Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm
Abstract
:1. Introduction
- The MTF-CSP features extracted by us achieved better classification accuracy in the classification process by comparing it with the original signal and time-frequency features.
- The strategy for intercepting multiple sliding window EEG data for analysis demonstrated better performance than direct full-window EEG data analysis.
- We compared our MTF-CSP method with traditional CSP-based models, and the results demonstrated that the multi-band and multi-time strategy could obviously improve the recognition performance of the CSP-based models.
- For the final decision algorithm, we compared our model with the Max Voting method used in some studies [43], and the cross-session classification accuracy obtained using our proposed AS algorithm was significantly higher than that obtained by using Max Voting algorithm.
2. Materials and Methods
2.1. Data and Preprocessing
2.2. MI-EEG Recognition Based on MTF-CSP
2.2.1. CSP Algorithm
2.2.2. Multi-Time Window and Multi-Frequency Band CSP Strategy for Feature Extraction
2.2.3. SVM Classifier for Multi-Window EEG Classification
2.2.4. Final Decision over Multiple Time Windows
- 1
- Effective duration algorithm (ED)
- 2
- Average score algorithm (AS)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.; Yao, L.N. A survey on deep learning-based non-invasive brain signals: Recent advances and new frontiers. J. Neural Eng. 2021, 18, 031002. [Google Scholar] [CrossRef] [PubMed]
- Pan, C.; Shi, C.; Mu, H.; Li, J.; Gao, X. EEG-Based Emotion Recognition Using Logistic Regression with Gaussian Kernel and Laplacian Prior and Investigation of Critical Frequency Bands. Appl. Sci. 2020, 10, 1619. [Google Scholar] [CrossRef] [Green Version]
- Idowu, O.P.; Ilesanmi, A.E.; Li, X.; Samuel, O.W.; Fang, P.; Li, G. An integrated deep learning model for motor intention recognition of multi-class EEG Signals in upper limb amputees. Comput. Methods Programs Biomed. 2021, 206, 106121. [Google Scholar] [CrossRef]
- Mridha, M.F.; Das, S.C.; Kabir, M.M.; Lima, A.A.; Islam, M.R.; Watanobe, Y. Brain-Computer Interface: Advancement and Challenges. Sensors 2021, 21, 5746. [Google Scholar] [CrossRef]
- Balderas, D.; Ponce, P.; Lopez-Bernal, D.; Molina, A. Education 4.0: Teaching the Basis of Motor Imagery Classification Algorithms for Brain-Computer Interfaces. Future Internet 2021, 13, 202. [Google Scholar] [CrossRef]
- Singh, A.; Hussain, A.A.; Lal, S.G.; Guesgen, H.W. A Comprehensive Review on Critical Issues and Possible Solutions of Motor Imagery Based Electroencephalography Brain-Computer Interface. Sensors 2021, 21, 2173. [Google Scholar] [CrossRef]
- Kapgate, D.; Kalbande, D.A. Review on Visual Brain Computer Interface. In Proceedings of the 1st International Conference on Advancements of Medical Electronics (ICAME), Kalyani, India, 29–30 January 2015. [Google Scholar] [CrossRef]
- Rashid, M.; Sulaiman, N.; Majeed, A.P.P.A.; Musa, R.M.; Nasir, A.F.; Bari, B.S.; Khatun, S. Current Status, Challenges, and Possible Solutions of EEG-Based Brain-Computer Interface: A Comprehensive Review. Front. Neurorobot. 2020, 14, 25. [Google Scholar] [CrossRef]
- Sung, Y.; Cho, K.; Um, K. A Development Architecture for Serious Games Using BCI (Brain Computer Interface) Sensors. Sensors 2012, 12, 15671–15688. [Google Scholar] [CrossRef] [Green Version]
- Pitt, K.M.; Brumberg, J.S.; Burnison, J.D.; Mehta, J.; Kidwai, J. Behind the Scenes of Noninvasive Brain-Computer Interfaces: A Review of Electroencephalography Signals, How They Are Recorded, and Why They Matter. Perspect. ASHA Spec. Interest Groups 2019, 4, 1622–1636. [Google Scholar] [CrossRef]
- Sawant, N. How to Read an EEG: A Workshop for Psychiatrists. India J. Psychiatry 2016, 58, S30. [Google Scholar]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Cheng, D. Learning k for knn classification. ACM Trans. Intell. Syst. Technol. 2017, 8, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ghaddar, B.; Naoum-Sawaya, J. High dimensional data classification and feature selection using support vector machines. Eur. J. Oper. Res. 2018, 265, 993–1004. [Google Scholar] [CrossRef]
- Khanna, D.; Sharma, A. Kernel-Based Naive Bayes Classifier for Medical Predictions. In Intelligent Engineering Informatics; Springer: Berlin/Heidelberg, Germany, 2018; pp. 91–101. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.-J. Quantitative Evaluation of Task-Induced Neurological Outcome after Stroke. Brain Sci. 2021, 11, 900. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.-J. Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke Management. IEEE Access 2021, 9, 123146–123164. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.-J. HealthSOS: Real-Time Health Monitoring System for Stroke Prognostics. IEEE Access 2020, 88, 213574–213586. [Google Scholar] [CrossRef]
- Bin Heyat, M.B.; Akhtar, F.; Khan, A.; Noor, A.; Benjdira, B.; Qamar, Y.; Abbas, S.J.; Lai, D. A Novel Hybrid Machine Learning Classification for the Detection of Bruxism Patients Using Physiological Signals. Appl. Sci. 2020, 10, 7410. [Google Scholar] [CrossRef]
- Li, F.; Xia, Y.; Wang, F.; Zhang, D.; Li, X.; He, F. Transfer Learning Algorithm of P300-EEG Signal Based on XDAWN Spatial Filter and Riemannian Geometry Classifier. Appl. Sci. 2020, 10, 1804. [Google Scholar] [CrossRef] [Green Version]
- Riquelme-Ros, J.-V.; Rodríguez-Bermúdez, G.; Rodríguez-Rodríguez, I.; Rodríguez, J.-V.; Molina-García-Pardo, J.-M. On the Better Performance of Pianists with Motor Imagery-Based Brain-Computer Interface Systems. Sensors 2020, 20, 4452. [Google Scholar] [CrossRef]
- Herman, P.; Prasad, G.; McGinnity, T.M.; Coyle, D.H. Comparative analysis of spectral approaches to feature extraction for EEG-based motor imagery classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2008, 16, 317–326. [Google Scholar] [CrossRef]
- Gandhi, V.; Prasad, G.; Coyle, D.; Behera, L.; McGinnity, T.M. Quantum Neural Network-Based EEG Filtering for a Brain–Computer Interface. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Gaur, P.; Pachori, R.B.; Wang, H.; Prasad, G. An Empirical Mode Decomposition Based Filtering Method for Classification of Motor-Imagery EEG Signals for Enhancing Brain-Computer Interface, Proceedings of the International Joint Conference on Neural Networks, Killarney, Ireland, 12–17 July 2015; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2015. [Google Scholar]
- Ichidi, A.; Hanafusa, Y.; Itakura, T.; Tanaka, T. Simultaneous Observation and Imagery of Hand Movement Enhance Event-Related Desynchronization of Stroke Patients. In Proceedings of the 6th International Conference on Cognitive Neurodynamics (ICCN), Carmona, Spain, 1–5 August 2017. [Google Scholar] [CrossRef]
- Daeglau, M.; Zich, C.; Emkes, R.; Welzel, J.; Debener, S.; Kranczioch, C. Investigating Priming Effects of Physical Practice on Motor Imagery-Induced Event-Related Desynchronization. Front. Psychol. 2020, 11, 57. [Google Scholar] [CrossRef] [Green Version]
- Kitahara, K.; Kondo, T. Modulation of ERD/S by Having a Conscious Target During Lower-Extremity Motor Imagery, Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Keerthi, K.K.; Soman, K.P. CNN based classification of motor imaginary using variational mode decomposed EEG-spectrum image. Biomed. Eng. Lett. 2021, 11, 235–247. [Google Scholar] [CrossRef]
- Wang, Z.J.; Cao, L.; Zhang, Z.; Gong, X.L.; Sun, Y.; Wang, H. Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition. Concurr. Comput. Pract. Exp. 2018, 30, e4413. [Google Scholar] [CrossRef]
- Park, Y.; Chung, W. BCI Classification Using Locally Generated CSP Features, Proceedings of the 2018 6th International Conference on Brain-Computer Interface (BCI), Korea Univ, Korea, 15–17 January 2018; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Xie, H.; Xiao, D.; Xia, B.; Li, J.; Yang, H.; Zhang, Q. The Research for the Correlation Between ERD/ERS and CSP, Proceedings of the 2011 Seventh International Conference on Natural Computation, Shanghai, China, 26–28 July 2011; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.X. EEG Classification Based on Common Spatial Pattern and LDA. In Proceedings of the 7th International Conference on Artificial Life and Robotics (ICAROB), Oita, Japan, 13–16 January 2020. [Google Scholar]
- Wu, S.L.; Wu, C.W.; Pal, N.R.; Chen, C.-Y.; Chen, S.-A.; Lin, C.-T. Common Spatial Pattern and Linear Discriminant Analysis for Motor Imagery Classification. In Proceedings of the 2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB), Singapore, 16–19 April 2013. [Google Scholar] [CrossRef]
- Chacon-Murguia, M.I.; Rivas-Posada, E. Feature Extraction Evaluation for Two Motor Imagery Recognition Based on Common Spatial Patterns, Time-Frequency Transformations and SVM. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Electr. Network, Glasgow, UK, 19–24 July 2020. [Google Scholar] [CrossRef]
- Sun, H.; Xiang, Y.; Sun, Y.; Zhu, H.; Zeng, J. On-Line EEG Classification for Brain-Computer Interface Based on CSP and SVM, Proceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Novi, Q.; Guan, C.; Dat, T.H.; Xue, P. Sub-Band Common Spatial Pattern (SBCSP) for Brain-Computer Interface, Proceedings of the 2007 3rd International IEEE/EMBS Conference on Neural Engineering, Kohala, HI, USA, 2–5 May 2007; Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA, 2007. [Google Scholar] [CrossRef] [Green Version]
- Kirar, J.S.; Agrawal, R.K. Optimal Spatio-Spectral Variable Size Subbands Filter For Motor Imagery Brain Computer Interface. In Proceedings of the 7th International Conference on Intelligent Human Computer Interaction (IHCI), Indian Inst Informat Technol, Allahabad, India, 14–16 December 2015. [Google Scholar] [CrossRef] [Green Version]
- Ang, K.K.; Chin, Z.Y.; Zhang, H.; Guan, C. Filter Bank Common Spatial Pattern (FBCSP) Algorithm Using Online Adaptive and SEMI-supervised Learning. In Proceedings of the 2011 International Joint Conference on Neural Networks, San Jose, CA, USA, 31 July–5 August 2011. [Google Scholar] [CrossRef]
- Thomas, K.P.; Guan, C.; Lau, C.T.; Vinod, A.P.; Ang, K.K. A new discriminative common spatial pattern method for motor imagery brain-computer interfaces. IEEE Trans. Biomed. Eng. 2009, 56, 2730–2733. [Google Scholar] [CrossRef]
- Blankertz, B.; Tomioka, R.; Lemm, S.; Kawanabe, M.; Muller, K.-R. Optimizing spatial filters for robust EEG single-trial analysis. Signal Process. Mag. 2008, 25, 41–56. [Google Scholar] [CrossRef]
- Feng, J.; Yin, E.; Jin, J.; Saab, R.; Daly, I.; Wang, X.; Hu, D.; Cichocki, A. Towards correlation-based time window selection method for motor imagery BCIs. Neural Netw. 2018, 102, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Nam, C.S.; Zhou, G.X.; Jin, J.; Wang, X.; Cichocki, A. Temporally constrained sparse group spatial patterns for motor imagery BCI. IEEE Trans. Cybern. 2019, 49, 3322–3332. [Google Scholar] [CrossRef]
- Miao, Y.; Jin, J.; Daly, I.; Zuo, C.; Wang, X.; Cichocki, A.; Jung, T.-P. Learning Common Time-Frequency-Spatial Patterns for Motor Imagery Classification. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 699–707. [Google Scholar] [CrossRef]
- Ang, K.K.; Chin, Z.Y.; Wang, C.; Guan, C.; Zhang, H. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front. Neurosci. 2012, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.Q.; Huang, G.; Zhu, X.Y. Application of CSP Method in Multi-class Classification. Chin. J. Biomed. Eng. 2009, 28, 935–938. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Q.W.; Lu, Z.G.; Wang, H. EEG Classification Based on Least Squares Support Vector Machine. J. Northeast. Univ. Nat. Sci. 2016, 37, 634–637. [Google Scholar] [CrossRef]
- Mera-Gaona, M.; López, D.M.; Vargas-Canas, R. An Ensemble Feature Selection Approach to Identify Relevant Features from EEG Signals. Appl. Sci. 2021, 11, 6983. [Google Scholar] [CrossRef]
- Kuznetsova, A.A. Statistical Precision-Recall curves for object detection quality assessment. J. Appl. Inform. 2020, 15, 42–57. [Google Scholar] [CrossRef]
- Williams, C.K.I. The Effect of Class Imbalance on Precision-Recall Curves. Neural Comput. 2021, 33, 853–857. [Google Scholar] [CrossRef]
6 Windows | 11 Windows | |||||||
---|---|---|---|---|---|---|---|---|
1 s | 1.5 s | 2 s | 2.5 s | 1 s | 1.5 s | 2 s | 2.5 s | |
Sub1 | 0.986 | 0.920 | 0.928 | 0.906 | 0.978 | 0.934 | 0.913 | 0.906 |
Sub2 | 0.956 | 0.971 | 0.926 | 0.875 | 0.993 | 0.963 | 0.897 | 0.882 |
Sub3 | 0.957 | 0.942 | 0.934 | 0.934 | 0.964 | 0.942 | 0.927 | 0.927 |
Sub4 | 0.953 | 0.977 | 0.953 | 0.961 | 0.969 | 0.946 | 0.961 | 0.961 |
Sub5 | 0.961 | 0.938 | 0.923 | 0.891 | 0.984 | 0.930 | 0.930 | 0.876 |
Sub6 | 0.982 | 0.946 | 0.929 | 0.876 | 0.974 | 0.964 | 0.929 | 0.867 |
Sub7 | 0.985 | 0.977 | 0.977 | 0.955 | 0.977 | 0.985 | 0.977 | 0.948 |
Sub8 | 0.985 | 0.955 | 0.947 | 0.939 | 0.985 | 0.939 | 0.917 | 0.939 |
Sub9 | 0.966 | 0.914 | 0.922 | 0.871 | 0.957 | 0.905 | 0.922 | 0.845 |
avg | 0.970 | 0.949 | 0.938 | 0.912 | 0.976 | 0.945 | 0.930 | 0.906 |
std | 0.013 | 0.022 | 0.017 | 0.034 | 0.011 | 0.022 | 0.023 | 0.038 |
6 Windows | 11 Windows | |||||||
---|---|---|---|---|---|---|---|---|
1 s | 1.5 s | 2 s | 2.5 s | 1 s | 1.5 s | 2 s | 2.5 s | |
Sub1 | 0.971 | 0.956 | 0.913 | 0.913 | 0.971 | 0.942 | 0.927 | 0.913 |
Sub2 | 0.971 | 0.971 | 0.956 | 0.912 | 0.971 | 0.971 | 0.941 | 0.853 |
Sub3 | 0.971 | 0.941 | 0.942 | 0.912 | 0.971 | 0.956 | 0.898 | 0.898 |
Sub4 | 0.969 | 0.954 | 0.938 | 0.953 | 0.969 | 0.954 | 0.953 | 0.923 |
Sub5 | 0.953 | 0.938 | 0.954 | 0.938 | 0.953 | 0.922 | 0.938 | 0.892 |
Sub6 | 0.970 | 0.947 | 0.912 | 0.876 | 0.970 | 0.965 | 0.894 | 0.876 |
Sub7 | 0.970 | 0.970 | 0.955 | 0.970 | 0.970 | 0.955 | 0.955 | 0.955 |
Sub8 | 0.970 | 0.955 | 0.970 | 0.924 | 0.970 | 0.955 | 0.955 | 0.924 |
Sub9 | 0.966 | 0.948 | 0.931 | 0.897 | 0.948 | 0.914 | 0.897 | 0.897 |
avg | 0.968 | 0.953 | 0.941 | 0.922 | 0.966 | 0.948 | 0.929 | 0.903 |
std | 0.005 | 0.010 | 0.019 | 0.027 | 0.008 | 0.018 | 0.024 | 0.028 |
Parameters | Value |
---|---|
n | 6/11 |
w | 1 s/1.5 s/2 s/2.5 s |
m | 2 |
Features Type | Original Sequence Signal | STFT Time-Frequency | Full-Window Multi-Band CSP Features | Proposed MTF-CSP Features Based on 11 2.5 s-Windows | Proposed MTF-CSP Features Based on 6 1 s-Windows | ||||
---|---|---|---|---|---|---|---|---|---|
Classifier | LDA | SVM | LDA | SVM | SVM | ED + SVM | AS + SVM | ED + SVM | AS + SVM |
sub1 | 0.461 | 0.511 | 0.461 | 0.468 | 0.908 | 0.837 | 0.879 | 0.837 | 0.922 |
sub2 | 0.542 | 0.521 | 0.493 | 0.542 | 0.549 | 0.563 | 0.577 | 0.549 | 0.599 |
sub3 | 0.460 | 0.482 | 0.686 | 0.788 | 0.964 | 0.942 | 0.971 | 0.920 | 0.971 |
sub4 | 0.483 | 0.578 | 0.621 | 0.509 | 0.526 | 0.664 | 0.716 | 0.638 | 0.647 |
sub5 | 0.563 | 0.674 | 0.504 | 0.533 | 0.696 | 0.659 | 0.696 | 0.719 | 0.748 |
sub6 | 0.556 | 0.583 | 0.546 | 0.565 | 0.611 | 0.593 | 0.565 | 0.630 | 0.657 |
sub7 | 0.736 | 0.836 | 0.521 | 0.514 | 0.779 | 0.821 | 0.814 | 0.650 | 0.814 |
sub8 | 0.500 | 0.567 | 0.545 | 0.537 | 0.925 | 0.940 | 0.925 | 0.925 | 0.925 |
sub9 | 0.523 | 0.562 | 0.731 | 0.831 | 0.800 | 0.785 | 0.815 | 0.808 | 0.800 |
Avg | 0.536 | 0.590 | 0.568 | 0.587 | 0.751 | 0.756 | 0.773 | 0.742 | 0.787 |
Std | 0.079 | 0.101 | 0.087 | 0.122 | 0.155 | 0.134 | 0.137 | 0.128 | 0.127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Ma, Z.; Shen, T. Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm. Appl. Sci. 2021, 11, 10294. https://doi.org/10.3390/app112110294
Yang J, Ma Z, Shen T. Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm. Applied Sciences. 2021; 11(21):10294. https://doi.org/10.3390/app112110294
Chicago/Turabian StyleYang, Jun, Zhengmin Ma, and Tao Shen. 2021. "Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm" Applied Sciences 11, no. 21: 10294. https://doi.org/10.3390/app112110294
APA StyleYang, J., Ma, Z., & Shen, T. (2021). Multi-Time and Multi-Band CSP Motor Imagery EEG Feature Classification Algorithm. Applied Sciences, 11(21), 10294. https://doi.org/10.3390/app112110294