Application of Different Compositions of Apple Puree Gels and Drying Methods to Fabricate Snacks of Modified Structure, Storage Stability and Hygroscopicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation of Gels
2.2. Drying of Gels
2.2.1. Freeze-Drying
2.2.2. Vacuum-Drying
2.2.3. Air-Drying
2.3. Sorption Isotherms
2.4. Water Sorption Kinetics
2.5. Glass Transition Temperature
2.6. Microstructure
3. Results and Discussion
3.1. Sorption Properties of Dried Apple Puree Gels
3.2. Effect of Water Activity on the Glass Transition Temperature of Dried Gels
3.3. Microstructure of Dried Gels
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hess, J.M.; Jonnalagadda, S.S.; Slavin, J.L. What is a snack, why do we snack, and how can we choose better snacks? A review of the definitions of snacking, motivations to snack, contributions to dietary intake, and recommendations for improvement. Adv. Nutr. 2016, 7, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Bellisle, F. Meals and snacking, diet quality and energy balance. Physiol. Behav. 2014, 134, 38–43. [Google Scholar] [CrossRef]
- Nussinovitch, A.; Jaffe, N.; Gillilov, M. Fractal pore-size distribution on freeze-dried agar-texturized fruit surfaces. Food Hydrocoll. 2004, 18, 825–835. [Google Scholar] [CrossRef]
- Tiwari, S.; Ravi, R.; Bhattacharya, S. Dehumidifier assisted drying of a model fruit pulp-based gel and sensory attributes. J. Food Sci. 2012, 77, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, M.; Heigl, A.; Kulozik, U.; Ambros, S. Effect of hydrocolloid addition and microwave-assisted freeze drying on the characteristics of foamed raspberry puree. Inn. Food Sci. Emerg.Technol. 2019, 56, 102183. [Google Scholar] [CrossRef]
- Martínez-Navarrete, N.; Salvador, A.; Oliva, C.; Camacho, M.M. Influence of biopolymers and freeze-drying shelf temperature on the quality of a mandarin snack. LWT 2019, 99, 57–61. [Google Scholar] [CrossRef]
- Egas-Astudillo, L.A.; Martínez-Navarrete, N.; Camacho, M.M. Impact of biopolymers added to a grapefruit puree and freeze-drying shelf temperature on process time reduction and product quality. Food Bioprod. Proc. 2020, 120, 143–150. [Google Scholar] [CrossRef]
- Llavata, B.; García-Pérez, J.V.; Simal, S.; Cárcel, J.A. Innovative pre-treatments to enhance food drying: A current review. Curr. Opin. Food Sci. 2020, 35, 20–26. [Google Scholar] [CrossRef]
- Menon, A.; Stojceska, V.; Tassou, S.A. A systematic review on the recent advances of the energy efficiency improvements in non-conventional food drying technologies. Trends Food Sci. Technol. 2020, 100, 67–76. [Google Scholar] [CrossRef]
- Drouzas, A.; Tsami, E.; Saravacos, G. Microwave/vacuum drying of model fruit gels. J. Food Eng. 1999, 39, 117–122. [Google Scholar] [CrossRef]
- Ratti, C. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar] [CrossRef]
- Harnkarnsujarit, N.; Kawai, K.; Suzuki, T. Impacts of freezing and molecular size on structure, mechanical properties and recrystallization of freeze-thawed polysaccharide gels. LWT 2016, 68, 190–201. [Google Scholar] [CrossRef]
- Nowak, D.; Jakubczyk, E. The freeze-drying of foods-the characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods 2020, 9, 1488. [Google Scholar] [CrossRef]
- Hawlader, M.N.A.; Perera, C.O.; Tian, M.; Yeo, K.L. Drying of guava and papaya: Impact of different drying methods. Dry. Technol. 2006, 24, 77–87. [Google Scholar] [CrossRef]
- Araya-Farias, M.; Makhlouf, J.; Ratti, C. Drying of seabuckthorn (Hippophae rhamnoides L.) berry: Impact of dehydration methods on kinetics and quality. Dry. Technol. 2011, 29, 351–359. [Google Scholar] [CrossRef]
- Bhatta, S.; Janezic, T.S.; Ratti, C. Freeze-drying of plant-based foods. Foods 2020, 9, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozcelik, M.; Ambros, S.; Morais, S.I.F.; Kulozik, U. Storage stability of dried raspberry foam as a snack product: Effect of foam structure and microwave-assisted freeze drying on the stability of plant bioactives and ascorbic acid. J. Food Eng. 2020, 270. [Google Scholar] [CrossRef]
- Silva, M.A.; Sobral, P.J.A.; Kieckbusch, T.G. State diagrams of freeze-dried camu-camu (Myrciaria dubia (HBK) Mc Vaugh) pulp with and without maltodextrin addition. J. Food Eng. 2006, 77, 426–432. [Google Scholar] [CrossRef]
- Silva-Espinoza, M.A.; Ayed, C.; Foster, T.; Camacho, M.D.M.; Martínez-Navarrete, N. The impact of freeze-drying conditions on the physico-chemical properties and bioactive compounds of a freeze-dried orange puree. Foods 2019, 9, 32. [Google Scholar] [CrossRef] [Green Version]
- Telis, V.R.N.; Martínez-Navarrete, N. Collapse and color changes in grapefruit juice powder as affected by water activity, glass transition, and addition of carbohydrate polymers. Food Biophys. 2009, 4, 83–93. [Google Scholar] [CrossRef]
- Roos, Y.H. Glass transition temperature and its relevance in food processing. Annu. Rev. Food Sci. Technol. 2010, 1, 469–496. [Google Scholar] [CrossRef] [PubMed]
- Slade, L.; Levine, H. Beyond water activity—recent advances based on an alternative approach to the assessment of food quality and safety. Crit. Rev. Food. Sci. Nutr. 1991, 30, 115–360. [Google Scholar] [CrossRef]
- Telis, V.R.N.; Sobral, P.J.A. Glass transitions and state diagram for freeze-dried pineapple. LWT 2001, 34, 199–205. [Google Scholar] [CrossRef]
- Roos, Y.H.; Drusch, S. Phase Transitions in Foods; Academic Press: Oxford, UK, 2015; p. 380. [Google Scholar]
- Gabas, A.L.; Telis, V.R.N.; Sobral, P.J.A.; Telis-Romero, J. Effect of maltodextrin and arabic gum in water vapor sorption thermodynamic properties of vacuum dried pineapple pulp powder. J. Food Eng. 2007, 82, 246–252. [Google Scholar] [CrossRef]
- Mrad, N.D.; Bonazzi, C.; Boudhrioua, N.; Kechaou, N.; Courtois, F. Moisture sorption isotherms, thermodynamic properties, and glass transition of pears and apples. Dry. Technol. 2012, 30, 1397–1406. [Google Scholar] [CrossRef]
- Witczak, T.; Witczak, M.; Socha, R.; Stępień, A.; Grzesik, M. Candied orange peel produced in solutions with various sugar compositions: Sugar composition and sorption properties of the product. J. Food Proc. Eng. 2017, 40, e12367. [Google Scholar] [CrossRef]
- Ostrowska-Ligęza, E.; Jakubczyk, E.; Gorska, A.; Wirkowska, M.; Brys, J. The use of moisture sorption isotherms and glass transition temperature to assess the stability of powdered baby formulas. J. Therm. Anal. Calorim. 2014, 118, 911–918. [Google Scholar] [CrossRef] [Green Version]
- Goula, A.M.; Karapantsios, T.D.; Achilias, D.S.; Adamopoulos, K.G. Water sorption isotherms and glass transition temperature of spray dried tomato pulp. J. Food Eng. 2008, 85, 73–83. [Google Scholar] [CrossRef]
- Tsami, E.; Krokida, M.; Drouzas, A. Effect of drying method on the sorption characteristics of model fruit powders. J. Food Eng. 1998, 38, 381–392. [Google Scholar] [CrossRef]
- Martinelli, L.; Gabas, A.L.; Telis-Romero, J. Thermodynamic and quality properties of lemon juice powder as affected by maltodextrin and arabic gum. Dry. Technol. 2007, 25, 2035–2045. [Google Scholar] [CrossRef]
- Tiwari, S.; Chakkaravarthi, A.; Bhattacharya, S. Imaging and image analysis of freeze-dried cellular solids of gellan and agar gels. J. Food Eng. 2015, 165, 60–65. [Google Scholar] [CrossRef]
- Cassanelli, M.; Norton, I.; Mills, T. Role of gellan gum microstructure in freeze drying and rehydration mechanisms. Food Hydrocoll. 2018, 75, 51–61. [Google Scholar] [CrossRef]
- Ciurzyńska, A.; Jasiorowska, A.; Ostrowska-Ligęza, E.; Lenart, A. The influence of the structure on the sorption properties and phase transition temperatures of freeze-dried gels. J. Food Eng. 2019, 252, 18–27. [Google Scholar] [CrossRef]
- Banerjee, S.; Ravi, R.; Bhattacharya, S. Textural characterisation of gellan and agar based fabricated gels with carrot juice. LWT 2013, 53, 255–261. [Google Scholar] [CrossRef]
- Armisen, R.; Gaiatas, F. Agar. In Handbook of hydrocolloids; Phillips, G.O., Williams, P.A., Eds.; Elsevier: Cambridge, UK, 2009; pp. 82–107. [Google Scholar]
- Bizot, H. Using the’GAB’model to construct sorption isotherms. In Physical Properties of Foods; Jowitt, R., Escher, F., Hällström, B., Meffert, H.F.T., Spiess, W.E.L., Vos, G., Eds.; Applied Science Publishers: London, UK, 1983; pp. 43–54. [Google Scholar]
- Timmermann, E.O.; Chirife, J.; Iglesias, H.A. Water sorption isotherms of foods and foodstuffs: BET or GAB parameters? J. Food Eng. 2001, 48, 19–31. [Google Scholar] [CrossRef]
- Lewicki, P.P. A three parameter equation for food moisture sorption isotherms. J. Food Process Eng. 1998, 21, 127–144. [Google Scholar] [CrossRef]
- Peleg, M. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms. J. Food Eng. 1993, 16, 21–27. [Google Scholar] [CrossRef]
- Iglesias, H.A.; Chirife, J. A model for describing the water sorption behavior of foods. J. Food Sci. 1976, 41, 984–992. [Google Scholar] [CrossRef]
- Jakubczyk, E.; Ostrowska-Ligęza, E.; Gondek, E. Moisture sorption characteristics and glass transition temperature of apple puree powder. Int. J. Food Sci. Technol. 2010, 45, 2515–2523. [Google Scholar] [CrossRef]
- Rahman, M.S.; Al-Marhubi, I.M.; Al-Mahrouqi, A. Measurement of glass transition temperature by mechanical (DMTA), thermal (DSC and MDSC), water diffusion and density methods: A comparison study. Chem. Phys. Lett. 2007, 440, 372–377. [Google Scholar] [CrossRef]
- Gordon, M.; Taylor, J.S. Ideal copolymers and the second-order transitions of synthetic rubbers. I. Non-crystalline copolymers. J. Appl. Chem. 1952, 2, 493–500. [Google Scholar] [CrossRef]
- Roos, Y.H. Effect of moisture on the thermal behavior of strawberries studied using differential scanning calorimetry. J.Food Sci. 1987, 52, 146–149. [Google Scholar] [CrossRef]
- Raharitsifa, N.; Ratti, C. Foam-mat freeze-drying of apple juice part 2: Stability of dry products during storage. J. Food Proc. Eng. 2010, 33, 341–364. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, M.J. Effect of drying method on the moisture sorption isotherms for Inonotus obliquus mushroom. LWT 2008, 41, 1478–1484. [Google Scholar] [CrossRef]
- Lopes Filho, J.; Romanelli, P.; Barboza, S.; Gabas, A.; Telis-Romero, J. Sorption isotherms of alligator’s meat (Caiman crocodilus yacare). J. Food Eng. 2002, 52, 201–206. [Google Scholar] [CrossRef]
- Frabetti, A.C.C.; de Moraes, J.O.; Porto, A.S.; da Silva Simão, R.; Laurindo, J.B. Strawberry-hydrocolloids dried by continuous cast-tape drying to produce leather and powder. Food Hydrocoll. 2021, 121, 107041. [Google Scholar] [CrossRef]
- Rodríguez-Bernal, J.; Flores-Andrade, E.; Lizarazo-Morales, C.; Bonilla, E.; Pascual-Pineda, L.; Gutierréz-López, G.; Quintanilla-Carvajal, M.X. Moisture adsorption isotherms of the borojó fruit (Borojoa patinoi. Cuatrecasas) and gum arabic powders. Food Bioprod. Process. 2015, 94, 187–198. [Google Scholar] [CrossRef]
- Lewicki, P.P. The applicability of the GAB model to food water sorption isotherms. Int. J. Food Sci. Technol. 1997, 32, 553–557. [Google Scholar] [CrossRef]
- Stępień, A.; Witczak, M.; Witczak, T. Moisture sorption characteristics of food powders containing freeze dried avocado, maltodextrin and inulin. Int. J. Biol. Macromol. 2020, 149, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Jakubczyk, E.; Jaskulska, A. The effect of freeze-drying on the properties of Polish vegetable soups. Appl. Sci. 2021, 11, 654. [Google Scholar] [CrossRef]
- Blahovec, J.; Yanniotis, S. Modified classification of sorption isotherms. J. Food Eng. 2009, 91, 72–77. [Google Scholar] [CrossRef]
- Moraga, G.; Talens, P.; Moraga, M.; Martínez-Navarrete, N. Implication of water activity and glass transition on the mechanical and optical properties of freeze-dried apple and banana slices. J. Food Eng. 2011, 106, 212–219. [Google Scholar] [CrossRef]
- Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 1940, 62, 1723–1732. [Google Scholar] [CrossRef]
- Djendoubi Mrad, N.; Bonazzi, C.; Boudhrioua, N.; Kechaou, N.; Courtois, F. Influence of sugar composition on water sorption isotherms and on glass transition in apricots. J. Food Eng. 2012, 111, 403–411. [Google Scholar] [CrossRef]
- Fukami, K.; Kawai, K.; Takeuchi, S.; Harada, Y.; Hagura, Y. Effect of water content on the glass transition temperature of calcium maltobionate and its application to the characterization of non-arrhenius viscosity behavior. Food Biophysics 2016, 11, 410–416. [Google Scholar] [CrossRef]
- Valenzuela, C.; Aguilera, J.M. Effects of maltodextrin on hygroscopicity and crispness of apple leathers. J. Food Eng. 2015, 144, 1–9. [Google Scholar] [CrossRef]
- Fongin, S.; Alvino Granados, A.E.; Harnkarnsujarit, N.; Hagura, Y.; Kawai, K. Effects of maltodextrin and pulp on the water sorption, glass transition, and caking properties of freeze-dried mango powder. J. Food Eng. 2019, 247, 95–103. [Google Scholar] [CrossRef]
- Farahnaky, A.; Mansoori, N.; Majzoobi, M.; Badii, F. Physicochemical and sorption isotherm properties of date syrup powder: Antiplasticizing effect of maltodextrin. Food Bioprod. Proc. 2016, 98, 133–141. [Google Scholar] [CrossRef]
- Ahmed, J.; Rahman, M.S. Glass transition in foods. In Engineering Properties of Foods; Datta, A.K., Ahmed, J., Rao, M.A., Rizvi, S.S.H., Eds.; CRC Press: Boca Raton, FL, USA, 2014; pp. 93–120. [Google Scholar]
- Ciurzyńska, A.; Lenart, A. Effect of the aerated structure on selected properties of freeze-dried hydrocolloid gels. Int. Agrophys. 2016, 30, 9–17. [Google Scholar] [CrossRef]
- Sundaram, J.; Durance, T.D. Water sorption and physical properties of locust bean gum-pectin-starch composite gel dried using different drying methods. Food Hydrocoll. 2008, 22, 1352–1361. [Google Scholar] [CrossRef]
Type of Gel | Apple Puree | Agar-Agar Powder | Maltodextrin | Methylcellulose | Water |
---|---|---|---|---|---|
g/100 g | |||||
P0% | 0.0 | 2.0 | 0.0 | 0.0 | 98.0 |
P25% | 25.0 | 2.0 | 0.0 | 0.0 | 73.0 |
P25%DE | 25.0 | 2.0 | 2.0 | 0.0 | 71.0 |
P40%DE | 40.0 | 2.0 | 3.2 | 0.0 | 54.8 |
P40%DE-MC | 40.0 | 2.0 | 3.2 | 0.3 | 54.5 |
Model | Equation | Description |
---|---|---|
GAB [37] | u—equilibrium water content g/g d.m., um—monolayer moisture content (g/g d.m.); C, k—constants, aw—water activity | |
BET [38] | c—constant | |
Lewicki [39] | F, G, H—constants | |
Peleg [40] | A, B, D, E—constants | |
Hasley [41] | g, n—constants | |
Statistical parameters | ||
‘RMS | ue—an experimental value of water content, up—the predicted value of water content, N—number of observations | |
P |
Model | Parameter | FD-P0% | FD-P25% | FD-P25%De | FD-P40%De | FD-P40%DE-MC | AD-P40%DE-MC | VD-P40%DE-MC |
---|---|---|---|---|---|---|---|---|
GAB | um | 0.096 ± 0.009 | 0.074 ± 0.006 | 0.065 ± 0.005 | 0.066 ± 0.005 | 0.079 ± 0.008 | 0.112 ± 0.021 | 0.106 ± 0.035 |
C | 5.351 ± 0.941 | 2.904 ± 0.625 | 2.422 ± 0.308 | 2.493 ± 0.266 | 2.306 ± 0.412 | 0.689 ± 0.098 | 1.224 ± 0.197 | |
k | 0.747 ± 0.022 | 0.999 ± 0.015 | 0.989 ± 0.011 | 1.020 ± 0.008 | 0.995 ± 0.019 | 0.943 ± 0.029 | 0.925 ± 0.018 | |
R2 | 0.993 | 0.995 | 0.996 | 0.995 | 0.995 | 0.997 | 0.996 | |
RMS | 5.99 | 15.57 | 14.48 | 13.02 | 10.06 | 27.59 | 11.26 | |
P | 4.48 | 10.34 | 9.97 | 9.46 | 6.72 | 12.24 | 7.35 | |
BET | um | 0.068 ± 0.004 | 0.084 ± 0.009 | 0.080 ± 0.006 | 0.073 ± 0.009 | 0.105 ± 0.018 | 0.135 ± 0.022 | 0.072 ± 0.005 |
c | 7.138 ± 0.780 | 2.108 ± 0.613 | 1.514 ± 0.390 | 2.107 ± 0.711 | 1.202 ± 0.357 | 0.462 ± 0.105 | 2.997 ± 0.464 | |
R2 | 0.986 | 0.961 | 0.973 | 0.948 | 0.974 | 0.993 | 0.978 | |
RMS | 6.29 | 15.48 | 13.43 | 24.23 | 15.29 | 25.64 | 26.06 | |
P | 4.92 | 12.29 | 10.33 | 21.33 | 12.18 | 14.20 | 19.59 | |
Lewicki | F | 1.598 ± 0.234 | 1.732 ± 0.828 | 1.302 ± 0.538 | 1.034 ± 0.286 | 1.535 ± 0.602 | 0.744 ± 0.094 | 0.350 ± 0.261 |
G | 0.089 ± 1.541 | 0.092 ± 0.041 | 0.101 ± 0.039 | 0.130 ± 0.032 | 0.102 ± 0.102 | 0.135 ± 0.080 | 0.341 ± 0.132 | |
H | 282.20 ± 5.03 | 14.596 ± 2.171 | 14.087 ± 1.859 | 10.516 ± 1.386 | 13.458 ± 1.812 | 6.905 ± 0.483 | 6.632 ± 1.171 | |
R2 | 0.852 | 0.995 | 0.996 | 0.995 | 0.995 | 0.994 | 0.992 | |
RMS | 28.61 | 12.95 | 13.82 | 12.89 | 11.45 | 43.52 | 17.31 | |
P | 22.88 | 8.59 | 9.17 | 9.14 | 7.91 | 18.16 | 10.97 | |
Peleg | A | 0.160 ± 0.011 | 0.995 ± 0.124 | 1.122 ± 0.111 | 0.845 ± 0.029 | 1.672 ± 0.031 | 0.741 ± 0.071 | 0.574 ± 0.021 |
B | 2.774 ± 0.086 | 8.642 ± 0.975 | 10.897 ± 1.412 | 6.813 ± 0.980 | 11.999 ± 1.076 | 7.089 ± 0.881 | 4.559 ± 0.467 | |
D | 0.142 ± 0.021 | 0.258 ± 0.025 | 0.256 ± 0.018 | 0.184 ± 0.039 | 0.325 ± 0.034 | 0.226 ± 0.035 | 0.135 ± 0.029 | |
E | 0.620 ± 0.015 | 1.226 ± 0.095 | 1.420 ± 0.101 | 1.063 ± 0.147 | 1.499 ± 0.132 | 1.569 ± 0.154 | 0885 ± 0.147 | |
R2 | 0.994 | 0.995 | 0.996 | 0.995 | 0.995 | 0.998 | 0.998 | |
RMS | 5.79 | 11.68 | 12.50 | 12.62 | 17.64 | 14.73 | 15.53 | |
P | 4.37 | 8.18 | 8.64 | 9.25 | 11.77 | 8.19 | 7.93 | |
Hasley | g | 0.019 ± 0.001 | 0.078 ± 0.002 | 0.067 ± 0.002 | 0.082 ± 0.002 | 0.083 ± 0.002 | 0.085 ± 0.009 | 0.076 ± 0.003 |
n | 1.602 ± 0.035 | 0.973 ± 0.022 | 0.965 ± 0.023 | 0.904 ± 0.019 | 0.949 ± 0.027 | 0.829 ± 0.021 | 0.954 ± 0.022 | |
R2 | 0.975 | 0.993 | 0.993 | 0.994 | 0.992 | 0.992 | 0.991 | |
RMS | 17.60 | 34.27 | 36.99 | 27.04 | 20.30 | 94.24 | 37.23 | |
P | 10.21 | 16.79 | 17.58 | 14.78 | 12.63 | 39.55 | 16.55 |
Parameters of Model | Variants of Dried Gels | |||||
---|---|---|---|---|---|---|
(FD) P0% | (FD) P25% | (FD) P25%De | (VD) P40%DE-MC | (AD) P40%DE-MC | ||
Gordon-Taylor model | Tgs | 132.32 d,* | 54.39 a | 61.81 b | 64.24c | 64.58 c |
k | 2.97 a | 5.76 c | 4.92 a | 5.71 c | 4.85 a | |
R2 | 0.989 | 0.997 | 0.995 | 0.992 | 0.992 | |
RMS | 4.57 | 13.13 | 10.98 | 16.16 | 13.76 | |
P | 3.48 | 7.58 | 8.79 | 11.50 | 4.85 | |
Ross model | A | 123.82 d | 52.21 a | 63.82 b | 64.72 b | 74.19 c |
B | −119.96 d | −146.48 b | −132.97 c | −152.50 a | −143.26 b | |
R2 | 0.965 | 0.985 | 0.993 | 0.988 | 0.991 | |
RMS | 8.53 | 38.67 | 16.27 | 29.71 | 18.63 | |
P | 6.83 | 20.12 | 11.74 | 19.54 | 14.54 | |
Tg = 25 °C | xwc (g/gdm) | 0.225 a | 0.032 b | 0.047 c | 0.042 c | 0.045 c |
awc | 0.837 e | 0.181 a | 0.301 c | 0.260 b | 0.353 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakubczyk, E.; Kamińska-Dwórznicka, A.; Ostrowska-Ligęza, E.; Górska, A.; Wirkowska-Wojdyła, M.; Mańko-Jurkowska, D.; Górska, A.; Bryś, J. Application of Different Compositions of Apple Puree Gels and Drying Methods to Fabricate Snacks of Modified Structure, Storage Stability and Hygroscopicity. Appl. Sci. 2021, 11, 10286. https://doi.org/10.3390/app112110286
Jakubczyk E, Kamińska-Dwórznicka A, Ostrowska-Ligęza E, Górska A, Wirkowska-Wojdyła M, Mańko-Jurkowska D, Górska A, Bryś J. Application of Different Compositions of Apple Puree Gels and Drying Methods to Fabricate Snacks of Modified Structure, Storage Stability and Hygroscopicity. Applied Sciences. 2021; 11(21):10286. https://doi.org/10.3390/app112110286
Chicago/Turabian StyleJakubczyk, Ewa, Anna Kamińska-Dwórznicka, Ewa Ostrowska-Ligęza, Agata Górska, Magdalena Wirkowska-Wojdyła, Diana Mańko-Jurkowska, Agnieszka Górska, and Joanna Bryś. 2021. "Application of Different Compositions of Apple Puree Gels and Drying Methods to Fabricate Snacks of Modified Structure, Storage Stability and Hygroscopicity" Applied Sciences 11, no. 21: 10286. https://doi.org/10.3390/app112110286
APA StyleJakubczyk, E., Kamińska-Dwórznicka, A., Ostrowska-Ligęza, E., Górska, A., Wirkowska-Wojdyła, M., Mańko-Jurkowska, D., Górska, A., & Bryś, J. (2021). Application of Different Compositions of Apple Puree Gels and Drying Methods to Fabricate Snacks of Modified Structure, Storage Stability and Hygroscopicity. Applied Sciences, 11(21), 10286. https://doi.org/10.3390/app112110286