
applied  
sciences

Article

Preparation, Properties and Microstructure of Non-Calcination
Rock Powder Brick with Orthogonal Experiments

Jie Fan 1 , Zhongkun Wang 2 and Gengying Li 3,*

����������
�������

Citation: Fan, J.; Wang, Z.; Li, G.

Preparation, Properties and

Microstructure of Non-Calcination

Rock Powder Brick with Orthogonal

Experiments. Appl. Sci. 2021, 11,

10274. https://doi.org/10.3390/

app112110274

Academic Editor: Muhammad

Junaid Munir

Received: 25 September 2021

Accepted: 29 October 2021

Published: 2 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Civil Engineering, Guizhou Institute of Technology, Guiyang 550003, China; jfan1988@163.com
2 School of Architectural Engineering, Wenzhou University, Wenzhou 325035, China; 13526578601@163.com
3 College of Water Conservancy and Civil Engineering, South China Agricultural University,

Guangzhou 510642, China
* Correspondence: ligengying@scau.edu.cn; Tel.: +86-136-2303-9690

Abstract: In this paper, the preparation method and reasonable mix ratio of non-calcination brick
with rock powder, cement, lime and fly ash ceramsite (FAC) as the raw materials were experimentally
evaluated. To better understand the effects of each component on the performance of non-calcination
rock powder brick (NCRPB), an orthogonal experimental design was conducted with the water–
cement ratio (W/C), rock powder–cement ratio (R/C), lime content (wl) and FAC content (wf) as
the main factors, which involved four factors and three factor levels. According to the orthogonal
experimental design, the compressive strength, water resistance and bulk density of nine groups of
NCRPB specimens were tested. The results show that R/C was the most important factor affecting
the compressive strength and water resistance, while the FAC content influenced the bulk density of
NCRPB greatly. In this study, the reasonable mix of W/C, R/C, wl, and wf in weight was 0.6, 3.0,
30% and 21%, respectively. In addition, the microstructure and strength formation mechanism of
NCRPB were analyzed by using SEM and XRD. The test results show that the rock powder having
pozzolanic activity could react with the additional Ca(OH)2 to produce hydration products, leading
to the improvement of the performance of NCRPB.

Keywords: non-calcination rock powder brick; orthogonal experimental design; compressive strength;
water resistance; microstructure

1. Introduction

Construction materials serve as one of the most basic materials of a building structure
and are an important component of the construction industry. As the development of soci-
ety and humans progresses, the Earth’s land resources, energy and environment are under
a great challenge. To satisfy the needs of sustainable development of the Earth’s resources
and ecological protection, the requirements for construction materials are constantly chang-
ing from traditional construction materials to new construction materials [1–5].

As a widely used construction material, brick is made of clay and fired at a high
temperature, and it has been proven that sintered bricks have been used in human history
for thousand years [6]. Currently, brick remains the most common material in buildings
for masonry construction. According to statistics by the National Bureau of Statistics, in
China, approximately 200 billion sintered bricks were used in construction in 2008 [7].
Traditional sintered bricks are cumbersome to prepare and have serious environmental
pollution problems. The massive amount of carbon dioxide produced in the sintering
process will contribute to acid rain and global warming [8].

Non-calcination brick is a new type of construction material that can satisfy the safety
and durability requirements of masonry construction without sintering. Non-calcination
brick is mainly made of various types of tailings and chemical industrial waste slag as the
main raw material and cement as the main cementing material after natural curing or steam
curing [9,10]. The production of non-calcination brick does not require clay, which saves
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land resources. In addition, the bricks do not need to go through high-temperature sintering
in the forming process, which reduces energy consumption and carbon dioxide emissions.
However, the possible health issues of chemical industrial waste for use as a construction
material cannot be ignored [11–13]. Liu used steel slag, blast furnace slag, fly ash and
gypsum to prepare solid waste cementitious materials, and steel slag granular powder
was used as an aggregate to prepare steel slag-based eco-unburned permeable bricks. The
solid waste utilization rate was 96%, the flexural strength was 4.5 MPa, and the water
permeability coefficient was 10.5–10−2 cm/s [14]. Zhang produced non-fired compressed
masonry units from brick clay mill residues by alkali activation. The compressive strength,
linear shrinkage, bulk density and microstructure were measured, and the effects of curing
temperature and curing time on the properties were compared. The results show that the
compressive strength of the non-fired brick can reach 24–48 MPa at 28 d [15]. Tuani Zat et al.
used sludge as a raw material to produce red ceramic tiles by extrusion and investigated
the technological changes due to the plasticity of the mixture and its subsequent extrusion
properties during the plastic forming process of sludge. The results show that blending
15% sewage sludge by weight into clay mixtures to produce extruded ceramic bricks is
very feasible [16]. Liu studied the feasibility of producing unburned brick from sludge
produced by coagulation of dye wastewater with Portland cement, Portland cement clinker,
alumina cement and slag cement, and the interaction between sludge and cement was
analyzed. The results show that the cement-solidified sludge can reach all performance
indices of unburned brick, and the compressive strength of alumina-solidified sludge is
40 MPa under a cement/dry sludge/water ratio of 1:0.5–0.8:0.5–0.8 [17]. Zhao used mud
and calcium sulfoaluminate cement to prepare unburned bricks and tested the influence of
the mud content on the performance of unburned bricks. The results show that when the
mud content increases, the fluidity of the slurry decreases, the water consumption reaches
normal consistency, and the solidification time shortens. In addition, mud incorporation
can reduce the porosity of unburned brick and increase its strength [18].

Rock powder is a powdery particle produced during rock processing. Due to the
limitations of renewable technologies, rock powder is usually randomly dumped in rivers
or waste disposal sites in coastal areas. However, this method of disposing of rock powder
results in the occupation of a large amount of land resources and imposes a heavy burden
on the local ecological environment [19]. Therefore, how to regenerate rock powder through
a reasonable process has become an urgent research problem. At present, research on the
application of rock powder mainly focuses on the treatment of foundation soil and green
concrete production [20–22], while research on the application of rock powder in non-
calcination bricks is relatively lacking. Thus, this study considers the use of rock powder
as the main component, cement and lime as cementitious materials, and ceramic pellets as
auxiliary materials to make non-calcination bricks.

The mix ratio design is an important part of the production and application of non-
calcination bricks. A reasonable mix ratio can obtain good economic benefits and introduce
a series of social benefits, such as saving resources and protecting the environment. How-
ever, many factors affect the properties of non-calcination brick, and the relationship among
these factors is complex, so it is difficult to design a high-performance and low-cost mixing
ratio based on experience alone. Thus, four main factors were considered in this paper:
the water–cement ratio, rock powder–cement ratio, lime content and FAC content. Nine
sets of specimens were designed and prepared by the orthogonal test method, and the
compressive strength, water resistance and bulk density were tested. The influence law of
each factor was analyzed, and a reasonable preferred proportioning scheme was proposed.
In addition, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to
analyze the microstructure and phase composition of the non-calcination brick, and the
strength formation mechanism was discussed.
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2. Materials and Methods
2.1. Materials

The raw materials in this study were rock powder, lime, cement and FAC, as shown
in Figure 1. Rock powder was provided by a concrete plant in Shantou City, Guangdong
Province, and the particle size was less than 1 mm after sieving (Figure 1a). The XRD pat-
terns (Figure 2a) show that the main mineral composition of rock powder is quartz (SiO2),
albite (NaAlSi3O8) and a small amount of petalite (AlLi(Si2O5)2), orthoclase (KAlSi3O8),
sanidine (KAlSi3O8) and aluminum phosphate (AlPO4). The lime in the test is industrial
slaked lime powder (Figure 1c), the main component is portlandite (Ca(OH)2), and the
specific XRD pattern is shown in Figure 2b. Ordinary Portland cement of 32.5 grade was
used, and ceramsite was produced in a building material factory in Guangdong Province.
The main component was fly ash, the particle size was 5~10 mm, and the apparent density
was 816.7 kg/m3.
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2.2. Specimen Molding and Curing Method

The extrusion molding technique was used in the NCRPB production. In the pres-
surized state, sliding displacement occurs under the interaction among the particles of
the cementing material, and smaller particles are pressed into and fill the voids of the
larger particles, so the blank achieves high compactness and high strength. In this test,
15 MPa was chosen as the forming pressure of NCRPB based on safety and economic
considerations. After forming, the specimens were placed in a natural environment to cure
for 28 d. Figure 3 shows the process of material addition, mixing, compaction molding and
curing of NCRPB (the specimen forming size is 120 × 150 × 300 mm3). Figure 4 shows the
forming equipment and prepared samples of NCRPB.
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2.3. Orthogonal Experimental Design

To analyse the influence of the mix ratio on the mechanical properties of NCRPB,
the following main influencing factors were considered: A—W/C, B—R/C, C—wl, and
D—wf. For each influencing factor, three levels were set for the orthogonal analysis, and
the specific factor level combinations are shown in Table 1. The levels of the factors were
combined according to the orthogonal design to derive the corresponding orthogonal Table
L9(34), based on which the doping of each component was calculated according to the
mass method. The details are listed in Table 2.

Table 1. Factors and levels.

Level Factor A
(W/C)

Factor B
(R/C)

Factor C
(wl)

Factor D
(wf)

1 0.5 3:1 20% 7%
2 0.6 4:1 30% 14%
3 0.7 5:1 40% 21%
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Table 2. Orthogonal test.

Specimens
Mixing Proportion Component/t

W/C R/C wl wf Cement Rock Powder FAC Lime Water
L1 1(0.5) 1(3:1) 1(20%) 1(7%) 197.87 593.62 70.00 39.57 98.94
L2 1(0.5) 2(4:1) 2(30%) 2(14%) 148.28 593.10 140.00 29.66 74.14
L3 1(0.5) 3(5:1) 3(40%) 3(21%) 114.49 572.46 210.00 45.80 57.25
L4 2(0.6) 1(3:1) 2(30%) 3(21%) 161.22 483.67 210.00 48.37 96.73
L5 2(0.6) 2(4:1) 3(40%) 1(7%) 155.00 620.00 70.00 62.00 93.00
L6 2(0.6) 3(5:1) 1(20%) 2(14%) 126.47 632.35 140.00 25.29 75.88
L7 3(0.7) 1(3:1) 3(40%) 2(14%) 168.63 505.88 140.00 67.45 118.03
L8 3(0.7) 2(4:1) 1(20%) 3(21%) 133.90 535.59 210.00 26.78 93.73
L9 3(0.7) 3(5:1) 2(30%) 1(7%) 132.86 664.29 70.00 39.86 93.00

2.4. Experimental Methods
2.4.1. Compressive Strength

The compressive strength test of NCRPB is based on the Chinese standard (GB/T
21144-2007) [23]. Each mix ratio consists of 10 specimens for testing and maintains a speed
of 4–5 kN/s when loading. Through the test, the failure loads of NCRPB specimens with
different mix ratios were obtained, and the compressive strength was calculated according
to Equation (1).

Rp =
F

L × B
(1)

where Rp is the compressive strength, F is the failure load, and L and B are the length and
width of the compression surface, respectively.

2.4.2. Water Absorption and Softening Coefficient

The water absorption test of NCRPB was performed according to the Chinese standard
(GB 11970-1989) [24]. Three samples were tested in each group. The dry weights (G0) and
saturation weights (Gg) were tested, and the water absorption rate W was determined by
Equation (2).

W =
Gg − G0

G0
(2)

After the water absorption test, the specimens were immediately placed on a universal
machine for testing, and the softening coefficient was calculated by Equation (3).

K =
Rg

R0
(3)

where K is the softening coefficient, and Rg and R0 are the compressive strength of NCRPB
specimens in the dry and water-absorbing saturated states, respectively.

2.4.3. Bulk Density

The bulk density test was performed according to the Chinese standard (GB/T 2542-
2012) [25]. Five samples were prepared in each group, and the specimen was dried to a
constant weight using an oven at 105 ± 5 ◦C, after which the volume (V) and dry weight
(G0) of the samples were measured by brick caliper and electronic scale, respectively. The
bulk density was calculated according to Equation (4).

ρ =
G0

V
(4)

2.4.4. Scanning Electron Microscopy (SEM)

The microstructure of NCRPB specimens was investigated by using a ZEISS Gemini
300 field emission scanning electron microscope (FESEM), which was manufactured by
Zeiss, Germany. The samples were soaked in absolute ethanol to stop hydration before test-
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ing. During the test, the gold-sprayed specimens were placed on a shelf in an ultravacuum
environment for observation, and an accelerating voltage of 3 KV was selected for the test.

2.4.5. X-ray Diffraction (XRD)

The phase analysis of rock powder, lime and NCRPB samples was performed by using
a D8-ADVANCE X-ray powder diffractometer (XRD) produced by the German Bruker
Company. The diffraction angle was 5–75◦, and the scan speed was 10◦ per minute.

3. Results and Discussions

According to the design of the orthogonal experiment in Table 2, nine sets of specimens
were prepared, and the compressive strength, water absorption, softening coefficient and
bulk density of NCRPB at 28 d of age were tested. The specific test results are shown
in Figure 5.
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Based on the experimental test results, the corresponding range and variance values
of four factors were calculated and compared, as shown in Tables 3 and 4, and the law and
importance of the influence of each factor on the performance of NCRPB can be obtained.
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Table 3. Range analysis of the orthogonal test.

Factor
RP/Mpa W/% K/% ρ/kg·m−3

l1 l2 l3 r l1 l2 l3 r l1 l2 l3 r l1 l2 l3 r

A 9.50 9.74 9.65 0.24 15.43 15.80 14.96 0.83 86.86 86.74 88.06 1.32 1578 1574 1579 5.12
B 10.40 9.66 8.80 1.63 11.80 15.03 19.36 7.56 91.77 88.50 81.38 10.39 1540 1582 1609 68.94
C 9.49 9.55 9.84 0.35 16.70 15.00 14.50 2.20 86.48 87.63 87.53 1.15 1580 1574 1577 6.73
D 9.41 9.59 9.89 0.49 16.30 16.13 13.70 2.66 86.58 86.66 88.42 1.84 1681 1571 1479 202.02

l1, l2 and l3 represent the mean value of level-1, level-2 and level-3, r represents the range value.

Table 4. Variance analysis of the orthogonal test.

Factor DOF F0.01
RP/Mpa W/% K/% ρ/kg·m−3

SSi Mi F SSi Mi F SSi Mi F SSi Mi F

A 2 3.11 0.09 0.04 0.07 1.05 0.52 0.04 11.66 5.83 0.17 47 23 0.003
B 2 3.11 3.97 1.99 3.43 * 86.49 43.24 3.19 * 256.42 128.21 3.62 * 7227 3613 0.42
C 2 3.11 0.21 0.11 0.18 7.98 3.99 0.29 4.92 2.46 0.07 67 34 0.004
D 2 3.11 0.36 0.18 0.31 13.09 6.54 0.48 10.47 5.24 0.15 61,361 30,681 3.57 *

SS represents total sum of squares, M represents mean square error, F represents variance, symbol “*” represents significant impact.

3.1. Failure Process and Failure Mode of the Specimens

In order to compare the failure mode of NCRPB with and without FAC, the control
group was prepared and tested by using the L4 mix ratio as standard and only removed
FAC. As shown in Figure 6a,b, the compressive damage process of NCRPB with and
without FAC addition was basically identical. At the early stage of loading, no cracks
were found on the surface of the specimens. When the load increased, cracks started to
appear on the surface of one side of the specimen, and the cracks expanded thereafter. In
the middle position of the specimen height, the cracks developed vertically upward and
downward and gradually turned to the corner, which formed a positive-inverse connected
V-shaped crack. With further increase in load, V-shaped cracks gradually formed on the
other side of the surface, new cracks gradually developed inward, and the surface concrete
bulged and cracked. The observations of the damage shows that the specimens containing
FAC can produce more cracks during the failure process to absorb the damage energy. The
damage of the specimen section without FAC is mainly in the form of cement shedding,
while the damage surface of the specimen with FAC also contains the fragmentation of
ceramic particles, as shown in Figure 6c,d.
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3.2. Analysis of the Influencing Factors of Compressive Strength

Figure 5 shows that Rp of NCRPB with nine groups is 8.5–10.7 MPA, and the highest
compressive strength of L4 is 10.7 MPA. The influencing factors were analyzed according
to the extreme difference values of the compressive strength of each group, as shown in
Figure 7. In Figure 7, the change in R/C had the most significant effect on the compressive
strength of NCRPB, and the compressive strength significantly decreased with the increase
in R/C. Rp of NCRPB decreased by 15.4% when R/C increased from 3.0 to 5.0. In addition,
the variation in wf, wl and W/C affected the compressive strength of NCRPB, but it was
not as significant as that of W/C. The compressive strength of NCRPB slowly increased
with increasing FAC and lime content. With increasing W/C (0.5~0.7), the compressive
strength of NCRPB first increased and subsequently decreased. When W/C is less than 0.6,
the saturation water consumption of the hydration reaction is not reached, so the reaction
is not sufficient. After the saturation water consumption is exceeded, the compressive
strength will significantly decrease if W/C is increased. Through the comparison of Rp
values of each group, the best combination scheme of NCRPB is A2B1C3D3, but the mix
ratio of this group does not appear in the orthogonal combination. In addition, considering
that high lime dosing will reduce the utilization rate of rock powder and increase the
cost, this paper selects A2B1C2D3 as the optimal group, and its compressive strength is
10.7 MPa, which is higher than the 10 MPa (MU10) specified in the Chinese wall brick
specification, so this group has practical engineering significance. In addition, the extreme
difference analysis of compressive strength (in Table 4) shows that the F values of the four
influencing factors are 0.07, 3.43, 0.18 and 0.31, and only R/C has a greater F value than the
critical value of extreme difference F0.1 = 3.11 to reach the significance level, which further
illustrates the significance of the influence of R/C.
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3.3. Analysis of Influencing Factors on Water Resistance Performance

The water absorption rate and softening coefficient of NCRPB with different mix
ratios are shown in Figure 4 (each mix ratio consists of 10 specimens for testing). The
extreme difference and variance values of the effects of the factors were compared, and the
W and K visual analysis graphs of NCRPB under different influencing factors are shown
in Figures 8 and 9. Figures 8 and 9 show that the change in R/C has the most significant
effect on the water resistance of NCRPB. When R/C increases from 3.0 to 5.0, the water
absorption rate of NCRPB increases by 64.1%, and its softening coefficient decreases by
11.3%. Therefore, the amount of rock powder admixture in the NCRPB must be strictly
controlled to ensure its economic efficiency and not to have too much influence on its water
resistance. However, the other three factors only slightly affect the water resistance of
NCRPB. The results in Figure 5 show that the optimal water resistance can be obtained
for Group L4, whose water absorption rate is only 10.09%, which satisfies the requirement
that the water absorption rate must be less than 15% for wall bricks, as stipulated by
Chinese specifications. The variance F of each factor was further analyzed, and the results
are shown in Table 4. The data in the table show that R/C has the greatest influence on
the water resistance performance of the rock powder brick with F value of 3.19 (W) and
3.62 (K) > F0.1 = 3.11, which reaches the level of significant influence.
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3.4. Analysis of Influencing Factors of Bulk Density

To obtain lightweight, high-strength and environmentally friendly non-calcination
bricks, this paper conducted a test on the bulk density of NCRPB (each mix ratio consists of
10 specimens for testing) and analyzed its extreme difference and variance values. Figure 10
shows the results of the extreme variance analysis of the bulk density of NCRPB, and the
data in Figure 10 show that the FAC content is the main factor that affects the bulk density
of NCRPB. When wf increased from 7% to 21%, the bulk density of NCRPB decreased by as
much as 12% and reached 1479 kg/m3. The reason of this phenomenon is that the apparent
density of FAC (816.7 kg/m3) is much lower than that of rock powder (1572.3 kg/m3).
With increasing R/C, the bulk density of NCRPB increased. However, there was almost no
effect on the bulk density of NCRPB when W/C and wl were changed. The results of the
analysis of variance in Table 4 also prove the correctness of these conclusions.
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4. Regression Analysis

The visual analysis results show an approximately linear correspondence between the
respective response values compressive strength (Rp), water absorption rate (W), softening
coefficient (K) and bulk density (ρ) of NCRPB and the four factors. Using the regression
method for fitting, the following linear regression equation can be derived:

y = a0 + a1x1 + a2x2 + a3x3 + a4x4 + e (5)

where y is the calculated value of each performance, ai (i = 0, 1, 2, 3, 4) is the regression
coefficient; x1 is the W/C; x2 is the R/C; x3 is the wl; x4 is the wf; e is the experimental error.

By substituting the data into the regression model in Equation (5), the least squares
estimate is obtained. The regression equation is given below.

Compressive strength (Rp) calculation formula:

y = 11.525 + 0.683x1 − 0.820x2 + 1.683x3 + 3.381x4
R2 = 0.960, n = 9, F = 36.024

(6)

Water absorption rate (W) calculation formula:

y = 0.052 + 0.008x1 + 0.038x2 − 0.103x3 − 0.182x4
R2 = 0.912, n = 9, F = 16.043

(7)

Softening coefficient (K) calculation formula:

y = 1.114 − 0.028x1 − 0.057x2 − 0.054x3 + 0.055x4
R2 = 0.883, n = 9, F = 12.798

(8)

Bulk density (ρ) calculation formula:

y = 1627 + 4.908x1 + 32.040x2 + 1.203x3 − 1419.21x4
R2 = 0.990, n = 9, F = 151.790

(9)
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The orthogonal test was divided into nine groups with five variables, so the degree of
freedom was 4, and the determination coefficients R2 were close to 1. This high R2 value
suggests that the linear regression equation obtained is meaningful. In addition, the critical
value of variance F0.05(4,5) of the regression equation is 6.256, and all variance values of
the above formulas are larger than 6.256, so the obtained equation is significant.

5. Microstructure Analysis
5.1. X-ray Diffraction

The XRD patterns of rock powder mixed with lime are shown in Figure 11. By com-
paring with Figure 2, it was found that the rock powder embryo after doping with lime
contained some sodium alum (NaAl(SO4)2·12H2O) diffraction peaks (with its main diffrac-
tion peak near 20.85◦) and gismondine (CaAl2Si2O8·4H2O) peaks, in addition to the main
diffraction peaks of quartz (SiO2), albite (NaAlSi3O8) and portlandite (Ca(OH)2). Thus, the
alkaline environment (Ca(OH)2 incorporation) can stimulate the active components of rock
powder to produce a certain amount of hydration products. The rock powder and lime
products on the surface of the FAC particles are selected for testing, and the XRD pattern is
shown in Figure 11b. In Figure 11b, the NaAl(SO4)2·12H2O and CaAl2Si2O8·4H2O diffrac-
tion peaks were more obvious, and there were more water silica-aluminate bulge-type
diffusion peaks, while the characteristic diffraction peaks of quartz, albite and portlandite
occurred significantly less. The reasons for this phenomenon may be as follows: On the
surface of FAC, there is a certain amount of active fly ash, with which a large amount of free
Ca(OH)2 will aggregate and bind, so the characteristic peak of Ca(OH)2 is reduced [26–28].
Fly ash has higher activity than rock powder, so more hydration products are generated.
Moreover, some gel or semi-crystalline hydrated calcium aluminate, hydrated calcium
silicate and hydrated aluminosilicate cover the surface of the rock powder particles, which
reduces the diffraction ability of quartz and albite.
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5.2. Scanning Electron Microscope

Figure 12 shows the internal microstructure of rock powder mixed with cement
and lime at 28 d. In Figure 12, in addition to many amorphous calcium silicate gels,
a lot of needle-like ettringite and many hexagonal state calcium hydroxide crystals are
present in the internal microstructure of NCRPB. The ettringite and calcium silicate gels are
interspersed and cross-linked to form a mesh structure, and crystal-like calcium hydroxide
fills between the pores, which gives the NCRPB embryos a certain strength. However, the
figure obviously shows many voids inside the NCRPB, so its strength is limited.
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Figure 12. Microstructure of rock powder mixed with cement and lime.

Figure 13a shows the morphology of the FAC particles inside the NCRPB. The dashed
inner line in Figure 13a is measured as a spherical FAC particle, point A represents the
FAC particle surface, point B represents the FAC particle boundary, and the area of point
A is enlarged to obtain Figure 13b. Figure 13b shows that FAC can be coated with a large
amount of amorphous calcium silicate gel on the surface, and a certain acicular ettringite
cross-links with it to form a network structure. Figure 13c shows the image obtained by
magnifying point B at the boundary of the FAC particles. Figure 13c shows that the FAC
particles are directly connected with the rock powder by the hydration product, which
forms a monolith. In addition, the magnification of the surface area C of the rock powder
particle grain is shown in Figure 13d. Figure 13d shows that not only is the surface of the
rock powder particle covered with a large amount of hydration products, but the internal
area also generates an amount of gel under the excitation of calcium hydroxide. This result
mutually corroborates the conclusion in Section 5.1 and reflects that the incorporation of
calcium hydroxide indeed helps enhance the strength of NCRPB.
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6. Conclusions

In this paper, the effects of the water–cement ratio (W/C), rock powder–cement
ratio (R/C), lime content (wl), and FAC content (wf) on the compressive strength, water
resistance and bulk density of NCRPB were studied by orthogonal tests. The microstructure
and mechanism were analyzed by XRD and SEM. The results show that:

(1) The most significant factor that affects the compressive strength and water resistance
of non-calcination brick is R/C. The compressive strength and water resistance of
NCRPB significantly decreases with increasing R/C.

(2) The FAC content is the most significant factor that affects the bulk density of NCRPB.
When wf increases from 7 to 21%, the bulk density of NCRPB decreases by as much
as 12%.

(3) The analysis of the orthogonal test results shows that the NCRPB has the best perfor-
mance when W/C is 0.6, R/C is 3:1, wl is 30%, and wf is 21%.

(4) XRD and SEM results imply that rock powder under alkaline conditions (Ca(OH)2
incorporation) can produce hydration products, which improve the mechanical prop-
erties of NCRPB.

It is worth noting that the long-term stability performance of NCRPB is worthy of
investigating systematically in the future for its practical engineering. In addition, further
research should be applied to investigate the potential environmental issues caused by the
preparation of NCRPB.
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