: All the closed warehouses zw,q = {{0, 0, 0}, {0, 0, 0}, . . . , {0, 0, 0}}
2: Demanded storage capacity= ∑p∈P ∑c∈Cp ∑t∈Twc SQUp DEMp

c ut
wc

3: Total warehouse unit costwq = Unit fixed costwq+ Unit transportation costwq

4: Unit fixed costwq =
FCwq

SQwq ∑p∈P SQUp

5: Unit transportation costwq =
∑w∈W ∑p∈P ∑c∈Cp DEMp

c

|Twc |·∑w∈W ∑p∈P ∑c∈Cp ∑t∈Twc TCpt
wc ·DEMp

c

6: Probabilitywq = 1000

(Total warehouse unit costwq)
4

7: A probability distribution is made with Probabilitywq, ∀ w ∈W, q ∈ Q

8: Available capacity = 0

9: Openw = {0, 0, 0, . . . , 0}
10: {ns: random number}

11: repeat

12: repeat

13: Generate random ns

14: Select w and q corresponding to the random number ns

15: while Openws = 1

16: Openw = 1

17: zwq = 1

18: Available capacity = Available capacity + SQwq

19: while Available capacity < Demanded storage capacity

4.2.1. Allocation Model

Allocation model 2.1 defines the decision variables upt
wc which due to the nature of

the problem is the largest set of variables since the number of these variables is defined
by the expression |W| · |C| · |P| · |T| assuming that you always have more customers than
warehouses or factories.

In the case of the instances used for this work, the smallest number of variables upt
wc

used in one instance was 6000, so defining those variables alternately greatly reduces the
number of branches explored by the branching and cutting algorithm. This is used in
its default configuration in the IBM ILOG program CPLEX to solve mixed-integer linear
programming models. The allocation model is presented below.

Variables

ut
od =


1 if origin o supplies destination d by mode of transport t,

((o, d) ∈ {(S, F) ∪ (F, W) ∪ (W, C)}; t ∈ T)
0 other case

The constraints used in the original model are constraints (9), (10), (14) and (21)

ut
wc ∈ {0, 1} w ∈W, c ∈ C, t ∈ T (21)

And the objective function is the following (22):

Min ∑
p∈P

∑
c∈Cp

∑
w∈Wp

∑
t∈Twc

DEMp
c TCpt

wcut
wc (22)

4.2.2. Model of Reduced SCND

The variables of the model that become parameters are the following:
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Parameters

zwq =


1 if it is decided to open a warehouse w with a capacity level q,

(w ∈W; q ∈ Q)
0 other case

ut
wc =


1 if it is decided to open a warehouse w with a client c by mode of transport t,

(w ∈W; c ∈ C; t ∈ T)
0 other case

The parameters that will no longer be used in model 2.2 with respect to the original
are the following:

Parameters not used

SQUp Storage capacity required to store a unit of p, (p ∈ P)

SQwq Maximum storage capacity of warehouse f with level of capacity q, (w ∈W; q ∈ Q)

SQwq Minimu production capacity used by factory f with level of capacity q, (w ∈W; q ∈ Q)

The SCND model defines the remaining decision variables of the original model,
taking as parameters, the decision variables resolved by both the heuristic and the 2.1
allocation model, removing the constraints that are not necessary.

The model uses constraints (2) to (4), (6) to (8), (11) to (13), (15) to (19), and (23) to (24).

∑
q∈Q

z f q ≤ 1 f ∈ F (23)

ut
od ∈ 0, 1 (o, d) ∈ {(S, F) ∪ (F, W)}, t ∈ T (24)

The objective function is used the same as the original model, although some terms do
not contain decision variables but parameters, with the aim of comparing the matheuristic
solutions with those of the MILP.

5. Instances

The instances are generated by means of a methodology described by [25] that sim-
ulate reality. The size of the generated instances is shown in Table 2 and the size of the
corresponding model is shown in Table 3.

Table 2. Size of the sets in each instance.

|C| |S| |F| |W | |Q| |T| |R| |P|
100 10 10 20 3 3 20 20

125 13 13 25 3 3 25 25

150 15 15 30 3 3 30 30

175 18 18 35 3 3 35 35

200 20 20 40 3 3 40 40

Transport mode 1 represents the train, which is not available for all locations and
the minimum amount of transport is very high. Modes 2 and 3 represent land vehicles,
mode 2 represents a small vehicle such as delivery vans, and mode 3 represents a larger
cargo vehicle; these two are assumed to be hired through an external logistics provider
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so they do not have a maximum amount of transport. For mode 3 there is a minimum
quantity to transport to justify the use of the larger vehicle. For each product-customer
pair a random demand DEMpc = X ∼ UNIFD[1, 10], is generated, where X is a random
number that follows a discrete uniform distribution UNIFD[min, max] that goes from min
to max. The fixed cost of opening a factory and a warehouse are defined by the following
expression:

FC f q = 1000

√√√√√ MQ f q
∑p∈P MQUp

|P|

(25)

FCwq = 1000

√√√√√ SQwq
∑p∈P SQUp

|P|

(26)

The acquisition cost of a material is generated by the following expression PCr
s =

X ∼ UNIFC[0.075, 0.625] where UNIFC[min, max] represents a continuous uniform dis-
tribution The manufacturing cost of a product is generated by the following expression
MCp

f = X ∼ UNIFC[0.375, 1.25].
The other parameters are calculated using a more sophisticated methodology ex-

plained in Appendix A of the work by [25]. A Windows console program developed in
C ++ was carried out to generate an instance automatically to generate these instances.

Table 3. Statistics of the instances and their values for MILP.

Name
of the Instance |C| Number of

Continuous Variables
Number of

Binary Variables
Number

of Constraints

*-100 100 18,000 8990 17,190

*-125 125 37,050 15,196 28,103

*-150 150 60,750 22,410 40,785

*-175 175 100,170 32,736 57,893

*-200 200 144,000 43,780 76,380

6. Results

The generated instances were resolved with the mixed-integer linear programming
model programmed in OPL in the IBM ILOG CPLEX 12.8.0 IDE, and the case of the
matheuristics, an application in C ++ Concert Technology was programmed with the
use of CPLEX. Both were run on a Lenovo ThinkPad T580 computer with an Intel Core
i7-8550U @ 1.80GHz processor and 16 GB of RAM.

The results obtained are shown in Table 4, indicating the total cost obtained for each
instance with the different methods compared.

The results show that as the instances increase in size, the computation time to obtain
optimal solutions increases exponentially. In all the cases, the MILP reached the time limit
of 4 h. Only for instances with 100 clients, the matheuristic algorithms achieved times
below 25 min. However, for instances larger than 100 clients, the matheuristic algorithms
reached the time limit of 2 h. Hence, obtaining results through the use of mathematical
modeling becomes impractical for large instances.

It can be observed in Table 4 that when the size of the instance grows, i.e., it has a
higher number of clients, the total cost increases also. Likewise, it can be seen that as the
instance size increase, the difference between the quality of solutions provided by CPLEX
and those provided by the matheuristics decreases. For instances of 100, 125 and 150 clients,
the results of the matheuristic algorithm with the “simple heuristic” were just 14.20% on
average above those obtained with CPLEX, and the results with the matheuristic algorithm
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with the “heuristics with probability” were only 6.06% on average above those obtained
with CPLEX.

In the instances of both 175 and 200 clients, at least one of the two implemented
matheuristics obtained a better solution than that of CPLEX in most of the cases. For the
instances with 175 customers, the average improvement was 1.41% comparing the result of
CPLEX and the result of the matheuristic algorithm with the “simple heuristic”. For the
same instances, the average improvement was 5.96% comparing the result of CPLEX and
the result of the matheuristic algorithm with the “heuristics with probability”. For the
instance 2–200, the improvement was 3.93% comparing the result of CPLEX and the result
of the matheuristic algorithm with the “simple heuristic”. For the same instance, the im-
provement was 9.22% comparing the result of CPLEX and the result of the matheuristic
algorithm with the “heuristics with probability”. In six cases out of 15, with 175 and
200 clients, the matheuristic algorithms were able to find a feasible solution while CPLEX
could not.

Comparing the two matheuristics, it can be observed that the heuristic method used
to decide the opening of warehouses has a great impact on the objective functions for the
type of instances used because the fixed cost of opening a warehouse is the cost with the
greatest impact. Both the first and second heuristics diversify the results at each iteration so
that in small instances, the algorithms may be used on more than one occasion to increase
the quality of the solutions. Regarding the use of the probability distribution used for
constructive heuristics with probability, although some randomness is applied, the selected
warehouses will tend to be those with the lowest cost of opening divided by their capacity,
so the quality of the solutions tends to be better. In average, for all the instances tested,
the matheuristic algorithm with the “heuristics with probability” was 7.15% better than the
algorithm with the “simple heuristic”.

Table 4. Table of results.

Instance MILP * Matheuristic **
Simple Heuristic

Matheuristic **
Heuristic with

Probability
No. of Clients

1-100 $457,969 $533,871 $494,606 100

2-100 $396,124 $469,641 $437,017 100

3-100 $454,499 $528,758 $484,789 100

4-100 $454,535 $499,858 $451,079 100

5-100 $421,027 $438,128 $464,642 100

1-125 $603,112 $692,654 $643,217 125

2-125 $524,209 $624,083 $565,659 125

3-125 $569,020 $602,907 $617,547 125

4-125 $566,296 $646,428 $604,259 125

5-125 $521,739 $622,127 $577,284 125

1-150 $713,102 $796,459 $753,579 150

2-150 $709,303 $861,745 $770,492 150

3-150 $695,731 $789,834 $668,408 150

4-150 $713,282 $816,635 $717,607 150

5-150 $679,902 $768,746 $713,473 150

1-175 $912,030 $945,357 $904,579 175
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Table 4. Cont.

Instance MILP * Matheuristic **
Simple Heuristic

Matheuristic **
Heuristic with

Probability
No. of Clients

2-175 $1,100,417 $970,647 $898,271 175

3-175 *** $930,802 $857,758 175

4-175 $1,099,033 $994,140 $939,693 175

5-175 $915,431 $865,468 $929,748 175

6-175 $882,227 $925,900 $798,514 175

7-175 $856,623 $912,108 $881,164 175

8-175 $940,480 $955,951 $912,570 175

9-175 *** $970,484 $854,358 175

10-175 $977,692 $965,596 $919,445 175

1-200 *** $1,153,589 $1,115,358 200

2-200 $1,061,059 $1,019,363 $963,204 200

3-200 *** $1,138,016 $1,015,605 200

4-200 *** $1,129,623 $1,019,119 200

5-200 *** $1,130,032 $994,430 200
* Target function values of incumbent solution running the solver with a 4-h limit; ** Target function values of
incumbent solution running executable with a 2-h limit; *** No integer solution found.

For the interested reader, a further discussion about the SCND configurations obtained
and the distribution of costs, according to the design of instances proposed in [25], can be
found at [23].

7. Conclusions

In this work, a problem for supply-chain network design is addressed. This problem
was presented in the literature by Corthinal et al. [23]. We selected this complex NP-
Hard problem to prove the efficiency of novel matheuristic algorithms. Matheuristics
are algorithms that combine heuristic rules with exact optimization methods based on
mathematical programming. There is a growing interest in these methods in the search for
improving the quality of solutions with a fast computation. Solving hard combinatorial
optimization problems, Although heuristics and metaheuristics demonstrated efficiency in
obtaining feasible but poor-quality solutions in short computation times, exact methods
implemented in commercial and open-source software deliver optimal solutions at the cost
of long execution times. In this way, the research in matheuristics looks for the benefits
of hybridization.

The problem addressed has characteristics that increase the level of complexity com-
pared to other problems of supply-chain network design solved with matheuristics. In ad-
dition to the classic decisions on the location of facilities and transportation, the problem
involves determining capacities for the facilities, choosing between different transportation
modes, and considering a hierachical product architecture as described by a bill of materi-
als. Hence, this problem is a good challenge to demonstrate the efficiency of the methods
proposed. The structure of the network and decisions presented can be used for the design
of global manufacturing and distribution networks in high technology industries such as
pharmaceutics, automotive, or electronics.

The main contribution of this paper is the proposal of novel matheuristic algorithms to
solve a challenging combinatorial optimization problem for supply chain network design.
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The algorithms proposed were efficient in obtaining solutions of high quality in reasonable
computation times for large instances.

To study larger instances or longer supply chains, the problem can be divided into
more sub-problems with heuristic decisions in between. As we observed, it is possible
to obtain better solutions with a well-thought heuristic in less time as data sets grow.
Additionally, more complex decisions can be added to the model to integrate routing,
inventory management, sustainability issues, and variability through stochastic modeling.
The key to designing efficient matheuristics is the adequate decomposition of the problem
to take advantage of the quality of exact methods using heuristics and randomness to boost
the execution speed.
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The following abbreviations are used in this manuscript:

Notation Description
Sets
S Set of suppliers
C Set of clients
F Set of potential factories
T Set of modes of transport
Q Set of capacity levels for factory F or warehouse W
Subsets
R Subset of raw material
P Subset of finished products
W Subset of potential warehouses
Pr Subset of finished products that require raw material r, (Pr ⊂ P; r ∈ R)
Sr Subset of suppliers who supply raw material r, (Sr ⊂ S; r ∈ R)
Fp Subset of factories that can produce finished product p, (Fp ⊂ F; p ∈ P)
Wp Subset of warehouses that can store finished product p, (Wp ⊂; p ∈ P)
Cp Subset of clients with demand of finished product p, (Cp ⊂ C; p ∈ P)
Tod Subset of modes of transport available from origin to destination d, (Tod ⊂ T)
Parameters
Parameters
of cost
FC f q Fixed cost of opening a factory f with capacity level q, ( f ∈ F; q ∈ Q)

FCwq Fixed cost of opening a warehouse w with capacity level q, (w ∈W; q ∈ Q)
PCr

s Cost of buying raw material r with supplier s, (s ∈ S; r ∈ R)
MCp

f Cost of manufacturing product p in factory f , ( f ∈ F; p ∈ P)

TCrt
od

Cost of transporting material r from origin o or to destination d with transport
mode
t, ((o, d) ∈ (S, F); r ∈ R; t ∈ T)
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TCpt
od

Cost of transporting product p from origin o or to destination d with
transport mode
t, ((o, d) ∈ (F, W) ∪ (W, C); p ∈ P; t ∈ T)

Parameters
of the product
Arp Number of units of material r necessary to produce product p, (r ∈ R; p ∈ P)
DEMp

c Demand of client c for product p, (c ∈ C; p ∈ P)
Parameters
of capacity
MQUp Production capacity required to produce a unit of p, (p ∈ P)
SQUp Storage capacity required to store a unit of p, (p ∈ P)
TQUpt Transport capacity used by a unit of a product p and by a mode of transport t,

(i ∈ R ∪ P; t ∈ T)
SQRr

s Capacity of supplier s to supply material r, (s ∈ S; r ∈ R)

MQPp
f q

Capacity of factory f to produce product p with capacity level q,
( f ∈ F; q ∈ Q; p ∈ P)

MQ f q Maximum production capacity of factory f with capacity level q, ( f ∈ F; q ∈ Q)

MQ f q
Minimum used production capacity of factory f with capacity level q,
( f ∈ F; q ∈ Q)

SQwq
Maximum storage capacity of warehouse w with capacity level q,
(w ∈W; q ∈ Q)

SQwq
Minimum used storage capacity of warehouse w with capacity level q,
(w ∈W; q ∈ Q)

TQt
od Maximum transport capacity of mode t from origin 0 to destination d,

((o, d) ∈ {(S, F) ∪ (F, W) ∪ (W, C)}; t ∈ T)

TQt
od

Minimum quantity of goods transported by mode t from origin o to destination
d,
((o, d) ∈ {(S, F) ∪ (F, W) ∪ (W, C)}; t ∈ T)

Notation Description
Parameters
TCpt

wc Cost of transporting product p from warehouse w to customer c
with the mode of transport t, (w ∈W; c ∈ C; p ∈ P; t ∈ T)
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